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Abstract
We consider regression problems where the response is a smooth but non-linear function of a k-
dimensional projection of p normally-distributed covariates, contaminated with additive Gaussian
noise. The goal is to recover the range of the k-dimensional projection, i.e., the index space.
This model is called the multi-index model, and the k = 1 case is called the single-index model.
For the single-index model, we characterize the population landscape of a natural semi-parametric
maximum likelihood objective in terms of the link function and prove that it has no spurious local
minima. We also propose and analyze an efficient iterative procedure that recovers the index space
up to error ε using a sample size Õ(pO(R2/µ)+p/ε2), whereR and µ, respectively, parameterize the
smoothness of the link function and the signal strength. When a multi-index model is incorrectly
specified as a single-index model, we prove that essentially the same procedure, with sample size
Õ(pO(kR2/µ) + p/ε2), returns a vector that is ε-close to being completely in the index space.
Keywords: Single-index models, multi-index models, non-convex optimization, semi-parametric
models.

1. Introduction

Suppose we are given n data points {(xi, yi)}ni=1 generated independently from the following re-
gression model:

xi ∼ N (0, Ip) , εi ∼ N
(
0, σ2

)
, yi = f(xi) + εi, εi ⊥⊥ xi. (1)

Here, xi ∈ Rp are p-dimensional covariates or features and yi ∈ R are the response variables. The
function f : Rp → R is assumed to be smooth and unknown. In many applications of practical in-
terest the function f is not an arbitrary p-variate function but depends on an unknown k dimensional
projection of x, that is,

f(x) = g(〈u?1,x〉 , 〈u?2,x〉 , . . . , 〈u?k,x〉), (2)

where g : Rk → R and u?1,u
?
2, . . . ,u

?
k are orthonormal vectors in Rp. In the statistics community,

this model is called the multi-index model. The special case k = 1 is called the single-index model;
a simple example is the phase retrieval problem for real signals where g(z) = z2. We note that in
the multi-index model, the index vectors are themselves unidentifiable. However one can hope to
identify the span of index vectors which we denote as U? def

= Span(u?1,u
?
2, . . . ,u

?
k).

We study the index model from a semiparametric point-of-view: the parameter of interest is the
subspace U? and the link function g is treated as an unknown nuisance parameter. The advantages
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of taking this view are two-fold. First, designing procedures which make weak assumptions on the
link function g are robust to misspecification of the link function. Second, this point of view allows
us to study the problem of representation learning or feature engineering in a simple setting. If one
is successfully able to estimate the transformation x 7→ (〈u?1,x〉 , . . . , 〈u?k,x〉), there is hope of
avoiding the curse of dimensionality in p dimensions and incurring a curse of dimensionality only
in k dimensions.

There is a long line of work studying this model in statistics and machine learning. However
existing works suffer from one or more of the following drawbacks:

1. Some procedures derive estimators that are solutions to highly non-convex optimization prob-
lems. It is unclear when these optimization problems are tractable.

2. Some existing procedures make ad-hoc assumptions on the unknown link function g. These
assumptions seem to be required for specific procedures to work and don’t seem to capture
the inherent statistical difficulty of the problem.

3. The sample complexity analysis of some procedures suppresses the dependence of the ambi-
ent dimension p in the constants, which makes it unclear whether the sample complexity is
polynomial or exponential in p.

In this paper we attempt to address some of these shortcomings. Our main contributions are
summarized as follows:

1. For the single-index model, k = 1, we provide an explicit formula for the population loss of a
natural semiparametric maximum likelihood estimate (SMLE). We show that the population
loss has no spurious minima. However it may have degenerate critical points. In Theorem 5,
we explicitly characterize the degeneracy of these critical points in terms of a single parameter
corresponding to the unknown link function called the Order of Degeneracy of g.

2. Motivated by our analysis of population loss of the SMLE, we design an easy-to-analyze
procedure to recover the index vector for the single-index model. In Theorem 14, we analyze
the sample complexity of our procedure in terms of statistically motivated parameters R2 and
µwhich quantify the smoothness and signal strength of the link function g; see Assumptions 3
and 4 for their definitions. Our procedure (Algorithm 2) requires Õ(pO(R2/µ)+ p/ε2) samples
where the Õ notation suppresses factors polynomial in 1/δ, ln(1/ε) and (R2/µ)R

2/µ to return
an estimate û that satisfies min(‖û − u?‖2, ‖û + u?‖2) ≤ ε with probability 1 − O(δ) −
on(1) − op(1). Furthermore, our procedure runs in time O (np). Our procedure is a natural
higher order generalization of ADE (Brillinger, 2012) and PHD (Li, 1992) estimators.

3. For the multi-index case, in Theorem 8, we show that the same procedure can be seen as
optimizing an objective which has the desirable property that (nearly) every local extrema in
the population objective is an element of the U?. Finally, in Theorem 17, we show that with
Õ(pO(kR2/µ)/ε2) samples, the procedure returns an estimate û such that ‖PU?(û)‖2 ≥ 1− ε.
This means that our procedure for learning single-index model is robust even when a multi-
index model is misspecified as a single-index model.
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1.1. Related Work

There is a large literature dealing with estimation of index models. We briefly review the different
approaches mentioning some representative papers for each approach.

Semiparametric Maximum Likelihood Estimators: A well known estimator for the index vec-
tor is the semiparemetric maximum likelihood estimator (SMLE). The basic idea behind SMLE is
as follows: Suppose our best guess for the index vectors was u1,u2, . . . ,uk. Given this guess, one
could estimate the link function g using a non-parametric estimator such as a kernel smoothing es-
timator with bandwidth h : ĝh(〈u1,x〉 , . . . , 〈uk,x〉). One could also evaluate how good our guess
for the index vectors was using a suitable goodness-of-fit statistic such as the Sum-of-Squared Er-
rors SSE(u1, . . . ,uk) =

∑n
i=1(ĝh(〈u1,xi〉 , . . . , 〈uk,xi〉)− yi)2. One can then estimate the index

vectors by minimizing the goodness of fit statistic. The SMLE is known to have excellent statistical
properties in the asymptotic regime where the ambient dimension p is fixed and the number of sam-
ples n → ∞ such as

√
n-consistency and asymptotic efficiency under very weak assumptions on

the distribution of covariates. However, it is not clear whether the optimizing the SSE is tractable.
Furthermore, the classical asymptotic analysis does not capture terms in the Mean Squared Error
which might be more important in modern day scenarios, where p is often large and comparable to
n. See the book by Horowitz (2009) for a nice review on results about the SMLE.

Gradient-Based Estimators: A second approach developed in a series of papers by Hristache
et al. (2001b,a); Dalalyan et al. (2008) leverages the observation that the gradients ∇f(x) lies in
the span of the index vectors and hence U? can be estimated by running PCA on non-parametric
estimators of the gradients, for example the slope of a local-linear regression estimate:

(f̂(x), ∇̂f(x)) = arg min
c∈R,β∈Rp

n∑
i=1

(yi − c− 〈β,xi − x〉)2Kh (‖x− xi‖)

for some kernel smoothing function Kh. The problem with this estimate is that it isn’t clear if the
estimate of the index vectors derived from this non-parametric gradient estimate would even be√
n-consistent since the gradients are estimated at a slow rate. However Hristache et al. (2001b,a);

Dalalyan et al. (2008) show that it is possible to iteratively improve this estimator to get a
√
n-

consistent estimator of the span of the index vectors when k < 4 under very weak assumptions
on the distribution of covariates. Furthermore, their procedure is also computationally tractable.
However, their analysis suppresses the dependence of p in constant terms. More precisely, they
show that estimating the span of the index vectors up to a tolerance ε requires O

(
1/ε2

)
samples

(which is much better than O (1/εp)), but this O (·) suppresses a 2p factor in the sample size.

Moment-Based Estimators: Another line of work makes assumptions on the covariate distribu-
tion (e.g., Gaussian or elliptical). Such assumptions permit one to take advantage of Stein’s Lemma
and its generalizations to derive moment-based estimators for the index vectors. Specifically if
xi ∼ N (0, Ip), then,

E[yx] = E[∇f(x)], E[yxxT ]− E[f(x)]Ip = E[∇2f(x)].

Since for multi-index models, E[∇f(x)] ∈ U? and Range(E[∇2f(x)]) ⊂ U?, estimates of these
moments derived from empirical averages can be used to estimate subspaces of the span of the index
vectors. The estimator based on the first moment is called Average Derivative Estimator (ADE) and
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was proposed by Brillinger (2012). The estimator based on the second moment is called Principal
Hessian Directions (PHD) and was proposed by Li (1992). More recently, these estimators were
revisited by Plan et al. (2017) and Neykov et al. (2016) in the context of single-index models. They
analyze these estimators providing non-asymptotic bounds with explicit dependence on p. They also
extend these estimators to the situation where the index vector has additional structure like sparsity.
However, the key drawback of these estimators is that they are not guaranteed to estimate the entire
span of the index vectors. For example consider the situation when k = 1 and g(z) = H3(z). Here
H3 denotes the Hermite Polynomial of degree 3. One can check for this example, E[∇f(x)] = 0
and E[∇2f(x)] = 0. Hence both ADE and PHD fail to recover the index vector. The underlying
cause for this failure mode is that both ADE and PHD extract index vectors participating in the first
two harmonics of the link function g and can miss out on index vectors involved in higher order
harmonics of the link function g.

Slicing: A partial solution to the failure of moment-based estimators to the entire subspace U? is a
technique called Slicing. This technique was introduced in Li (1991) and is based on the observation
that almost surely with respect to y,

E[x|y] ∈ U?, Range(E[xxT |y]− I) ⊂ U?.

The advantage of slicing is that one can now estimate the sliced moments E[x|y] and E[xxT |y] for
a number of different values of y and this hopefully reduces the chance of missing certain relevant
directions. However, even Sliced Inverse Regression is guaranteed to consistently capture all the
relevant directions under ad-hoc assumptions like:

Rank
(
Ey
[
E [x|y]E [x|y]T

])
= k, (3)

Rank
(
Ey
[(
E
[
xxT |y

]
− I
)2])

= k. (4)

For Equation (3), it is easy to see that the phase retrieval problem violates this assumption since the
link function g(z) = z2 is even and hence E[x|y] = 0. We are not aware of any counterexamples to
Equation (4) nor a proof that this assumption holds for an arbitrary link function. Due to assump-
tions like these, the analysis of slicing depends on parameters like the λmin

(
Ey
[
E [x|y]E [x|y]T

])
and the smoothness of the function s(y)

def
= E[x|y]. It is not clear how these parameters relate to

more natural notions of signal strength for this problem or to the smoothness of the underlying link
function. We refer the reader to Babichev and Bach (2016) for a non-asymptotic analysis of Sliced
Inverse Regression and a discussion of the failure modes of various slicing strategies.

Other related work: Recent concurrent work of Ge et al. (2017) uses techniques based on Her-
mite polynomials similar to ours to learn neural networks of the form

∑m
i=1 a

?
iσ(〈b?i ,x〉) where

a?i ≥ 0 and bi are linearly independent. They assume that the link function σ is known (e.g., ReLU
or tanh activation), and leverage this knowledge to design an objective depending on σ that has
benign structure (e.g., no spurious local minima or degenerate critical points). Since we take a
semi-parametric point-of-view, we are unable to do this. In particular we need to handle objectives
with degenerate critical points.
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1.2. Assumptions

We assume that we have n data points generated the regression model defined in Equation (1) with
a multi-index regression function of order k (defined in Equation (2)). We make the following
assumptions on the unknown link function (with z ∼ N (0, Ik)):

Assumption 1 (Normalization) E[g2(z)] = 1.

Assumption 2 (Bounded Link Function) ‖g‖∞ <∞.

Remark 1 Assumption 2 is not strictly required for our analysis. It can be relaxed to allow for link
functions such as g(z) = z2 in the case of phase retrieval. This is done in Appendix D.

Assumption 3 (Smoothness) g is twice differentiable, and E[(∂
2g(z)
∂zi∂zj

)2] ≤ R2 for all i, j ∈ [k].

Assumption 4 (Minimum Signal Strength) E[(∂g(z)
∂zi

)2] ≥ µ for all i ∈ [k].

Remark 2 We note that µ is a very natural notion of signal strength in this problem. If Assumption 4
is violated for some coordinate i ∈ [k], we have

E

[(
∂g(z)

∂zi

)2
]

= 0 =⇒ ∂g(z)

∂zi

a.s.
= 0 =⇒ g(z1, z2, . . . , zk) = g′(z1, . . . , zi−1, zi+1, . . . , zk).

This means that the value of the response y is independent of the projection of the covariate along
the direction u?i and hence, we cannot possibly hope to recover it.

1.3. Notation

Notation for Hermite Polynomials: We will represent the unknown link function using orthog-
onal polynomials for the Gaussian measure called Hermite polynomials. Let Hi(z) denote the
(normalized) Hermite polynomial of degree i. These polynomials form an orthonormal basis for
square-integrable univariate functions under the Gaussian measure. Hence, in the case of the single-
index model (k = 1), the unknown link function g admits an expansion in the Hermite polynomial
basis of the form:

g(z) =
∞∑
l=0

a?lHl(z).

We define the following index sets: It
def
= {S ∈ (N ∪ {0})k :

∑k
i=1 Si ≤ t} and I∞

def
=
⋃∞
t=0 It;

and we use the notation HS(z) for S ∈ I∞ to denote the tensor-product Hermite polynomial
basis: HS(z)

def
=
∏k
i=1HSi(zi). Analogously, we use the notation zS for S ∈ I∞ to denote the

monomial: zS def
=
∏k
i=1 z

Si
i . The tensor-product Hermite polynomials form an orthonormal basis

for square integrable k-variate functions under the product Gaussian measure. Hence for the multi-
index model, the unknown link function g admits an expansion of the form:

g(z) =
∑

S∈I∞

a?SHS(z).
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Notation for Linear Algebraic Aspects: For a vector v ∈ Rp, we use ‖v‖1 to denote the L1 norm
and ‖v‖2 to denote the L2 norm. If the subscript is omitted, ‖v‖ refers to the L2 norm. For matrices,
‖A‖ represents the operator norm. The notation PU? and P⊥U? refers to projection operators onto
U? and the orthogonal complement U?⊥, respectively. The unit sphere in Rp is denoted by Sp−1.
Finally, we define the matrix of orthonormal index vectors U? = [u?1,u

?
2, . . . ,u

?
k] ∈ Rp×k.

Notation for Probabilistic Aspects: We use the notation N (0, Ip) to represent the standard
Gaussian distribution in p dimensions. In particular the statement X ∼ N (0, Ip) means the ran-
dom variable X is drawn from a p-variate standard Gaussian distribution. Analogously u0 ∼
Uniform(Sp−1) means that u0 is a uniformly random unit vector.

Outline: The remaining paper is organized as follows. In Section 2 we analyze the landscape of
the semi-parametric MLE. We propose a simple objective for the estimating single-index models
and analyze its landscape when a multi-index model is misspecified as a single-index one. In Sec-
tion 3 we construct and analyze a procedure to estimate single-index models from finite samples.
In Section 4 we analyze the behaviour of this procedure under a multi-index misspecification. We
conclude with Section 5 and discuss some open problems. All omitted proofs are in the Appendix.

2. Landscape of Some Population Objectives

A commonly used estimator for single-index models is the semiparametric MLE which is defined
as follows:

û = arg min
u∈Sp−1

min
h∈FL

1

n

n∑
i=1

(yi − h(〈u,xi〉))2.

In the above display FL is a suitable class of functions from R to R. The parameter L controls the
complexity of the function class and is tuned to achieve an optimal tradeoff between the bias and
the variance of the resulting estimator. For example a simple choice for FL would be the set of all
degree L polynomials: FL = {g : R → R, g(z) =

∑L
i=0 aiHi(z)}. For this function class, the

SMLE becomes:

û = arg min
u∈Sp−1

min
a∈RL+1

1

n

n∑
i=1

(
yi −

L∑
l=0

alHl(〈u,xi〉)

)2

(OPT 1)

It is not clear if Optimization Problem OPT 1 is tractable. The first step in understanding its com-
plexity is to understand the landscape of the associated population loss:

RL(u) := min
a∈RL+1

E

(y − L∑
l=0

alHl(〈u,x〉)

)2
 .

It turns out that it is possible to give an explicit expression of the population loss due to a surprising
algebraic property of Hermite Polynomials stated below.

Lemma 3 (O’Donnell, 2014) Let u,v be unit vectors in Rp. For x ∼ N (0, Ip),

E[Hl(〈u,x〉)Hm(〈v,x〉)] =

{
0 l 6= m,

〈u,v〉l l = m.
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Our first result (Theorem 5) is that the objective RL(u) has precisely two local minima at
u = ±u?. However it may have degenerate critical points. The degeneracy of the critical points of
RL(u) is determined by the degree of the smallest non-zero harmonic in the link function f . More
precisely we define the following notion of the order of degeneracy of f :

Definition 4 (Order of Degenerarcy of f ) The order of degeneracy of f , denoted by OD(f), is
defined as:

OD(f) := min
{
l ∈ [L] : Ex∼N (0,Ip) [f(x)Hl(〈x,u?〉)] 6= 0

}
.

Theorem 5 The population loss admits the explicit form:

RL(u) = σ2 +
L∑
l=1

a?l
2(1− 〈u,u?〉2l).

The critical points of RL(u) are given by:

1. u = ±u?, which are global minima.

2. u ∈ {a ∈ Sp−1 : 〈a,u?〉 = 0}. All points in this subspace are global maxima. Furthermore,
when OD(f) > 1, these local maxima are degenerate, that is,∇2RL(u) = 0.

While the objective RL(u) has no spurious local minima, there are a few issues with it:

1. Since the objective squares the residuals, it increases the effective order of degeneracy of the
function by a factor of two. This increases the number of samples required to guarantee that
the landscape of the objective is well-behaved.

2. The coefficient vector a that minimizes the objective is dependent on the data. This depen-
dence makes the analysis more complicated.

To avoid these difficulties, we instead optimize the following objective for some value of l and
get an estimate ûl:

F̂l(u) =
1

n

n∑
i=1

yiHl(〈xi,u〉), ûl = arg max
u∈Sp−1

F̂l(u).

To understand why this objective is reasonable, we consider the population version of the objective:

Fl(u) = E [f(x)Hl(〈x,u〉)]
Lemma 3

= a?l 〈u,u?〉
l .

Hence, Fl(u) is extremized at û = ±u? provided a?l 6= 0. Intuitively, given a harmonic l, the objec-
tive Fl(u) tries to orient the vector u in such a way that the energy in this harmonic is maximized.

Remark 6 (Degenerate Critical Points) When l > 2, Fl(u) has a degenerate critical points at all
u⊥ that satisfy

〈
u?,u⊥

〉
= 0. In particular, this means that for l > 2, our objective does not satisfy

the strict-saddle (Ge et al., 2015) or the ridable saddle properties (Sun et al., 2015). Hence, it is not
immediately clear if these generic analysis methods can be applied here.
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Let us now consider the situation where a multi-index model of order k was misspecified as a
single-index model. One might still hope that optimizing Fl(u) does something reasonable. It turns
out that the objective Fl(u) indeed has this desirable property. One can write an explicit form for
Fl(u) when the data is generated by a multi-index model of order k. The key tool that allows us to
do this is a multivariate analogue of Lemma 3 which is stated below.

Lemma 7 Let U := [u1,u2 . . . ,uk] be a matrix in Rp×k with orthonormal columns. Let v be a
arbitrary unit vector. Then,

1) E [HS(Ux)Hl(〈v,x〉)] = 0 if l 6= |S|,

2) E [HS(Ux)Hl(〈v,x〉)] =

√
l!

S1!S2! · · ·Sk!

k∏
i=1

〈ui,v〉Si if l = |S|.

Our next result (Theorem 8) characterizes the landscape of the objective Fl(u) under a multi-index
model and shows that it has no spurious local extrema.

Theorem 8 Under the order k multi-index model, the population objective Fl(u) has the following
properties:

1. The population objective has the following explicit form:

Fl(u) =
∑

S:‖S‖1=l

a?S

√(
l

S1, S2, . . . , Sk

) k∏
i=1

〈u?i ,u〉
Si .

2. Any local maximizer with Fl(u) > 0 is contained in the subspace U?.

3. Any local minimizer with Fl(u) < 0 is contained in the subspace U?.

Remark 9 We note that Theorem 8 falls short of showing that Fl(u) has no spurious local minima
or maxima. In particular existence of local maxima (or minima) not in U? such that Fl(u) = 0 is
not ruled out. However such local maxima are unlikely to be a cause of problems for procedures
like gradient ascent (or descent). To see this consider the following procedure: Choose a random
initialization point. With probability 1, we will have Fl(u0) 6= 0. If the objective is positive, run
gradient ascent otherwise run gradient descent. Since gradient ascent with small enough step size
is guaranteed to increase the objective, we will never get stuck in a local maxima with Fl(u) = 0.

3. Learning Single-index Models from Finite Samples

In Section 2 we showed that the population version of the objective F̂l(v) is extremized at the
true index vector u? provided that the energy of the link function in the harmonic l is not zero
(a?l 6= 0). In this section, we first design a procedure (Algorithm 1) that extracts an estimate of u?

from harmonic l under the promise that a?l 6= 0.
Algorithm 1 exhibits extremely fast convergence. In particular, it requires only two update steps

to return an estimate. The underlying reason behind fast convergence for this algorithm is that the
gradient of the population objective is perfectly aligned with the index vector u?. The analysis of
this procedure is presented in Theorem 10. At a high level, the analysis of this procedure involved
the following steps:

8
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Algorithm 1 Estimate-Index-Vector-from-Harmonic(S, l)

input Data S = {xi, yi}ni=1 ⊂ Rp × R; Degree of Harmonic l ∈ N
output Index Estimate ûl ∈ Rp.

1: Split S into two equal parts:
S1 := {(xi, yi), i = 1, 2, . . . , n2 }, S2 := {(xi, yi) : i = n

2 + 1, . . . , n}
2: Define F̂l(u;S1) := 2

n

∑n
2
i=1 yiHl(〈xi,u〉) and F̂l(u;S2) := 2

n

∑n
i=n

2
+1 yiHl(〈xi,u〉)

3: Random Initialization: u0 ∼ Uniform(Sp−1)

4: Compute two steps of iterative process: u1 = ∇F̂l(u0;S1)

‖∇F̂l(u0;S1)‖2
, and then u2 = ∇F̂l(u1;S2)

‖∇F̂l(u1;S2)‖2
.

5: return ûl := u2

1. Analysis of Random Initialization: We expect a uniformly random unit vector to have a pro-
jection of size Ω(1/

√
p) on u?. This means that the initialization is very close to a degenerate

critical point and hence we see very small gradients of size O
(
1/pl

)
2. Analysis of the stochastic fluctuations of the gradient: Because our gradients are heavy tailed,

this is done via a standard truncation argument. We show that ‖∇Fl(u) − ∇F̂l(u)‖2 ≤
Õ(
√
p/n). Hence when n ≥ O(pl), the stochastic fluctuations don’t kill off the small gra-

dients we observe at the initialization. This initial sample size requirement of O
(
pl
)

can be
seen as the price to pay to escape the degenerate local critical points.

3. Analysis of Iterates: We show that because the gradient of the objective is perfectly aligned
with the index vector, ‖ûl − u?‖2 ≤ 1 at the end of the first iteration and ‖ûl − u?‖2 ≤
Õ(
√
p/n) at the end of the second iteration.

Theorem 10 Given any ε, δ ∈ (0, 1); with probability 1 − 2 exp(−p/32) − 5δ − 8
n , the output ûl

of Algorithm 1 satisfies

| 〈ûl,u?〉 | ≥ 1− 100(‖f‖∞ + 4σ) · 22l+1

l|a?l |

√
2 max(p, ln(1/δ)) lnl(n)

n
,

provided n is large enough so that the following holds:

n

lnl(n)
≥ 32 · 104(‖f‖∞ + 4σ)2

l2a?l
2

22l

δ2l−2
max(p, ln(1/δ))pl−1.

Remark 11 (Connections to 1-bit Compressed Sensing) Consider the 1-bit compressed sensing
problem where g(z) = sign(z). One can check that for this link function, a?1 =

√
2/π > 0. Hence,

when specialized to this case, Theorem 10 gives a sample complexity ofO(p ln(p)) which is optimal
for unstructured signals up to log-factors.

Remark 12 (Connections to Phase Retrieval) Consider the phase retrieval problem where g(z) =
z2 =

√
2H2(z) + 1. A common approach to get an estimate of u? is by computing the leading

9
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Algorithm 2 Learn-single-index-Model(S,R2,µ, σ2, ‖f‖∞, δ)
Input Data: S = {xi, yi}ni=1 ⊂ Rp × R;

smoothness parameter R2; minimum signal strength parameter µ; noise variance σ2; upper
bound on link function ‖f‖∞; confidence parameter δ.

Output Index Estimate û ∈ Rp.

1: Split S into Strain and Stest such that: m := |Stest| = 256 · 2
4R2

µ R4(σ2 + ‖f‖2∞)/(δµ3)

2: Let L := 2R2

µ
3: Let ûl := Estimate-Index-Vector-From-Harmonic(Strain, l) for each l ∈ {1, 2, . . . , L}.
4: Compute Tl :=

∑
i∈Stest

yiHl(〈xi, ûl〉)/m for each l ∈ {1, 2, . . . , L}.
5: Let lbest := arg maxl∈[L] |Tl|
6: return û := ulbest

eigenvector of the matrix M̂ =
∑

i=1 yixix
T
i . Using the variational characterization of the lead-

ing eigenvector, one can see that this is exactly the same as optimizing the objective F̂2. When
specialized to this case, Theorem 10 gives a suboptimal sample complexity of O(p2), but more spe-
cialized analyses of the same estimator using matrix perturbation tools do give the optimal sample
complexity of O(p) (see, e.g., Candes et al., 2015).

We emphasize that Algorithm 1 succeeds only if we know a harmonic l such that a?l is not too
small. In order to design an algorithm that learns single-index models with arbitrary link functions
satisfying our assumptions we show that for any such link function, there exists a bounded l] ∈ N
such that a?l] is not too small.

Lemma 13 (Existence of a good l]) For a link function g that satisfies Assumptions 1, 3 and 4,
there exists a l] ≤ 2R2

µ such that, l]|a?l] |
2 ≥ µ2

4R2 .

While Lemma 13 guarantees the existence of a l] it does not tell us which value of l] should be
used for an unknown link function. A simple solution is to construct estimates ûl for all values of
l ∈ {1, 2, . . . , 2R2/µ} and choose the one with the best performance on a held-out data set via some
goodness-of-fit statistic. This is implemented in Algorithm 2 for learning single-index models.

Theorem 14 Given any ε, δ ∈ (0, 1); with probability 1− 4R2

µ e−p/32− 12R2

µ δ− 16R2

nµ , the estimate
returned by Algorithm 2, û satisfies

| 〈u?, û〉 | ≥ 1− 3200 · 2
4R2

µ (‖f‖∞ + 4σ)R4

µ2√µ

√
max

(
p, ln

(
1
δ

))
ln

2R2

µ (n)

n
,

provided that n satisfies

n

ln
2R2

µ (n)
≥ 1024 · 104(‖f‖∞ + 4σ)2R4

µ3
· 2

4R2

µ

δ
4R2

µ
−2

max

(
p, ln

(
1

δ

))
p

2R2

µ
−1
.

Remark 15 If we treat µ, ‖f‖∞, σ, R and δ as fixed constants, Theorem 14 states that Algorithm 2
requires Õ(p2R2/µ+p/ε2) samples to return an estimate û such that min(‖u?−û‖, ‖u?+û‖) ≤ ε.

10
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Algorithm 3 Learn-single-index-Model-Robust(S, µ,R2,Kmax)

input Data S = {xi, yi}ni=1 ⊂ Rp × R; Smoothness Parameter R2; Minimum Signal Strength µ;
Upper Bound on true k, Kmax

output Index Estimate û ∈ Rp.
1: Set L := 2KmaxR2

µ +Kmax − 1

2: Random Initialization: u0 ∼ Uniform(Sp−1)
3: Compute: lbest := arg maxl∈{1,2,...,L} ‖∇F̂l(u0)‖.

4: return û :=
∇F̂lbest (u)

‖∇F̂lbest (u)‖2

4. Learning Misspecified Single-index Models from Finite Samples

We recall that in Theorem 8 we showed that even when a multi-index model was misspecified as
a single-index one, essentially all local extrema of the objective Fl(u) belong to the index space
U?. In this section we show that with a finite sample size, with minor modifications (shown as
Algorithm 3 in Appendix C), Algorithm 2 returns a vector approximately in the index space U?
when the data is generated order k multi-index model.

Recall the form of the population loss Fl for a given harmonic l and given in Theorem 8. In
particular, it is possible that for some l, the coefficients a?S = 0 for all S such that ‖S‖1 = l. For
such l, the estimate computed by Algorithm 3, ûl is expected to be useless. Analogous to Lemma 13
in the single-index case, Lemma 16 shows that there exists a bounded l] such that the associated
coefficients a?S are not too small.

Lemma 16 (Existence of a good l]) Let g be a link function from Rk → R obeying Assumptions 1,
3 and 4. Then, there exists an l] ∈ N such that:

l] ≤
2kR2

µ
+ k − 1,

∑
S:‖S‖1=l]

a2
S‖S‖1 ≥

µ2

2(2R2 + µ)
.

Even if we knew a good l] as guaranteed by Lemma 16, since we initialize using a uniformly
random unit vector which will be close to orthogonal to the true index subspace U?, the initial
gradient we will observe will be very small. The key challenge here is to develop a lower bound
on the norm of the observed gradient in terms of the minimum signal strenth parameter (µ) and
the smoothness parameter (R). We address this challenge by exploiting the form of the population
gradient and applying the Carbery-Wright anticoncentration inequality for Gaussian polynomials.

As in the single-index case, the gradient of the population objective lies in the index space U?.
Thus, Algorithm 3 returns an estimate with an arbitrarily small constant projection on U?⊥ with a
single update step. The analysis of the sampling error in the gradients and the first update step is
identical to the single-index case. Sample complexity of this procedure is analyzed in Theorem 17.

Theorem 17 There is an absolute constant C such that the following holds. Given any ε, δ ∈
(0, 1); with probability 1− 2δKmax(2R

2/µ+ 1)− 4Kmax
(
2R2/µ+ 1

)
· n−1− 2 exp(−p/32), the

11



LEARNING SINGLE-INDEX MODELS

estimate returned by Algorithm 3 satisfies ‖P⊥U?(û)‖2 ≤ ε, provided n satisfies

n

ln
Kmax

(
2R2

µ
+1

)
(n)

≥ C(‖f‖∞ + σ)2(R2 + µ)

ε2µ2

p ·K4
max

(
R2

µ + 1
)4
K2
CW ln(1/δ)

δ2


Kmax

(
2R2

µ
+1

)
.

In the above display, Kmax is an upper bound on the true k given to the algorithm and KCW > 1 is
a universal constant appearing in the Carbery-Wright Theorem.

Remark 18 If we treat ‖f‖∞, σ, R2, µ, δ as constants, Theorem 17 states that in order to return
an estimate û such that ‖P⊥U?(û)‖2 ≤ ε, Algorithm 3 requires Õ(pO(KmaxR2/µ)/ε2). Note that with
Kmax = 1 this sample complexity is worse than the Õ(pO(R2/µ) + p/ε2) sample complexity of Algo-
rithm 2 in the single-index case. Due to the more complex structure of the gradients for Algorithm 3,
we are only able to analyze one update step in contrast to two update steps for Algorithm 2.

5. Conclusion and Future Work

In this paper, we studied the problem of estimating the unknown index space U? for single and
multi-index models under natural smoothness and minimum signal strength assumptions on the link
function. In the case of single-index models, we characterized the population landscape of a natural
semi-parametric MLE. We found that though the landscape has no spurious minima, but it may
have degenerate critical points which cannot be distinguished from local minima using the first- and
second-derivative information and can possibly create problems for gradient-based procedures. We
analyzed a simple iterative procedure for estimating the index vector and showed that it returns an
ε-close estimate of the true index vector with Õ(pO(R2/µ) + p/ε2) samples. The procedure had an
appealing robustness property: if a multi-index model is misspecified as single-index, essentially
the same procedure recovers a vector ε-close to the index space with Õ(pO(KmaxR2/µ)/ε2) samples.

A major open question that remains is whether the dependence of sample complexity on p
can be made linear without sacrificing computational efficiency. The pO(R2/µ) dependence in our
sample complexities appears to be more of a price to pay to escape degenerate critical points than a
information-theoretic requirement. A simple idea to explore would be to investigate if it is possible
to transform the response using a transformation T such that the composed link function T ◦ g has
enough energy in harmonics of order l = 1, 2. The reason for choosing l = 1, 2 is that it is precisely
for these values of l that the objective Fl(u) has the strict saddle property. It seems likely that the
optimal transformation T would be data-driven and have links to sliced inverse regression.

One drawback of our approach is that it is tailored to Gaussian covariates. Even when the co-
variates are i.i.d. and subgaussian, estimating the index vector is not possible without additional
assumptions: Ai et al. (2014) exhibit a counter-example of two index vectors that cannot be distin-
guished using samples from a single index model with the sign-link function and i.i.d. Rademacher
covariates. However, when the index vector is far from sparse (i.e., ‖u‖∞ � 1), Ai et al. (2014)
leverage high-dimensional central limit theorems to handle independent subgaussian designs. An
interesting question for future work is to see if their techniques can be extended to our estimators.
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Appendix A. Missing Proofs from Section 2

A.1. Single-index model

Theorem 19 (Theorem 5 restated) The population loss admits the explicit form:

RL(u) = σ2 +
L∑
l=1

a?l
2(1− 〈u,u?〉2l).

The critical points of RL(u) are given by:

1. u = ±u?, these points are global minima.

2. u ∈ {a ∈ Sp−1 : 〈a,u?〉 = 0}. All points in this subspace are global maxima. Furthermore,
when OD(f) > 1, these local maxima are degenerate.

Proof We first note that since y = f(x) + ε and E[ε] = 0,E[ε2] = σ2. Using the Bias-Variance
decomposition we have,

RL(u) = σ2 + min
a∈RL+1

E

(f(x)−
L∑
l=0

alHl(〈u,x〉)

)2
 .

Since the multivariate Hermite polynomials form an Orthonormal Basis for L2[N (0, Ip)], the value
of a which minimizes the expected square loss is given by:

al(u) = 〈f,Hl(〈u,x〉)〉
Lemma 3

= a?l 〈u,u?〉
l .

Using the Pythagorean Theorem,

E

(f(x)−
L∑
l=0

alHl(〈u,x〉)

)2
 = E[f2(x)]− E

( L∑
l=0

alHl(〈u,x〉)

)2


=

L∑
l=1

a?l
2(1− 〈u?,u〉2l).

Hence we have,

RL(u) = σ2 +

L∑
l=1

a?l
2(1− 〈u,u?〉2l).
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Differentiating the objective, we find that the (Riemannian) gradient is given by:

∇RL(u) =

(
−2

L∑
i=1

la?l
2 〈u,u?〉2l−1

)
(u? − 〈u?,u〉u) .

Solving for ∇RL(u) = 0, we get that the only critical points are u = ±u? and u ∈ {a ∈ Sp−1 :
〈a,u?〉 = 0}. Since RL(u) ≥ σ2 ∀u ∈ Sp−1, and RL(±u?) = σ2, the points ±u? are global
minimizers. Analogously consider any u⊥ such that

〈
u⊥,u?

〉
= 0. SinceRL(u) ≤ σ2 +

∑L
l=1 a

?
l

2

∀u ∈ Sp−1 and RL(u⊥) = σ2 +
∑L

l=1 a
?
l

2, u⊥ is a global maximizer. To show that for some link
functions g, these maximizers can be degenerate we consider a small perturbation at u⊥ in an
arbitrary direction u:

RL

(√
1− δ2u⊥ + δu

)
−RL(u⊥) = −

L∑
l=1

a?l
2δ2l 〈u,u?〉2l .

One can see when OD(f) > 1, RL
(√

1− δ2u⊥ + δu
)
−RL(u⊥) = o(δ2) demonstrating that the

maximum is degenerate.

A.2. Multi-index model

Lemma 20 (Lemma 7 restated) LetU := [u1,u2, . . . ,uk] be a matrix in Rp×k with orthonormal
columns. Let v be a arbitrary unit vector. Then,

1) E [HS(Ux)Hl(〈v,x〉)] = 0 if l < |S|,

2) E [HS(Ux)Hl(〈v,x〉)] =

√
l!

S1!S2! · · ·Sk!

k∏
i=1

〈ui,v〉Si if l = |S|,

3) E [HS(Ux)Hl(〈v,x〉)] = 0 if l > |S|.

Proof We consider 2 cases:

Case 1: Consider l ≤ ‖S‖1. We can write v =
∑k

i=1 αiui +
√

1− ‖α‖2u⊥. Here αi = 〈ui,v〉
and u⊥ is a unit vector orthogonal to u1,u2, . . . ,uk. We define Zi = 〈ui,x〉 and Y = 〈u⊥,x〉.
Then, Hl(〈v,x〉) = Hl(

∑k
i=1 αiZi+

√
1− ‖α‖2Y ) is a degree l polynomial in k+1 independent

Gaussian random variables Z1, . . . , Zk, Y and admits an expansion of the form:

Hl

(∑
i

αiZi +
√

1− ‖α‖2Y

)
=

∑
D,d:‖D‖1+d≤l

cD,d(α,v)

k∏
i=1

HDi(Zi)Hd(Y ). (5)

Hence we have:

E [HS(Ux)Hl(〈v,x〉)] = cS,0(α,v).
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First we note that cS,0(α,v) = 0 if l < ‖S‖1. On the other hand, if l = ‖S‖1, we can find
the expression for cS,0(α,v) by comparing the coefficient for

∏k
i=1 Z

Si
i on both sides of equation

Equation (5) and equating the two:(
k∏
i=1

αSii

)
l!

S1!S2!···Sk!√
l!

=
cS(α,v)√
S1!S2! · · ·Sk!

,

which gives us the required result.

Case 2: Consider l > ‖S‖1. Let {v⊥i }ki=1 be unit vectors orthogonal to v and αi = 〈ui,v〉. We
can write:

ui = αiv +
√

1− α2
i v
⊥
i .

Hence,

〈ui,x〉 = αi 〈v,x〉+
√

1− α2
i

〈
v⊥i ,x

〉
:= αiW +

√
1− α2

iXi.

Here W,X1, X2, . . . , Xk are marginally standard normal random variables. Furthermore, W is
independent of {Xi}ki=1, however {Xi}ki=1 might be correlated. Next we observe:

HS(Ux) =
k∏
i=1

HSi

(
αiW +

√
1− α2

iXi

)
.

is a degree ‖S‖1 polynomial in the variables X1, . . . , Xk,W and hence can be expanded in the
basis:

HS(Ux) =
∑

D,d:‖D‖1+d≤‖S‖1

c′D,d(α)Hd(W )HS(X).

Hence:

E [HS(Ux)Hl(〈v,x〉)] =
∑

D,d:‖D‖1+d≤‖S‖1

c′D,d(α)E[Hl(W )Hd(W )]E[HS(X)].

Finally we note that E[Hl(W )Hd(W )] = 0 for all d ≤ ‖S‖1 < l. This gives us:

E [HS(Ux)Hl(〈v,x〉)] = 0.

Theorem 21 (Theorem 8 restated) Under the order k multi-index model, the population objective
Fl(u) has the following properties:

1. The population objective has the following explicit form:

Fl(u) =
∑

S:‖S‖1=l

a?S

√(
l

S1, S2, . . . , Sk

) k∏
i=1

〈u?i ,u〉
Si .
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2. Any local maximizer with Fl(u) > 0 is contained in the subspace U?.

3. Any local minimizer with Fl(u) < 0 is contained in the subspace U?.

Proof We recall that the link function g has the following expansion in the Hermite Basis:

g(z) =
∑

S∈I∞

a?Sz
S .

Hence,

Fl(u) = E[yHl(〈u,x〉)]
= E[g(U?Tx)Hl(〈u,x〉)]

Lemma 7
=

∑
S:‖S‖1=l

a?S

√(
l

S1, S2, . . . , Sk

) k∏
i=1

〈u?i ,u〉
Si .

We prove the second claim by contradiction. The proof for the third claim is analogous and is
omitted. Consider a unit vector u 6∈ U?. Hence, we have,

u =
k∑
i=1

αiu
?
i +

√
1− ‖αi‖2u⊥.

In the above display, ‖α‖ < 1 (otherwise we would have u ∈ U?) and the vector u⊥ ∈ U?⊥. We
claim that the vector u cannot be a local maximizer. To show this we will construct a direction ∆
such that an arbitrarily small perturbation of size δ > 0 in this direction is guaranteed to increase
the objective. We construct this direction as follows:

∆ :=

∑k
i=1 αiu

?
i

‖α‖
.

To show this is a direction of increase we compute:

Fl

(√
1− δ2u+ δ∆

)
=

∑
S:‖S‖1=l

a?S

√(
l

S1, S2, . . . , Sk

) k∏
i=1

(〈u?i ,u〉)Si
(√

1− δ2 +
δ

‖α‖

)Si

=

(√
1− δ2 +

δ

‖α‖

)l ∑
S:‖S‖1=l

a?S

√(
l

S1, S2, . . . , Sk

) k∏
i=1

(〈u?i ,u〉)Si

=

(√
1− δ2 +

δ

‖α‖

)l
Fl(u).

We now analyze the leading multiplicative factor:√
1− δ2 +

δ

‖α‖
‖α‖ < 1

>
√

1− δ2 + δ

δ > 0

> 1.

Hence we have Fl
(√

1− δ2u+ δ∆
)
− Fl(u) > 0 and u is not a local maximum.
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Appendix B. Missing Proofs from Section 3

B.1. Analysis of Algorithm 1

Theorem 22 (Theorem 10 restated) With probability 1 − 2 exp(−p/32) − 5δ − 8
n , the output ûl

of Algorithm 1 satisfies

| 〈ûl,u?〉 | ≥ 1− 100(‖f‖∞ + 4σ) · 22l+1

l|a?l |

√
2 max(p, ln(1/δ)) lnl(n)

n
,

provided n is large enough so that the following holds:

n ≥ 32 · 104(‖f‖∞ + 4σ)2

l2a?l
2

22l

δ2l−2
max(p, ln(1/δ))pl−1 lnl(n).

Proof We begin by introducing some notation: For t ∈ {0, 1, 2}, we define:

αt := | 〈u?,ut〉 |,
∆t := ∇F̂l(ut−1;St)− E[∇F̂l(ut−1;St)].

Using Lemma 43, with probability 1− 2 exp(−p/32)− δ,

α0 ≥
δ
√
p
.

We can further compute the expression for the gradients as each iteration:

∇F̂l(ut−1, St) =
1

|St|
∑
i∈St

yiH
′
l(〈xi,ut−1〉)xi

Fact 2
=

√
l

|St|
∑
i∈St

yiHl−1(〈xi,ut−1〉)xi.

Using Theorem 48 and a union bound, with probability 1− 4δ − 8
n ,

max(‖∆1‖2, ‖∆2‖2) ≤ 100(‖f‖∞ + 4σ) · 2l
√

2 max(p, ln(1/δ)) lnl(n)

n
.

Next we derive a recursive lower bound on αt:

αt = | 〈u?,ut〉 |

=

∣∣∣∣∣
〈
u?,

∇F̂l(ut−1, St)

‖∇F̂l(ut−1, St)‖2

〉∣∣∣∣∣ . (6)
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Next we note that ∇F̂l(ut−1;St) = E[∇F̂l(ut−1;St)] + ∆t. Furthermore E[∇F̂l(ut−1;St)] =
∇E[F̂l(ut−1;St)] = ∇a?l 〈ut−1,u

?〉l = la?l 〈ut−1,u
?〉l−1 u?. Substituting these into Equation (6),

we get,

αt =
|la?l 〈ut−1,u

?〉l−1 + 〈∆t,u
?〉 |

‖la?l 〈ut−1,u?〉l−1 u? + ∆t‖2
Triangle Ineq.

≥
l|a?l 〈ut−1,u

?〉l−1 | − | 〈∆t,u
?〉 |

‖la?l 〈ut−1,u?〉l−1 u? + ∆t‖2
Cauchy Schwarz

≥
l|a?l |α

l−1
t−1 − ‖∆t‖2

‖la?l 〈ut−1,u?〉l−1 u? + ∆t‖2
Triangle Ineq.

≥
la?l 〈ut−1,u

?〉l−1 − ‖∆t‖2
‖la?l 〈ut−1,u?〉l−1 u?‖2 + ‖∆t‖2

≥ 1− 2‖∆t‖2
|la?l |α

l−1
t−1

(7)

The condition on n assumed in the statement of theorem guarantees ‖∆t‖2 ≤
l|a?l |α

l−1
0

4 . Apply-
ing Equation (7) with t = 1 yields:

α1 ≥
1

2
.

Applying Equation (7) with t = 2 yields,

α2 ≥ 1− 2l+1

l|a?l |
‖∆2‖2 ≥ 1− 100(‖f‖∞ + 4σ) · 22l+1

l|a?l |

√
2 max(p, ln(1/δ)) lnl(n)

n
.

B.2. Analysis of Algorithm 2

Lemma 23 (Lemma 13 restated) For a link function g that satisfies Assumptions 1, 3 and 4, there
exists a l] ≤ 2R2

µ such that, l]|a?l] |
2 ≥ µ2

4R2 .

Proof We first translate Assumptions 1, 3 and 4 into statements about the coefficients a?:

Ez[g2(z)] = 1 =⇒
∞∑
i=0

a?i
2 = 1.

Next we consider the minimum signal strength assumption (Assumption 4) and we note that:

dg(z)

dz
=

∞∑
i=1

a?iH
′
i(z)

Fact 2
=

∞∑
i=1

√
ia?iHi−1(z).
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Hence,

E

[(
dg(z)

dz

)2
]
≥ µ =⇒

∞∑
i=1

ia?i
2 ≥ µ. (8)

Similarly the smoothness assumption can be written as:

E

[(
d2g(z)

dz2

)2
]
≤ R2 =⇒

∞∑
i=2

i(i− 1)a?i
2 ≤ R2. (9)

We first note that, for any L ∈ N,

L∑
i=1

ia2
i =

∞∑
i=1

ia2
i −

∞∑
i=L+1

ia2
i

eq. (8)

≥

(
µ−

∞∑
i=L+1

ia2
i

)
. (10)

Furthermore,
∞∑

i=L+1

ia2
i ≤

1

L

∞∑
i=L+1

i(i− 1)a2
i

eq. (9)

≤ R2

L
.

Substituting this in Equation (10), we get,

1

L

L∑
i=1

ia2
i ≥

1

L

(
µ− R2

L

)
.

Choosing L = 2R2

µ , gives,

max
l∈[L]

la2
l ≥

1

L

L∑
i=1

ia2
i ≥

µ

2L
=

µ2

4R2
.

Theorem 24 (Theorem 14 restated) With probability 1− 4R2

µ e−p/32− 12R2

µ δ− 16R2

nµ , the estimate
returned by Algorithm 2, û satisfies

| 〈u?, û〉 | ≥ 1− 3200 · 2
4R2

µ (‖f‖∞ + 4σ)R4

µ2√µ

√
max

(
p, ln

(
1
δ

))
ln

2R2

µ (n)

n
,

provided that n satisfies

n ≥ 1024 · 104(‖f‖∞ + 4σ)2R4

µ3
· 2

4R2

µ

δ
4R2

µ
−2

max

(
p, ln

(
1

δ

))
p

2R2

µ
−1

ln
2R2

µ (n).
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Proof As in the description of Algorithm 2, we define:

L :=
2R2

µ
, m := |Stest|.

Theorem 13 guarantees us the existence of a l] such that:

l] ≤ L, l]a
?
l]

2 ≥ µ2

4R2
.

We define the index set Lgood as:

Lgood =

{
l ∈ [L] : |a?l | ≥

|a?
l]
|

2

}
.

The condition imposed n is such that, for each l ∈ Lgood, we can apply Theorem 10 and get with
probability 1− 2e−p/32 − 5δ − 8

n , the estimates ûl satisfy:

| 〈ûl,u?〉 | ≥ 1− 100(‖f‖∞ + 4σ) · 22l+1

|a?l |

√
2 max(p, ln(1/δ)) lnl(n)

n
.

Next using the definition of the set Lgood and a union bound, we have, with probability 1 −
4R2

µ e−p/32 − 10R2

µ δ − 16R2

µn , we have,

| 〈ûl,u?〉 | ≥ 1− 1600 · 2
4R2

µ (‖f‖∞ + 4σ)R2

µ
√
µ

√
max

(
p, ln

(
1
δ

))
ln

2R2

µ (n)

n
≥ 1

2
∀l ∈ Lgood.

(11)

Next we analyze the concentration of the goodness-fit-statistic. Using Lemma 49 and a union bound
we have, with probability 1− 2R2

µ δ

|Tl − E[Tl]| ≤ ∆ ∀l ∈ [L],

provided m ≥ 2(σ2+‖f‖2∞)
δ∆2 . We set:

∆ =
|a?l] |

4 · 2l]
eq. (11), l] ∈ Lgood

≤

∣∣∣a?l] 〈u?, ûl]〉l]∣∣∣
4

. (12)

In order to ensure that this happens we need to make sure that

m ≥ 2(σ2 + ‖f‖2∞)

δ∆2
=

32 · 22l](σ2 + ‖f‖2∞)

δ|al] |2
.

Since we set m = 256·2
4R2
µ R4(σ2+‖f‖2∞)

δµ3
this requirement is indeed satisfied. Now we argue that the

estimator returned by Algorithm 2 performs nearly as well as ûl] :∣∣∣a?lbest
〈u?, ûlbest〉

lbest
∣∣∣ Theorem 3

= |E[Tlbest ]|
Triangle Ineq.

≥ |Tlbest | − |Tlbest − E[Tlbest ]|
≥ |Tlbest | −∆.

21



LEARNING SINGLE-INDEX MODELS

Since lbest was the harmonic with the best goodness-of-fit statistic, |Tlbest | ≥ |Tl] |. Substituting this
in the previous display, ∣∣∣a?lbest

〈u?, ûlbest〉
lbest
∣∣∣ ≥ |Tl] | −∆

Triangle Ineq.

≥ E[Tl] ]− 2∆

Theorem 3
=

∣∣∣a?l] 〈u?, ûl]〉l]∣∣∣− 2∆

eq. (12)

≥

∣∣∣a?l] 〈u?, ûl]〉l]∣∣∣
2

.

Hence one of the two cases hold:

Case 1: |a?lbest
| ≥ |a?l] |/2

In this case, we know that lbest ∈ Lgood and hence using Equation (11), the estimate returned by
Algorithm 2 û satisfies

| 〈û,u?〉 | ≥ 1− 1600 · 2
4R2

µ (‖f‖∞ + 4σ)R2

µ
√
µ

√
max

(
p, ln

(
1
δ

))
ln

2R2

µ (n)

n
.

Case 2:
∣∣∣〈u?, ûlbest〉

lbest
∣∣∣ ≥ ∣∣∣〈u?, ûl]〉l]∣∣∣.

This means:

|〈u?, ûlbest〉| ≥
∣∣∣∣〈u?, ûl]〉 l]

lbest

∣∣∣∣
≥
∣∣〈u?, ûl]〉∣∣ 2R2

µ

≥

1− 1600 · 2
4R2

µ (‖f‖∞ + 4σ)R2

µ
√
µ

√
max

(
p, ln

(
1
δ

))
ln

2R2

µ (n)

n


2R2

µ

≥ 1− 3200 · 2
4R2

µ (‖f‖∞ + 4σ)R4

µ2√µ

√
max

(
p, ln

(
1
δ

))
ln

2R2

µ (n)

n
.

Here in the last step we used the fact that (1− x)n ≥ 1− nx for every n ∈ N, x ∈ (0, 1).

Combining the two cases and the probabilities of the various failures, we get the claim of the
theorem.

Appendix C. Missing Proofs from Section 4

Lemma 25 (Lemma 16 restated) Let g be a link function from Rk → R obeying Assumptions 1,3
and 4. Then, there exists an l] ∈ N such that:

l] ≤
2kR2

µ
+ k − 1,

∑
S:‖S‖1=l]

a2
S‖S‖1 ≥

µ2

2(2R2 + µ)
.
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Proof The proof of this lemma is analogous to Theorem 13. We begin by translating the as-
sumptions made on the link function into conditions on the coefficients aS . First we consider the
minimum signal strength assumption (Assumption 4) and we note that,

∂g

∂zi
(z) =

∑
S∈I∞

√
Sia

?
SHS(i)(z).

In the above display, S(i) := (S1, S2, . . . , Si−1, Si − 1, Si+1, . . . , Sk). Hence we have,

E

[(
∂g

∂zi
(z)

)2
]
≥ µ =⇒

∑
S∈I∞

a2
SSi ≥ µ∀i ∈ [k],

∑
S∈I∞

a2
SSi ≥ µ ∀i ∈ [k] =⇒

∑
S∈I∞

a2
S‖S‖1 ≥ µk. (13)

Next we consider the smoothness assumption (Assumption 3). Analogously,

E

[(
∂2g

∂z2
i

(z)

)2
]
≤ R2 =⇒

∑
S∈I∞

a2
SSi(Si − 1) ≤ R2,

∑
S∈I∞

a2
SSi(Si − 1) ≤ R2 ∀i ∈ [k] =⇒

∑
S∈I∞

a2
S(‖S‖22 − ‖S‖1) ≤ kR2. (14)

Consider any arbitrary L ≥ k − 1. We have,∑
S:‖S‖1≤L

a2
S‖S‖1 =

∑
S∈I∞

a2
S‖S‖1 −

∑
S:‖S‖1>L

a2
S‖S‖1. (15)

Next we observe that, for any S such that ‖S‖1 > L ≥ k − 1,

‖S‖22 − ‖S‖1
Cauchy Schwarz

≥ ‖S‖21
k
− ‖S‖1

= ‖S‖1
(
‖S‖1
k
− 1

)
≥ ‖S‖1

(
L+ 1

k
− 1

)
. (16)

This allows us to upper bound:∑
S:‖S‖>L

a2
S‖S‖1

eq. (16)

≤ k

L+ 1− k
∑

S:‖S‖>L

a2
S(‖S‖22 − ‖S‖1) (17)

eq. (14)

≤ k2R2

L+ 1− k
. (18)

Substituting the bounds obtained in Equation (13) and Equation (18) into Equation (15) gives:∑
S:‖S‖1≤L

a2
S‖S‖1 =

∑
S

a2
S‖S‖1 −

∑
S:‖S‖1>L

a2
S‖S‖1

≥ µk − k2R2

L+ 1− k
.
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Setting k2R2

L+1−k = µk
2 gives, L = 2kR2

µ + k − 1. Using this value of L guarantees,

∑
S:‖S‖1≤L

a2
S‖S‖1 ≥

µk

2
.

In particular, this means there exists an l] ≤ 2kR2

µ + k − 1, such that,

∑
S:‖S‖1=l]

a2
S‖S‖1 ≥

µk

2L
>

µ2

2(2R2 + µ)
.

Lemma 26 Let l] ∈ N be as in Theorem 16. Let u ∼ Uniform(Sp−1). Then, with probability
1− δ − 2 exp(−p/32),

‖∇Fl](u)‖22 ≥
(

δ

2kKCW (l] − 1)
√
p

)2l]−2 µ2

23l]+k+1(2R2 + µ)
.

In the above display KCW is a universal constant appearing in the Carbery-Wright Theorem (The-
orem 44).

Proof Since u is a uniformly random unit vector, we can assume u := g
‖g‖2 where g ∼ N (0, Ip).

By Theorem 7,

Fl](u) =
∑

S:‖S‖1=l]

aS

√(
l]

S1, S2, . . . , Sk

) k∏
i=1

〈u,u?i 〉
Si .

Taking gradients,

∇Fl](u) =
1

‖g‖l]−1
2

k∑
i=1

D(i)(〈u?1, g〉 , . . . , 〈u?k, g〉)u?i , (19)

where the functions D(i) are defined as follows:

D(i)(z1, z2, . . . , zk) =
∑

S:‖S‖1=l]

SiaS

√(
l]

S1, S2, . . . , Sk

)
zS

zi
.

We note thatDi is a degree l]−1 polynomial in k independent Gaussian variables. Let d(i) ∈ R|Il] |

be its coefficient vector in the monomial basis. Let Bl] ∈ R|Il] |×|Il] | be the linear transformation
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that converts the monomial basis representation to the Hermite Basis representation. Then we have,

‖D(i)‖22 = ‖Bl]d
(i)‖22

≥ λmin

(
BT
l]
Bl]

)
‖d(i)‖22

Lemma 36
≥ 2−3l]−k‖d(i)‖22

= 2−3l]−k
∑

S:‖S‖1=l]

S2
i a

2
S

(
l]

S1, S2, . . . , Sk

)
≥ 2−3l]−k

∑
S:‖S‖1=l]

Sia
2
S .

Combining the above display with Lemma 16, we get,

k∑
i=1

‖D(i)‖22
Lemma 16
≥ 2−3l]−k µ2

2(2R2 + µ)
.

We know that D(i) is a polynomial in k independent Gaussian variables of degree l] − 1. Applying
Carbery-Wright Theorem (Theorem 44),

P

[
|D(i)| ≤ ‖D(i)‖2

(
δ

kKCW (l] − 1)

)l]−1
]
≤ δ

k
.

Furthermore, using Equation (19) and a union bound, we know that:

P

[
‖g‖2l]−2

2 ‖∇Fl](u)‖22 ≤
(

δ

kKCW (l] − 1)

)2l]−2 µ2

23l]+k+1(2R2 + µ)

]
≤ δ.

Using standard chi-square concentration (Fact 5),

P[‖g‖22 > 1.5p] ≤ 2 exp(−p/32).

Hence, using a union bound we have,

P

[
‖∇Fl](u)‖22 ≤

(
δ

2kKCW (l] − 1)
√
p

)2l]−2 µ2

23l]+k+1(2R2 + µ)

]
≤ δ + 2 exp(−p/32).

Theorem 27 (Theorem 17 restated) Given any ε ∈ (0, 1); with probability 1−2δKmax

(
2R2

µ + 1
)
−

4Kmax

(
2R2

µ
+1

)
n − 2 exp(−p/32), The estimate returned by Algorithm 3 satisfies

‖P⊥U?(û)‖2 ≤ ε,
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provided n satisfies

n ≥ 4 · 104(‖f‖∞ + 4σ)2(2R2 + µ)

ε2µ2

256 ln(n)K4
max

(
2R2

µ + 1
)4
K2
CW ln(1/δ)

δ2
· p


Kmax

(
2R2

µ
+1

)
.

In the above display, Kmax is an upper bound on the true k given to the algorithm and KCW > 1 is
a universal constant appearing in the Carbery-Wright Theorem.

Proof We begin by introducing some notation. We define:

∆l := ∇F̂ (u0)−∇Fl(u0) L :=
2KmaxR

2

µ
+Kmax − 1.

Applying Theorem 48 and a union bound, we know that with probability 1− 2Lδ − 4L
n ,

max
l∈[L]
‖∆l‖2 ≤ e(n),

where we define e(n) as:

e(n) := 100(‖f‖∞ + 4σ) · 2L
√

max
(
p, ln(1/δ) lnL(n)

)
n

.

Theorem 13 guarantees the existence of l] such that:

l] ≤
2kR2

µ
+ k − 1 ≤ L.

For this l], Lemma 26 tells us with probability 1− δ − 2 exp(−p/32),

‖∇Fl](u0)‖2 ≥ ω,

where we define ω as:

ω :=

(
δ

2kKCW (l] − 1)
√
p

)l]−1 µ√
23l]+k+1(2R2 + µ)

.

It is easy to check that once

n ≥ 4 · 104(‖f‖∞ + 4σ)2(2R2 + µ)

ε2µ2

256 ln(n)K4
max

(
2R2

µ + 1
)4
K2
CW ln(1/δ)

δ2
· p


Kmax

(
2R2

µ
+1

)
,

we have,

e(n) ≤ ε

2
√
p
ω.
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We can now analyze the estimator returned by Algorithm 3. Let u?k+1,u
?
k+2 . . . ,u

?
p be an orthonor-

mal basis for U?⊥. Consider the projection of the estimator returned by the algorithm on any ui,
i ≥ k + 1:

| 〈ui, û〉 | =

∣∣∣〈∇F̂lbest(u0),u?i

〉∣∣∣
‖∇F̂lbest(u0)‖

≤ | 〈∇Flbest(u0),u?i 〉 |+ | 〈∆lbest ,u
?
i 〉 |

‖∇F̂lbest(u0)‖
. (20)

Next we observe that since∇Flbest(u0) ∈ U?, we have,

〈∇Flbest(u0),u?i 〉 = 0. (21)

By Cauchy-Schwarz inequality,

| 〈∆lbest ,u
?
i 〉 | ≤ ‖∆lbest‖ ≤ e(n) ≤ ε

2
√
p
ω. (22)

Next using the definition of lbest, we know that,

‖∇F̂lbest(u0)‖ ≥ ‖∇F̂l](u0)‖
Triangle Inequality

≥ ‖∇Fl](u0)‖ − e(n) (23)

≥ ω − e(n)

≥ ω

(
1− ε

2
√
p

)
ε ∈ (0, 1)

≥ ω

2
. (24)

Substituting the bounds obtained in Equation (21), Equation (22) and Equation (24) into Equa-
tion (20) gives:

| 〈ui, û〉 | ≤
ε
√
p
.

This implies,

‖P⊥U?(û)‖22 =

p∑
i=k+1

| 〈ui, û〉 |2 ≤ ε2.

Appendix D. Handling Unbounded Link Functions

In this section, we relax the assumption that the link function g is bounded. We assume the link
function g satisfies Assumptions 1, 3 and 4. But instead of the assumption that ‖g‖∞ < ∞, we
assume that g and ∇g grow at most polynomially at infinity. More precisely, we assume, that the
link function g is (d, T, C)-polynomial bounded (defined below).
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Definition 28 A link function g : Rk → R is (d, T, C)-polynomially bounded, if:

∃ T > 0, r ∈ N such that, ∀ t ≥ T,max(|g(z)|, ‖∇g(z)‖∞) ≤ C‖z‖d∞.

Remark 29 A number of link functions of practical interest are not bounded but are polynomially
bounded. For example, in the phase retrieval problem g(z) = z2 which is (2, 1, 2)-polynomially
bounded.

The reduction from polynomially bounded link functions to bounded link functions involve the
following steps:

1. We construct a auxiliary link function g̃t which is bounded. Here t > 0 is a parameter which
we will choose appropriately at the end.

2. Next, we compute the `∞ norm bound, minimum signal strength parameter and smoothness
parameter for the auxiliary link function. Hence Algorithms 1,2 and 3 will have the desired
guarantees when the data is generated from a multi-index model with this link function.

3. Finally, we show that the total variation distance between the data distribution induced by the
auxiliary link function and the true link function is small. Hence, if an algorithm succeeds
with high probability with the auxiliary link function, it must succeed with high probability
with the actual link function.

We first construct the auxiliary link function g̃t. We first introduce some notation. Let q(z) : R→ R
be the function:

q(z)
def
=



0 z ≤ −2

2(z + 2)2 −2 ≤ z ≤ −1.5

1− 2(z + 1)2 −1.5 ≤ z ≤ −1

1 −1 ≤ z ≤ 1

1− 2(z − 1)2 1 ≤ z ≤ 1.5

2(z − 2)2 z ≥ 2.

The above function is an approximation to the indicator function of the interval [−1, 1] that is twice
differentiable almost everywhere. In particular, we have,

q(z) = 1 ∀ z ∈ [−1, 1], q(z) = 0 ∀ z ∈ (−∞,−2] ∪ [2,∞), 0 ≤ q(z) ≤ 1 ∀ z ∈ R.

Furthermore, we have that almost surely,

|q′(z)| ≤ 2, |q′′(z)| ≤ 4.

Finally we define the function Qt : Rk → R as:

Qt(z) =

k∏
i=1

q
(zi
t

)
.
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We can now approximate the original link function with a bounded link function g̃t defined as:

g̃t(z)
def
=

g(z)Qt(z)√
E[g2(z)Q2

t (z)]
.

The following lemma verifies that the auxiliary link function satisfies Assumptions 1,3 and 4. We
recall that 1{·} denotes the indicator of an event.

Lemma 30 The auxiliary link function g̃t satisfies

1. ‖g̃t‖∞ ≤ 2C(2t)d.

2. E[(∂g̃t(z)
∂zi

)2] ≥ µ
2 for all i ∈ [k].

3. E[(∂
2g̃t(z)
∂zi∂zj

)2] ≤ 10R2 for all i, j ∈ [k]

provided t ≥ max(T, 8d,
√

4 ln(C2k),
√

4 ln(C2k(µ+ 1)/µ),
√

4 ln(256kC2(R2 + 1)/R2)).

Proof

1. We note that, since g̃t(z) = 0 ∀ ‖z‖∞ > 2t,

‖g̃t‖∞ ≤
C(2t)d√

E[g2(z)Q2
t (z)]

.

Furthermore,

E[g2(z)Q2
t (z)] = 1− E[g2(z)(1−Q2

t (z)]

≥ 1− E[g2(z)1{‖z‖∞ > t}]
≥ 1− C2E[‖z‖2d∞1{‖z‖∞ > t}]
≥ 1− C2kE[|Z|2d1{|Z| > t}].

From Lemma 42, we know that, E[|Z|2d1{|Z| > t}] ≤ 0.25 exp(−t2/4) provided t > 8d.
Hence by choosing t such that t > max(

√
4 ln(C2k), 8d), we get ‖g̃t‖∞ ≤ 2C(2t)d.

2. Consider the following sequence of inequalities:

E

[(
∂g̃t(z)

∂zi

)2
]
≥ E

[(
∂g̃t(z)

∂zi

)2

1{‖z‖∞ ≤ t}

]

≥ E

[(
∂g(z)

∂zi

)2

1{‖z‖∞ ≤ t}

]

= µ− E

[(
∂g(z)

∂zi

)2

1{‖z‖∞ > t}

]
≥ µ− kC2E[|Z|2d1{|Z| > t}].

Choosing t > max(
√

4 ln(C2k(µ+ 1)/µ), 8d) gives us the required lower bound of µ2 .
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3. We note that,

∂2g̃t(z)

∂zi∂zj
=

1√
E[g2(z)Q2

t (z)]

(
∂2g(z)

∂zi∂zj
+
∂2Qt(z)

∂zi∂zj
+
∂g

∂zi

∂Qt
∂zj

+
∂g

∂zj

∂Qt
∂zi

)
.

Furthermore, ∣∣∣∣∂Qt∂zi

∣∣∣∣ ≤ 2 · 1{t < ‖z‖∞ < 2t}∣∣∣∣ ∂2Qt
∂zi∂zj

∣∣∣∣ ≤ 4 · 1{t < ‖z‖∞ < 2t}.

Hence,

E

[(
∂g̃t(z)

∂zi

)2
]
≤ 8E

((
∂2g(z)

∂zi∂zj

)2

+

(
∂2Qt(z)

∂zi∂zj

)2

+

(
∂g

∂zi

∂Qt
∂zj

)2

+

(
∂g

∂zj

∂Qt
∂zi

)2
)

= 8

(
R2 + 16P [t < ‖z‖∞ < 2t] + 8E

[(
∂g

∂zi

)2

1{t < ‖z‖∞ < 2t}

])
.

Finally choosing t > max(
√

4 ln(256kC2(R2 + 1)/R2), 8d) gives us the required upper
bound of 10R2.

Next, we bound the total variation distance between the measures induced on the data when the link
function is g and the link function is g̃t. We first introduce some notation:

X
def
= [x1|x2| · · · |xn]T

Y
def
= [y1, y2, . . . , yn]T .

Let P be the measure induced on (X,Y ) when the link function is g. Let P̃t denote the measure
induced on (X,Y ) when the link function is g̃t. We note that the under both these measures, the
marginal density of X is the same. Let us denote the marginal density of X by p(·). Let the
conditional density of Y |X = X be denoted by q(·|X) and q̃(·|X) under P and P̃t respectively.
Finally, ∀ t > 0, we define the event Et as follows:

Et
def
= {‖xi‖∞ ≤ t ∀ i ∈ [n]}.

We observe that if X ∈ Et, then,

q(·|X) = q̃(·|X).

The following lemma bounds the total variation distance (denoted by dTV(P, P̃t)) between the mea-
sure P and P̃t.

Lemma 31 In the setup introduced above, we have,

dTV(P, P̃t) ≤ 2np exp(−t2/2).
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Proof From the definition of total variation distance we have,

dTV(P, P̃t) =
1

2

∫
Rn×p

∫
Rn
|p(X)q(Y |X)− p(X)q̃(Y |X)| dY dX

=
1

2

∫
X∈Et

∫
Rn
|p(X)q(Y |X)− p(X)q̃(Y |X)| dY dX

+
1

2

∫
X 6∈Et

∫
Rn
|p(X)q(Y |X)− p(X)q̃(Y |X)| dY dX .

Using the fact that q(·|X) = q̃(·|X), when X ∈ Et, we find the first term in the above display is 0.
Turning our attention to the second term, we note,

1

2

∫
Rn
|q(Y |X)− q̃(Y |X)| dY = dTV(q(·|X), q̃(·|X))

≤ 1.

Hence,

dTV(P, P̃t) =
1

2

∫
X 6∈Et

∫
Rn
|p(X)q(Y |X)− p(X)q̃(Y |X)| dY dX

≤
∫
X 6∈Et

p(X) dX

= P[X 6∈ Et].

Applying standard concentration bounds for a gaussian random variable and a union bound gives us
the required result.

The following theorem gives a general reduction showing that any algorithm which is able to esti-
mate multi-index models with bounded link functions is also able to estimate multi-index models
with polynomially bounded link functions.

Theorem 32 Let A be any algorithm which returns an estimate û that satisfies ‖P⊥U?û‖2 ≤ ε
with probability atleast 1 − δ given data generated from a multi-index model with normalized link
function g with ‖g‖∞ ≤ B, minimum signal strength parameter µ and smoothness parameter R2

provided the number of samples n satisfies

n ≥ N(p, k, σ2, µ,R2, B, ε, δ).

Then the same algorithm returns an estimate û that satisfies ‖P⊥U?û‖2 ≤ ε with probability atleast
1 − 2δ given data generated from a multi-index model with (d, T, C)-polynomially bounded nor-
malized link function with minimum signal strength parameter µ and smoothness parameter R2

provided the number of samples n satisfies,

n ≥ N(p, k, σ2, µ/2, 10R2, B′, ε, δ)

where

B′ = 2C max

(
T d, 8ddd, 4d/2 lnd/2

(
256C2(R2 + 1)(µ+ 1)

µR2δ
· knp

))
.
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Proof To construct g̃t choose t as:

t = max

(
T, 8d,

√
4 ln

(
256C2(R2 + 1)(µ+ 1)

µR2δ
· knp

))
.

By Lemma 30, we have, that g̃t satisfies

‖g̃t‖∞ ≤ B′

E

[(
∂g̃t(z)

∂zi

)2
]
≥ µ

2
∀ i ∈ [k]

E

[(
∂2g̃t(z)

∂zi∂zj

)2
]
≤ 10R2 ∀ i, j ∈ [k].

Hence when given data generated using link function g̃t, the algorithm succeeds with probability
1− δ provided,

n ≥ N(p, k, σ2, µ/2, 10R2, B′, ε, δ).

On the other hand, by Lemma 31,

dTV(P, P̃t) ≤ δ.

Hence, by the definition of Total Variation distance, given data generated from g, the same algorithm
succeeds with probability atleast 1− 2δ.

Remark 33 We note that in Theorems 14 and 17, the sample complexity depends only polynomially
on ‖g‖∞. Hence, if the link function is unbounded but polynomially bounded, the same guarantees
hold provided the number of samples n ≥ Õ(poly(p)/ε2) where the Õ notation suppresses factors
that are logarithmic in p but can possibly be exponential in the link function parameters likeR, 1

µ , d.

Appendix E. Properties of Hermite Polynomials

Fact 1 (Explicit Form of Hermite Polynomials) The (normalized) Hermite Polynomial of degree
i is given by:

Hi(x) =
√
i!

bi/2c∑
m=0

(−1)m

m!

xi−2m

(i− 2m)!2m
.

Fact 2 (Differentiating Hermite Polynomials) The derivative of the Hermite Polynomial of de-
gree i is given by:

H ′i(x) =
√
iHi−1(x).
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The following lemma gives an upper bound on the value of a Hermite polynomial on a compact
interval. This will be helpful in analyzing the concentration properties of Hermite polynomials via
a truncation argument.

Lemma 34 For all λ ≥ i,

sup
|x|≤λ

|Hi(x)| ≤ iλi√
i!
.

Proof We make the following crude approximations to get an upper bound:

|Hi(x)| Fact 1
=

∣∣∣∣∣∣√i!
bi/2c∑
m=0

(−1)m

m!

xi−2m

(i− 2m)!2m

∣∣∣∣∣∣
≤

√
i!

bi/2c∑
m=0

1

m!

|x|i−2m

(i− 2m)!2m

≤
√
i!

bi/2c∑
m=0

1

m!

λi−2m

(i− 2m)!2m
.

Next we note that for λ ≥ i, λi/i! is the dominant term in the above summation. This is because:

1
m!

λi−2m

(i−2m)!2m

λi

i!

=
(i− 2m+ 1) · (i− 2m+ 2) · · · (i− 1) · i

λ2m2mm!

≤
(
i

λ

)2m

≤ 1.

Hence we have,

sup
|x|≤λ

|Hi(x)| ≤ i

2
·
√
i!
λi

i!

≤ iλi√
i!
.

We will also need bounds on the maximum coefficient in the monomial representation of the
Hermite Polynomial of degree i.

Lemma 35 Let Bi be the maximum absolute coefficient in the monomial expansion of the degree i
Hermite Polynomial. Then,

Bi ≤ 2i.
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Proof Using the explicit formula for Hermite Polynomials (Fact 1), we have,

Bi = max
0≤m≤b i

2
c

√
i!

m!(i− 2m)!2m
.

Hence, it suffices to bound the right hand side for a fixed value of m ≤ b i2c. We observe that,

√
i!

m!(i− 2m)!2m
=

(2m)!

2mm!
√
i!

(
i

2m

)
Lemma 50
≤ (2m)!

2mm!
√
i!
· 2i

2m ≤ i
≤

√
2m!

2mm!
· 2i

=
2i

2m

√(
2m

m

)
Lemma 50
≤ 2i.

Appendix F. Condition Number of Monomial Basis

We define the index set It as: It
def
= {S ∈ (N ∪ {0})k : ‖S‖1 ≤ t}. Any arbitrary polynomial with

degree at most t in k variables is of the form:

V (z) =
∑
S∈Il

vSz
S .

We have used the notation zS :=
∏k
i=1 z

Si
i . We can associate every degree l polynomial V (z) with

a coefficient vector v ∈ R|Il|. We can also write the polynomial V (z) in terms of the Hermite basis:

V (z) =
∑
S∈It

v′SHS(z).

Let Bt ∈ R|It|×|It| denote the invertible linear map that converts the monomial representation v
to the Hermite representation v′. That is, v′ = Btv. The main goal of this section is to obtain
lower bounds on λmin

(
BT
t Bt

)
. We note that since the BT

t Bt is positive definite, λmin
(
BT
t Bt

)
=

1
λmax(B−1

t B−Tt )
. Let bS denote the coefficient representation of the Hermite Polynomial HS(z) in

the monomial basis. One can see that the columns ofB−1
t are precisely bS for S ∈ It.

Lemma 36 (Condition Number of Monomial Basis)

λmin
(
BT
t Bt

)
≥ 2−3t−k.
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Proof Instead of trying to lower bound λmin
(
BT
t Bt

)
, we upper bound λmax

(
B−1
t B−Tt

)
.

λmax

(
B−1
t B−Tt

)
=

∥∥∥∥∥∥
∑
S∈Il

bSb
T
S

∥∥∥∥∥∥
≤
∑
S∈Il

‖bS‖2

≤ |It|
∑
S∈It

‖bS‖2∞

≤ |It|2 max
S∈It

‖bS‖2∞. (25)

Next we give an upper bound for ‖bS‖∞. We recall that,

HS(z) =

k∏
i=1

HSi(zi).

Using the explicit formula for Hermite Polynomials (Fact 1) and the fact that the largest coefficient
in the monomial representation of the degree l (univariate) Hermite Polynomial is 2l (Lemma 35),
we see that,

‖bS‖∞ ≤ 2S1+S2+···+Sk ≤ 2t.

Furthermore using standard combinatorial arguments,

|It| =
(
t+ k − 1

k − 1

)
Lemma 50
≤ 2t+k−1.

Substituting these bounds in Equation (25) gives:

λmax

(
B−1
t B−Tt

)
≤ 23t+k−1 =⇒ λmin

(
BT
t Bt

)
≥ 2−3t−k+1.

Appendix G. Concentration Results

In this section we collect some basic concentration results which will be useful in our analysis.
We first recall the definitions of subgaussian and subexponential random variables from Wain-

wright (2015).

Definition 37 (Subgaussian Random Variables) A random variable X with E[X] = µ is called
σ-subgaussian if:

∀λ ∈ R,E[exp(λ(X − µ))] ≤ exp(λ2σ2/2).
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Definition 38 (Subexponential Random Variables) A random variableX with E[X] = µ is called
(ν, b)-subexponential if:

∀|λ| < 1

b
,E[exp(λ(X − µ))] ≤ exp(λ2ν2/2).

Next we recall the standard concentration bounds for sum of independent subgaussian and subex-
ponential random variables.

Fact 3 (Hoeffding Bound) Let Xi be independent subgaussian random variables with mean µi
variance proxies σi. Then,

P

[
n∑
i=1

(Xi − µi) > t

]
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Fact 4 (Subexponential Concentration) LetXi be independent subexponential random variables
with parameters (νi, bi). Define:

ν? :=

√√√√ n∑
i=1

ν2
i

b? := max
i∈[n]

bi.

Then,

P

[
n∑
i=1

(Xi − µi) > t

]
≤ max

(
exp

(
− t2

2ν2
?

)
, exp

(
− t

2b?

))
.

Fact 5 (Chi Square Concentration) Let Zi
i.i.d.∼ N (0, 1). Then, ∀t ∈ (0, 1), we have,

P

[∣∣∣∣∣ 1n
n∑
k=1

Z2
k − 1

∣∣∣∣∣ > t

]
≤ 2 exp(−nt2/8).

Lemma 39 (Product of a Gaussian RV and a bounded RV) Let X1 be a 1-subgaussian random
variable and let X2 be a bounded random variable. Then X1X2 is 8‖X2‖∞-subgaussian.

Proof Omitted.

Lemma 40 (Conditioning preserves subgaussianity) LetZ1, Z2 be jointly gaussian with E[Z1] =
E[Z2] = 0, E[Z2

1 ] = E[Z2
2 ] = 1 and E[Z1Z2] = ρ. Let Z = {|Z2| ≤ λ}. Then conditioned on Z ,

the distribution of Z1 is 1-subgaussian.
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Proof Omitted.

Lemma 41 Let Z ∼ N (0, 1) and let W be a ω-subgaussian random variable independent from Z.
The WZ is (4ω, 4ω)-subexponential.

Proof

E[exp(λWZ)] = EW [E[exp(λZW |W ]]

= EW [exp(λ2W 2/2]

= EW

 ∞∑
q=0

λ2qW 2q

q!

 .
Since W is ω-subgaussian, E[W 2q] ≤ q!4qω2q. Substituting this bound we get, if 4λ2ω2 < 1,

E[exp(λWZ)] ≤ 1

1− 4λ2ω2

= 1 +
4λ2ω2

1− 4λ2ω2
.

Furthermore, if λ2 ≤ 1
8ω2

E[exp(λWZ)] ≤ exp(8λ2ω2).

Hence we conclude WZ is (4ω, 4ω)-subexponential.

Below, 1{P} is the zero-one indicator function for a predicate P .

Lemma 42 Let Z ∼ N (0, 1). Let l ∈ N. Then, for all λ > 4l, we have,

E[|Z|l1{|Z| > λ}] ≤ 1.6

λ
exp(−λ2/4).

Proof

E[|Z|l1{|Z| > λ}] =

√
2

π

∫ ∞
λ

zl exp(−z2/2)dz.

Next by comparing the taylor series of xl and exp(x2/4) we note that exp(x2/4) ≥ xl for all
x > 4l. Since λ > 4l, we have,

E[|Z|l1{|Z| > λ}] ≤
√

2

π

∫ ∞
λ

exp(−z2/4)dz

≤ 2

λ

√
2

π

∫ ∞
λ

1

2
z exp(−z2/4)dz

=
2

λ

√
2

π
exp(−λ2/4)

<
1.6

λ
exp(−λ2/4).
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Lemma 43 (Anticoncentration of a Uniformly Random Unit Vector) Let v ∼ Unif(Sp−1) and
let u be a fixed unit vector. Then,

P
[
| 〈u,v〉 | ≤ δ

√
p

]
≤ 2e−p/32 + δ.

Proof Let g ∼ N (0, Ip). We know that,

g1

‖g‖2
d
= 〈u,v〉 .

Therefore we have,

P
[
| 〈u,v〉 | ≤ δ

√
p

]
= P

[
|g1|
‖g‖2

≤ δ
√
p

]
≤ P

[
|g1| ≤

δ
√
p
‖g‖2, ‖g‖22 ≤ 1.5p

]
+ P

[
‖g‖22 > 1.5p

]
Fact 5
≤ P

[
|g1| ≤

δ
√
p
‖g‖2, ‖g‖22 ≤ 1.5p

]
+ 2e−p/32

≤ P[|g1| ≤ δ
√

1.5] + 2 exp(−p/32). (26)

Next we note that, if Z ∼ N (0, 1),

P[|Z| ≤ c] =

∫ c

−c

1√
2π
e−z

2/2dz

≤ 2c√
2π
.

Substituting the above display in Equation (26),

P
[
| 〈u,v〉 | ≤ δ

√
p

]
≤ 2δ

√
1.5√

2π
+ 2e−p/32

< δ + 2e−p/32.

Theorem 44 (Carbery and Wright, 2001; O’Donnell, 2014) Let P : Rp → R be a polynomial of
degree atmost L. Then,

Pz∼N (0,Ip)

[
|P (z)| ≤ ‖P (z)‖2δL

KL
CWL

L

]
≤ δ.

Here KCW is a universal constant.
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G.1. Concentration of Gradients

Let h : Rp → R be a arbitrary bounded function. Let (xi, yi) be independent and identically
distributed observations from the following model:

xi ∼ N (0, Ip) ,

εi ∼ N
(
0, σ2

)
,

yi = h(xi) + εi.

The gradient of the objectives we consider are of the form:

1

n

n∑
i=1

yiHl(〈xi,u〉)xi.

Hence, we will often be interested in analyzing the deviation of the following empirical average
from its expectation:

1

n

n∑
i=1

yiHl(〈xi,u〉)xi − E[yHl(〈x,u〉)x].

In the above display, Hl denotes the Hermite polynomial of degree l and u is a fixed unit vector.
Since the aforementioned vector involves higher moments of gaussians, we proceed via a stan-

dard truncation argument. We define the events:

Ei(λ) = {| 〈u,xi〉 | ≤ λ},

Eall(λ) =

n⋂
i=1

Ei.

We will represent the conditional distribution of xi on the event Ei with the random variable x̃i. The
basic idea behind introducing this event is that conditioned on this event, all the random variables
involved are either subgaussian or subexponential and standard concentration inequalities apply. We
analyze the concentration of this random vector via a sequence of intermediate lemmas:

1. In Lemma 45 we analyze the difference between expectations conditioned on the event Eall(λ)
and the unconditional expectations. This is important since conditioned on Eall(λ) all quanti-
ties concentrate to their respective expectations conditioned on Eall(λ) while we want to show
they concentrate near their unconditional expectations.

2. In Lemma 46 we analyze the concentration of the signal part, 1
n

∑n
i=1 yiHl(〈xi,u〉)xi.

3. In Lemma 47 we analyze the concentration of the noise part, 1
n

∑n
i=1 εiHl(〈xi,u〉)xi.

4. In Lemma 48, we combine the above mentioned intermediate results into a ready-to-use the-
orem.
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Lemma 45 Consider the setup outlined above. Let a be any fixed unit vector. Then we have,

E[εiHl(〈u,xi〉xi]− E[εiHl(〈u,xi〉)xi|Ei(λ)] = 0,

|E [h(xi)Hl(〈xi,u〉) 〈xi,a〉]− E [h(xi)Hl(〈xi,u〉) 〈xi,a〉 |Ei(λ)]| ≤ ‖h‖∞
2

exp(−λ2/8),

provided λ ≥ 8l.

Proof For the first equality, we note that εi is independent of xi and hence,

E[εiHl(〈u,xi〉)xi|Ei(λ)] = E[εiHl(〈u,xi〉xi] = 0.

For the second claim we note that,

E [h(xi)Hl(〈xi,u〉)xi] = E [h(xi)Hl(〈xi,u〉)xi| Ei]P[Ei] + E [h(xi)Hl(〈xi,u〉)xi|Eci ]P[Eci ].

Hence,

|E [h(xi)Hl(〈xi,u〉) 〈xi,a〉]− E [h(xi)Hl(〈xi,u〉) 〈xi,a〉 |Ei(λ)]| = |E [h(xi)Hl(〈xi,u〉) 〈xi,a〉1{Eci }] |.

Furthermore,

|E [h(xi)Hl(〈xi,u〉) 〈xi,a〉1{Eci }] | ≤ E [|h(xi)Hl(〈xi,u〉) 〈xi,a〉 |1{Eci (λ)}]
≤ ‖h‖∞E [|Hl(〈xi,u〉) 〈xi,a〉 |1{Eci (λ)}]

Lemma 34
≤ l‖h‖∞√

l!
E[| 〈a,xi〉 〈u,xi〉l |1{Ei(λ)c}]

Cauchy-Schwarz

≤ l‖h‖∞√
l!

√
E [(〈xi,u〉)2l1{Eci (λ)}]

Lemma 42
≤ 1.3l‖h‖∞√

l!
√
λ

exp(−λ2/8)

λ ≥ 8l

≤ ‖h‖∞
2

exp(−λ2/8).

Lemma 46 In the setup introduced above, with probability, 1− δ − 2
n ,∥∥∥∥∥ 1

n

n∑
i=1

h(xi)Hl(〈u,xi〉)xi − E[h(x)Hl(〈u,x〉)x]

∥∥∥∥∥
2

≤ 100‖h‖∞ · 2l
√

max(p, ln(1/δ)) lnl(n)

n
.

Proof LetEn := 1
n

∑n
i=1 h(xi)xi−E[h(x)x]. LetN denote a 1

2 -packing of the unit sphere in Rp
with |N | ≤ 5p. Using standard arguments, we know that,

‖En‖2 = sup
a:‖a‖2≤1

〈a,En〉 ≤ 2 max
a∈N
〈a,En〉 .
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Hence we have,

P [‖En‖2 > 2t] ≤ P[‖En‖2 > 2t|Eall(λ)] + P[Eall(λ)c] (27)

≤ P
[
max
a∈N
〈a,En〉 > t|Eall(λ)

]
+ P[Eall(λ)c]

≤ 5pP [〈a,En〉 > t|Eall(λ)] + P[Eall(λ)c]. (28)

For a fixed unit vector a,

〈a,En〉 =
1

n

n∑
i=1

h(xi) 〈xi,a〉Hl(〈xi,u〉)− E[h(x) 〈x,a〉Hl(〈x,u〉)]

Lemma 45
≤ 1

n

n∑
i=1

h(xi) 〈xi,a〉Hl(〈xi,u〉)− E[h(x) 〈x,a〉Hl(〈x,u〉)|E ]︸ ︷︷ ︸
Ẽn

+
‖h‖∞

2
exp(−λ2/8).

The final task is to analyze the concentration of Ẽn conditioned on the event Eall(λ). We note that
on the event Eall(λ), 〈xi,a〉 is 1-subgaussian. By Lemma 34, |h(xi)Hl(〈xi,u〉)| ≤ 2‖h‖∞λl+1.
By Lemma 39, h(xi) 〈xi,a〉Hl(〈xi,u〉) is 16‖h‖∞λl-subgaussian. Applying the Hoeffding bound
(Fact 3), we get,

P
[
Ẽn > 16‖h‖∞λlγ

]
≤ exp

(
−nt

2

2

)
.

Substituting this bound in Equation (28) gives us:

P
[
‖En‖2 > 32‖h‖∞λlγt+ ‖h‖∞ exp(−λ2/8)

]
≤ 5p exp

(
−nt

2

2

)
+ P[Eall(λ)c].

By standard results on gaussian concentration, P[Eall(λ)c] ≤ 2n exp(−λ2/2). We set:

λ =
√

4 ln(n),

γ = 3

√
max p, ln(1/δ)

n
,

and conclude,

P

‖En‖2 > 100‖h‖∞ · 2l
√

max(p, ln(1/δ)) lnl(n)

n

 ≤ δ +
2

n
.

Lemma 47 Consider the setting introduced above. With probability 1− δ − 2
n ,∥∥∥∥∥ 1

n

n∑
i=1

εiHl(〈xi,u〉)xi

∥∥∥∥∥
2

≤ 400σ · 2l
√

max(p, ln(1/δ)) lnl(n)

n
,
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provided,

n > 9 max

(
p, ln

1

δ

)
.

Proof Let Fn := 1
n

∑n
i=1 εiHl(〈xi,u〉)xi. Via arguments analogous to the proof of Lemma 46,

we get,

P[‖Fn‖2 > 2t] ≤ 5pP[〈Fn,a〉 > t|Eall(λ)] + P[Eall(λ)c].

Here a is a fixed unit vector. Furthermore,

〈Fn,a〉 =
1

n

n∑
i=1

〈xi,a〉Hl(〈xi,u〉)εi.

On the event Eall(λ),Hl(〈xi,u〉) ≤ 2λl and 〈xi,a〉 is 1-subgaussian. By Lemma 39, 〈xi,a〉Hl(〈xi,u〉)
is 16λl-subgaussian. By Lemma 41, 〈xi,a〉Hl(〈xi,u〉)εiσ is (64λl, 64λl) subexponential. By concen-
tration of sum of independent subexponential random variables (Fact 4), we have,

P[‖Fn‖2 > 64tλlσ] ≤ 5p max
(
exp(−nt2/2), exp(−nt/2)

)
+ 2n exp(−λ2/2).

We set

t = 3

√
max

(
p, ln 1

δ

)
n

,

λ =
√

4 ln(n).

When n > 9 max
(
p, ln 1

δ

)
, we have t < 1 and we obtain,

P

‖Fn‖2 > 400σ · 2l
√

max(p, ln(1/δ)) lnl(n)

n

 ≤ δ +
2

n
.

We are now ready to state our main concentration result.

Theorem 48 In the setting introduced above, we have, with probability 1− 2δ − 4
n ,∥∥∥∥∥ 1

n

n∑
i=1

yiHl(〈u,xi〉)xi − E[yHl(〈u,x〉)x]

∥∥∥∥∥
2

≤ 100(‖h‖∞ + 4σ) · 2l
√

max(p, ln(1/δ) lnl(n)

n
.

Proof This follows directly from Lemma 46 and Lemma 47 and a union bound.
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G.2. Concentration of Goodness-of-Fit Statistic

The goodness of fit statistic we consider is:

Tl(u) =
1

|Stest|
∑
i∈Stest

yiHl(〈u,xi〉).

We define m := |Stest|. We recall that by Lemma 3, E[T (u)] = a?l 〈u?,u〉
l. The following lemma

analyzes the concentration of Tl(u) about its expectation.

Lemma 49 With probability 1− δ,

|Tl(u)− E[Tl(u)]| ≤ ∆,

provided m ≥ 2(σ2+‖h‖2∞)
δ∆2 .

Proof Since we don’t need exponential tail bounds, we use Chebychev’s Inequality for simplicity.
We first bound the variance,

Var (yHl(〈x,u〉) ≤ E
[
y2H2

l (〈x,u〉
]
.

Using the inequality (a+ b)2 ≤ 2a2 + 2b2 we have y2 ≤ 2(ε2 + h(x)2). Hence,

Var (yHl(〈x,u〉)) ≤ 2
(
E
[
ε2H2

l (〈u,x〉)
]

+ E
[
h2(x)H2

l (〈x,u〉)
])

≤ 2
(
σ2 + ‖h‖2∞

)
.

Applying Chebychev Inequality with this variance upper bound, we get,

P [|Tl(u)− E[Tl(u)]| > ∆] ≤ 2(σ2 + ‖h‖2∞)

m∆2
.

Hence if m ≥ 2(σ2+‖h‖2∞)
δ∆2 , the above probability is bounded by δ.

Appendix H. Miscellaneous Results

Fact 6 (Stirling’s Approximation)
√

2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n.

Lemma 50 (Upper Bound on Multinomial Coefficient)(
kt

t, t, . . . , t

)
≤ e
√
tk

(
k2t

2πt

)k/2
.
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Proof This follows from Fact 6.

Lemma 51 Define µ2k = E[Z2k] where Z ∼ N (0, 1). Then,

µ2k =
2k!

2kk!
≤ e√

π

(
2k

e

)k
.

Proof This follows from Fact 6
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