Transformers, parallel computation, and logarithmic depth

Daniel Hsu (Columbia)

Joint work with:
Clayton Sanford (Columbia)
Matus Telgarsky (NYU)
What do we know about Transformers (TFs) [Vaswani et al, 2017]?

• TFs are **universal approximators**
 [Yun et al, 2020; Pérez et al, 2021; Strobl et al, 2024; …]

• Many limitations of **constant size/depth TFs**
 [Hahn, 2020; Merrill & Sabharwal, 2022; Sanford et al, 2023; …]

What distinguishes TFs from other neural architectures?
Self-attention and transformers

- **Self-attention head:**

\[\text{SA}^{Q,K,V}(x_1, \ldots, x_N) = \sum_{j=1}^{N} \alpha_{i,j} V(x_j) \]

where

\[\alpha_i = \text{softmax}(Q(x_i) \cdot K(x_1), \ldots, Q(x_i) \cdot K(x_N)) \]

- **Embedding functions** \(Q, K, V \) have embedding dimension \(m \)
- **Self-attention layer:** sum of \(H \) self-attention heads (width)
- **Transformer:** composition of \(L \) self-attention layers (depth)
- **This work:** \(\log N \) precision numbers, \(\text{poly}(N) \) size alphabets, etc.
What we do

Goal: Use parallelism to distinguish TFs from other architectures

- **Part I** Relate TFs to Massively Parallel Computation
- **Part II** Distinguish TFs using "k-hop induction heads"
Part I: **MPC** vs **TFs**
Massively Parallel Computation (MPC)

- Culmination of theoretical models to study MapReduce, Hadoop, etc. [Karloff et al, 2010; Goodrich et al, 2011; Beame et al, 2013; Andoni et al, 2014]
 - Input size: n [$n \leq q \times s$]
 - Number of machines: q
 - Memory size per machine: s [$s = \Theta(n^\delta)$ for small $\delta \in (0,1)$]

How many rounds R are needed?
MPC algorithms for many problems

- Broadcast $R = O(1)$
- Sorting $R = O(1)$
- Prefix sum $R = O(1)$
- Problems on sparse graphs [Andoni et al, 2018, Behnezhad et al, 2019, ...]
 - Connected components $R = \log(\text{Diameter})$
 - Minimum spanning forest $R = \log(\text{Diameter})$
- ...

- Open question: $o(\log n)$ round algorithm for connectivity?
Example: **MPC** algorithm to broadcast a word

\[s = \Theta(n^\delta), \quad q = \text{poly}(n) \]

Propagate word using
\[b = \Omega(s) \text{-ary broadcast tree} \]

- # Rounds:
 \[R = O \left(\frac{\log q}{\log s} \right) = O \left(\frac{1}{\delta} \right) \]
Two very deep thoughts

1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC algorithm implies a small TF

2. If MPC algorithms can simulate TFs efficiently, then problems hard for MPC are also hard for TFs
TFs can simulate MPC algorithms

• **Theorem** [SHT'24]: If $f : \Sigma^n \rightarrow \Sigma^n$ can be computed by R-round MPC algorithm using $q = \Theta(n^{1-\delta})$ machines and $s = \Theta(n^{\delta})$ word memory/machine, then f can be computed by TF with
 • $L = O(R)$ layers
 • $H = O(\log \log n)$ heads/layer
 • Embedding dimension $m = O(n^{4\delta} \log n)$

• **Corollary**: log(Diameter)-layer TF for connectivity in sparse graphs, ...
Two very deep thoughts

1. If TFs can simulate MPC algorithms efficiently, then an efficient MPC algorithm implies a small TF

2. If MPC algorithms can simulate TFs efficiently, then problems hard for MPC are also hard for TFs
MPC algorithms can simulate TFs

- **Theorem [SHT’24]:** If \(f : \Sigma^N \rightarrow \Sigma^N \) can be computed by TF with \(L \) layers, \(H \) heads/layer, and embedding dimension \(m \) satisfying \(mH = O(N^\delta) \), then for any \(\gamma > 0 \), \(f \) can be computed by MPC algorithm with
 - \(R = O(L/\gamma) \) rounds
 - \(q = O(N^2) \) machines
 - \(s = O(N^{\delta+\gamma}) \) word memory/machine
What problems are hard for MPC?

• **1-vs-2 cycle problem**: Given graph G that is promised to be either a cycle on n vertices or a union of two cycles on $n/2$ vertices each, decide if G is connected.

• **1-vs-2 cycle hypothesis**: All MPC algorithms for this problem with $s = O(n^{1-\epsilon})$ for some $\epsilon > 0$ and $q = \text{poly}(n)$ use $R = \Omega(\log n)$ rounds.
Logarithmic depth is necessary for TFs

- **Corollary**: Assuming 1-vs-2 cycle hypothesis, every TF with \(mH = O(n^{1-\epsilon}) \) for some \(\epsilon > 0 \) that decides connectivity has \(L = \Omega(\log n) \)
Summary of Part I

• Efficient **MPC** algorithms give small **TFs**
• **TFs** face same limitations as **MPC** algorithms
Part II: k-hop induction heads
Induction heads

- Induction heads [Olsson et al, 2022] identified in existing pre-trained TFs solve a certain next-token prediction task
 - Given baebcabebdea, what comes next?
 - Answer: b
Multi-step induction heads task ("k-hop")

• Given $baebcabebdea$, what comes next?

 $baebcabebdea$

 • Answer ($k = 2$): c

• Multi-step reasoning problem [Peng, Narayanan, Papadimitriou, 2024]:

 • Prompt: "Jane is a teacher. Helen is a doctor. [...] The mother of John is Helen. The mother of Charlotte is Eve. [...] What's the profession of John's mother?"

 • Answer: doctor
Why is k-hop important?

- Captures natural + simple multi-step reasoning problem
- TFs can compute it efficiently
- Non-parallel architectures (e.g., RNNs) have difficulty with it
TFs can efficiently compute k-hop predictions

- **Theorem** [SHT'24]: For any $k \in \mathbb{N}$, there is a causally-masked TF with $m = O(1)$, $H = 1$, $L \leq 2 + \log_2(k)$ that computes k-hop predictions (at all positions)

- Solution exploits parallelism in manner similar to [Bietti et al, 2023]

Every layer doubles the "reach"

- **Surprise**: SGD empirically appears to find the same solution!
Bottleneck for non-parallel models

Small-state (multi-layer) RNNs

Efficient sequential k-party communication protocols

But k-hop is hard in this communication model

(Consequence of [Assadi and N, 2021])
Pointer Chasing [Nisan & Wigderson, 1993]

Problem: Given k-layered graph $(\mathcal{V}_1, ..., \mathcal{V}_{k+1}, E_1, ..., E_k)$ and $u \in \mathcal{V}_1$, determine unique $v \in \mathcal{V}_{k+1}$ such that $u \rightsquigarrow v$

\[\frac{n}{k+1} \text{ vertices per layer} \]

E_i is perfect matching between \mathcal{V}_i and \mathcal{V}_{i+1}

Proposition [SHT'24]: Can encode $(E_k, ..., E_2, E_1)$ and $u \in \mathcal{V}_1$ as $x \in \left[\frac{2n}{k+1} \right]^N$ ($N = \Theta(n)$) s.t. k-Pointer Chasing is equivalent to k-hop on x
Consequences of [Assadi & N, 2021]

Corollary: Average case lower bounds for computing k-hop predictions

- L-layer RNN (e.g., Mamba) with s-bit hidden state:
 $$L \geq k \text{ or } s = \tilde{\Omega}(n/k^6)$$

- TF using rank-r SA approximation:
 $$L \geq k \text{ or } mHr = \tilde{\Omega}(n/k^6)$$

- Single SA layer with T "chain-of-thought" tokens:
 $$T \geq k \text{ or } mH = \tilde{\Omega}(n/k^6)$$

- ...
Summary of Part II

k-hop induction heads task

- Captures natural and simple multi-step reasoning problem
- Can be solved by TFs with $O(\log k)$ depth and $O(1)$ width
 - (This depth is necessary, assuming 1-vs-2 cycle hypothesis)
- Cannot be solved by other "non-parallel" architectures unless they have $\Omega(k)$ "depth" or $\Omega(n/k^6)$ "size"
Closing

• **Parallelism** distinguishes TFs from other architectures
 • Relies on log depth + sublinear width regime for TF
 • Separation exhibited by natural multi-step reasoning problem

• Future work
 • Finer-grain understanding of TFs that looks inside embedding functions
 • Learning

Thank you!

arXiv:2402.09268, to appear @ ICML 2024
Example: **MPC** algorithm for sorting

\[s = \Theta(n^{2/3}), \quad q = \Theta(n^{1/3}) \]

1. Each machine marks each of its elements with probability \(\Theta(s/n) \), then send marked elements to Machine 1

2. Machine 1 determines \(q \) "ranges" that partition inputs (approx.) evenly; broadcast specs to all machines

3. Each machine collects input elements in "range" it is responsible for, then sort elements locally
Key idea: self-attention head for routing

• Messages to be sent (received) by machine i (machine j):
 $\text{Outbox}_i \subseteq \Sigma \times [q]$, \hspace{1em} \text{Inbox}_j = \{(\text{msg}, i) : (\text{msg}, j) \in \text{Outbox}_i\}

• MPC algorithm guarantees $|\text{Outbox}_i| = O(s)$ and $|\text{Inbox}_j| = O(s)$

• We design a small SA head such that
 $(\text{Inbox}_1, ..., \text{Inbox}_q) = \text{SA}(\text{Outbox}_1, ..., \text{Outbox}_q)$

• Uses "Sparse Averaging" [SHT'23] + some redundancy:
 \[
 \text{SparseAveraging}(O_1, ..., O_q)_j = \frac{1}{\deg(j)} \sum_{i \rightarrow j} O_i
 \]
Sequential multi-party communication

• Input split into k parts $x_1, ..., x_k$, given to k players
• Players communicate in round-robin fashion via public blackboard

• (k, R, s) protocol:
 • For $r = 1, ..., R$:
 • For $i = 1, ..., k$:
 • Player i reads content of BB, appends $F_{r,i}(BB, x_i) \in \{0,1\}^s$ to BB

• [Assadi & N, 2021]: Every (k, R, s) protocol for k-Pointer Chasing, where Player i gets E_{k+1-i}, must have either $R \geq k$ or $s = \Omega(n/k^6)$