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Modeling Science

RNA Editing and the
Evolution of Parasites Chaotic Beetles

o M

Larry Simpson and Drmit A. Maslov

e On-line archives of document collections require better
organization. Manual organization is not practical.

e Our goal: To discover the hidden thematic structure with
hierarchical probabilistic models called topic models.

e Use this structure for browsing, search, and similarity.
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Modeling Science

Poisoning by ice-cream. RNA Editing and the

s ot Sebbrean which bave Evolution of Parasites Chaotic Beetles
ral po-

Larry Simpson and Drmit A. Maslov

Gharles Godtray and Michael Hassell

or with the gelatine there may bo introduced
milk a forment, by the growth of which a po

cream which T oxamined, none of the
ing 4. Thor,
of

the same poison which I had before found in poison-
ous cheese (Zeitschrift fiir physiologische chemie, x,

e Our data are the pages Science from 1880-2002 (from JSTOR)
¢ No reliable punctuation, meta-data, or references.
e Note: this is just a subset of JSTOR’s archive.
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Discover topics from a corpus
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Model the evolution of topics over time

"Theoretical Physics"

"Neuroscience"

1880 1900 1920 1940 1960 1980 2000

OXYGEN

[ T T T T T 1
1880 1900 1920 1940 1960 1980 2000

D. Blei

Modeling Science 4/53



Model connections between topics
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Outline

@ Introduction
@ Latent Dirichlet allocation
@® Dynamic topic models

@ Correlated topic models
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Probabilistic modeling

© Treat data as observations that arise from a generative
probabilistic process that includes hidden variables

o For documents, the hidden variables reflect the thematic
structure of the collection.

® Infer the hidden structure using posterior inference
« What are the topics that describe this collection?
@ Situate new data into the estimated model.

« How does this query or new document fit into the estimated
topic structure?
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Intuition behind LDA

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does anorganism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forlife.
One research team, using computer analy-

ses to compare known genomes, concluded
that today’s|OFgaRISIAY can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes

in a simple parasite and esti-

P Haemophil
mated that for this organism, gonome

y genes
800 genes are plenty todo the |

job—but that anything short e

of 100 wouldn’t be enough. in comimon
gene:

Although the numbers don't
match precisely, those predictions o
469 gene

* Genome Mapping and Sequenc- —
ing, Cold Spring Harbor, New York,
May 8 to 12

SCIENCE e VOL. 272 * 24 MAY 1996
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“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen-
sus answer may be more than just a generic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
plains

any newly sequenced genome,”
Arcady Mushegian, a computational mo-

"\ lecular biologist at the National Center

™\ for Biotechnology Information (NCBI)
) in Bethesda, Maryland. Comparing an

/ nd Re
X for 122 genes
\ v2zgenes T PN
| / a2 (Mo
/ | 250 genes |
/ Y \&igaA

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.
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Simple intuition: Documents exhibit multiple topics.
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Generative process

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not especially in
How many genes does a Sl negl to isol in the hu

* Genome Mapping and Sequenc -
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-

May 8o 12 mate of the minimum modern and ancient genomes.
SCIENCE » VOL. 272 « 24 MAY 199

Cast these intuitions into a generative probabilistic process
Each document is a random mixture of corpus-wide topics
Each word is drawn from one of those topics
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Generative process

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—  “are not especially in
How many genes does a Sl negl to isol in the hu

* Genome Mapping and Sequenc -
ing, Cold Spring Harbor, New York, Stripping down. Computer analysis yields an esti-

May 8o 12 mate of the minimum modern and ancient genomes.
SCIENCE » VOL. 272 « 24 MAY 199

e In reality, we only observe the documents
e Our goal is to infer the underlying topic structure

o What are the topics?
« How are the documents divided according to those topics?
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Graphical models (Aside)

Nodes are random variables

Edges denote possible dependence
Observed variables are shaded
Plates denote replicated structure
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Graphical models (Aside)

e Structure of the graph defines the pattern of conditional
dependence between the ensemble of random variables

e E.g., this graph corresponds to

N
Py, x1, ... xn) = py) [ [ pCxaly)

n=1
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Latent Dirichlet allocation

- Per-word
Dirichlet . X
topic assignment
parameter
Per-document Observed Topic
topic proportions word Topics hyperparameter

el
O+OFHO-@—O-+0

« bo | Zan Wan N Ok i
D K

Each piece of the structure is a random variable.
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Latent Dirichlet allocation
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© Draw each topic g; ~ Dir(y), forie {1,..., K}.

® For each document:

© Draw topic proportions 84 ~ Dir(a).

® For each word:
© Draw Z; , ~ Mult(by).
® Draw Wy p ~ Mult(B, ,)-
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Latent Dirichlet allocation

OHOFO- @O0

@ 04 Zan Wan N O i

e From a collection of documents, infer
« Per-word topic assignment z4
e Per-document topic proportions 64
e Per-corpus topic distributions B«
e Use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, etc.
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Latent Dirichlet allocation

OHOFO- @O0

@ 0q Zan Wan N O i
D K

e Computing the posterior is intractable:

p@ | a) [TV (20 10)p(Wn | 20, B1:k)
0@ 1) TN K, p(20|0)D(Wa | 20, B1:K)

e Several approximation techniques have been developed.
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Latent Dirichlet allocation

O -OFO—0

@ 04 Zan Wan N
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K
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Mean field variational methods (Blei et al., 2001, 2003)
Expectation propagation (Minka and Lafferty, 2002)
Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)

Collapsed variational inference (Teh et al., 2006)
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Example inference

Seeking Life’s Bare (Genetic) Necessities

o Data: The OCR’ed collection of Science from 1990—2000

« 17K documents
e 11M words
« 20K unique terms (stop words and rare words removed)

e Model: 100-topic LDA model using variational inference.
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Example inference

Seeking Life’s Bare (Genetic) Necessities
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Example topics

human evolution
genome evolutionary
dna species
genetic organisms
genes life
sequence origin
gene biology
molecular groups
sequencing  phylogenetic
map living
information diversity
genetics group
mapping new
project two
sequences common
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disease computer
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bacteria information
diseases data
resistance computers
bacterial system
new network
strains systems
control model
infectious parallel
malaria methods
parasite networks
parasites software
united new
tuberculosis simulations
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LDA summary

e LDA is a powerful model for
 Visualizing the hidden thematic structure in large corpora
« Generalizing new data to fit into that structure

e LDA is a mixed membership model (Erosheva, 2004) that builds
on the work of Deerwester et al. (1990) and Hofmann (1999).

e For document collections and other grouped data, this might be
more appropriate than a simple finite mixture
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LDA summary

Modular: 1t can be embedded in more complicated models.

e E.g., syntax and semantics; authorship; word sense
General: The data generating distribution can be changed.

e E.g., images; social networks; population genetics data
Variational inference is fast; lets us to analyze large data sets.

See Blei et al., 2003 for details and a quantitative comparison.

Code to play with LDA is freely available on my web-site,
http://www.cs.princeton.edu/~blei.
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LDA summary

e But, LDA makes certain assumptions about the data.
e When are they appropriate?
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@ Introduction
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LDA and exchangeability

OO0

@ ed Zd,n Wd n

D

B

(O—

K

e LDA assumes that documents are exchangeable.

e |l.e., their joint probability is invariant to permutation.

e This is too restrictive.
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Documents are not exchangeable

"Infrared Reflectance in Leaf-Sitting
Neotropical Frogs" (1977)

"Instantaneous Photography" (1890)

e Documents about the same topic are not exchangeable.
o Topics evolve over time.
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Dynamic topic model

e Divide corpus into sequential slices (e.g., by year).
e Assume each slice’s documents exchangeable.

o Drawn from an LDA model.
« Allow topic distributions evolve from slice to slice.
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Dynamic topic models
NG o) NG
0 () 0 () 0 ()
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Modeling evolving topics

5k,1 5k,2 ﬁk:,T
O O - O

e Use a logistic normal distribution to model evolving topics
(Aitchison, 1980)

o A state-space model on the natural parameter of the topic
multinomial (West and Harrison, 1997)

Bkl Btk ~ N(Br1k, lo?)
PWIp) = exp | —log(l + TV explfruh)]
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Posterior inference

Our goal is to compute the posterior distribution,

P(ﬁ1:T,1:K, 01:T,1:D, z1:T,1:D | w1:T,1:D)-

Exact inference is impossible
» Per-document mixed-membership model
» Non-conjugacy between p(w | S x) and p(B:.x)

MCMC is not practical for the amount of data.
Solution: Variational inference

D. Blei Modeling Science

26 /53



Science data

e Analyze JSTOR'’s entire collection from Science (1880-2002)

TECHVIEW: DNA S E QU E N C I NG

Sequencing the Genome, Fast

James C. Mullikin and Amanda A. McMurray

Genome sequencing projects reveal
the genetic makeup of an organism
by reading off the sequence of the
DNA bases, which encodes all of the infor-

mation necessary for the life of the organ-

ism. The base sequence contains four nu-
cleotides-adenine, thymidine, guanosine,
and cytosine-which are linked together
into long double-helical chains. Over the
last two decades, automated DNA se-
quencers have made the process of obtain-
ing the base-by-base sequence of DNA...

e Restrict to 30K terms that occur more than ten times
e The data are 76M words in 130K documents

D. Blei
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Analyzing a document

Original article Topic proportions

* < Tecmsicnr

L L
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Analyzing a document

Original article

uuuuuuuuuuuuuuuuuuuuu *

Sequencing the Genome, Fast

Most likely words from top topics

sequence devices
genome device
genes materials
sequences current
human high
gene gate

dna light
sequencing silicon
chromosome  material
regions technology
analysis electrical
data fiber
genomic power
number based
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network
web
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language
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system
words
algorithm
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Analyzing a topic

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam — electrical —®{ engineering — room —»| water [—¥{ mercury —¥ laboratory
two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motor room gas laboratory gas mercury
wire engine feet tube mercury small g,as
1950 1960 1970 1980 1990 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber | heat -»{ temperature |- system || applications | gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber control design large heat technology

D. Blei Modeling Science
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"Theoretical Physics"

Visualizing trends within a topic

"Neuroscience"

1880 1900 1920 1940 1960 1980 2000

OXYGEN

1880 1900 1920 1940 1960
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Time-corrected document similarity

Consider the expected Hellinger distance between the topic
proportions of two documents,

K
o = E [ZWT NALE w,}
k=1

Uses the latent structure to define similarity

Time has been factored out because the topics associated to the
components are different from year to year.

Similarity based only on topic proportions
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Time-corrected document

similarity

The Brain of the Orang (1880)

RN I .0 [ —

D. Blei
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Time-corrected document similarity

Representation of the Visual Field on the Medial Wall of
Occipital-Parietal Cortex in the Owl Monkey (1976)
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Browser of Science

Automatic Analysis, Theme
Generation, and Summarization
of Machine-Readable Texts

Global Text Matching for Information Retricval

Genarp SaLToN and Chkis Buckiey

An sppronch is outlined for the setseral of a age 1t i esponse 10
it e equees and fox the recopTiom of cotet bt beower, ¢
e

eystem appese 9 otperorm anhe currndy avalabl methods.

) 606 T s/ Users i/ dochumi
Gerard Salton, James Allan, Chris Buckley, Z =
=
s c
reas in accordance with user needs. In particular, meth( " . . .
mining toxt themes, raversing texts selectively. and extracting ‘Automatic Analysis, Theme Generation, and
reflect text content.
. hi dahl M
ization o R Texts" (1994)
Many kinds of texts are unn'mlv available  model of retrieval
mma(hlnc -readable fo am(aw amenable  model, all informaf TOPIC PROB
to automatic Nuumm, Because the avail-  as well as informa
‘I:‘I‘« databases are large sented by sets, o v| data computer system information network 0.30
different subject areas, auton is typically a word,
led 1o users interest associated with
the daca. iehas been suggessd dhatlinks be  ation. I princip information library text index libraries .19
placed between related pieces of text, con-
necting, v’m example, particular text para- two three four different single 0.16
graphs to other paragraphs covering related
subject matter. Such a linked rext struc-
ture, often called hypertext, makes it po«
sible for lhe reader to start with particular
text passages and use the linked st DOCUMENT SCORE
imd related text elements (1). Uumuumnc- SHALLOW,
uncll now, viable mehods or setomati. “Global Text Matching for Information Retrieval” (1991) 0.2570 e an
;u ghl hypertext structures ‘":l for ¢ 5 repres m‘ ok hem. o e s prodon
for |ng such stru in a sophisticat introduce 2 term-w “Autor - gy i A g
way have not been available. Here we give  signs high weights i« atic Text Analysts™(1970) 03110 o e By s ey e mecesary 1o soetie, o thin meict
vethods for constructing tex relation maps  and lowet weightst ;
e s 0 X“,l‘,’m.'n.f.‘l.‘..‘m “Gauging Similarity with n-Grams: Language-independent  0.3210
text databases. In pa e outline is -k Categorization of Text" (1995)
rr\\:edwo ﬁ\r dummumx text themes, tra-
rersing texts selectively, and extracting sum- Retrieval”
mary statements that reflect text content. ‘Developments fn/Automatic Text leval(1990) THE STORT ¥ PAMPHLETS.
: : . Ox reading Professor Minot's explanation of
Text Analysis and Retrieval: “Simple and Rapid Method for the Coding of Punched Cards’ 0.3610 Ihis method of storing pamphleta ns given in the
The Smart System (1962) lissue of December 30th I feel inclined to add a
he o s icted terr aen T o e ord in commendation of the method. 1 began
setieval ool eveloped over the past 30 D o (o “Data Processing by Optical Coincidence (1961) 0.4290 using these boxes six or seven years ago and
cars, that s bascd on the vector space  weight assigned fo ow have 152 upon my shelv
” ook space . welght igned o« “Pattern-Analyzing Memory” (1976) 0.4320 Ll ane dovotod 1o Faporiment Station bl
T R R e D S e s tweet irs of o |tins, um boxes L‘elug labeled by States and
nm u:mv, are in the Dopariment of Computer Sci- eR palss of ve) - Ll Th her half d
‘Comel Universty. Ithaca, NY 14853-7501, USA.  similarity. Thus, “The Storing of Pamphlets” (1899) 0.4440 he other half is use
for mmellaueous pamphlets on subjects pertaia-
1ENCE = VOl “A Punched-Card Technique for Computing Means, Standard 0,450 L“@\fﬁ e o wark. The hozes baro proved
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times the cost. My system of pamphlet arrange-

and for Listing Scattergrams” (1946)

ment differs in some ways from that adopted
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by Professor Minot and has been adopted only

after trial of several other methods.
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Quantitative comparison

o Compute the probability of each year's documents conditional on
all the previous year’s documents,

p(wtlw15"'3wf—1)

e Compare exchangeable and dynamic topic models
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Quantitative comparison

Per-word negative log likelihood

25

20

15

10

— LDA
— DTM
\
o \
- /\ .
N /,-h,\ -,
-e o—0-°" Te
.
T T T T T
1920 1940 1960 1980 2000

Year

D. Blei Modeling Science

36/53



@ Introduction
@ Latent Dirichlet allocation

® Dynamic topic models

O Correlated topic models




The hidden assumptions of the Dirichlet distribution

e The Dirichlet is an exponential family distribution on the simplex,
positive vectors that sum to one.

e However, the near independence of components makes it a poor
choice for modeling topic proportions.

e An article about fossil fuels is more likely to also be about
geology than about genetics.
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The logistic normal distribution

e The logistic normal is a distribution on the simplex that can
model dependence between components.

e The natural parameters of the multinomial are drawn from a
multivariate Gaussian distribution.

X ~ NK—'I(Iu: Z)
0 = exp{x,-—log(1+Z/.K:_11 exp{xj})}
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Correlated topic model (CTM)

%@*@Q‘ (O 5
g N | Ziw Wan K

D

e Draw topic proportions from a logistic normal, where topic
occurrences can exhibit correlation.

e Use for:

e Providing a “map” of topics and how they are related
 Better prediction via correlated topics

D. Blei Modeling Science
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Summary

e Topic models provide useful descriptive statistics for analyzing
and understanding the latent structure of large text collections.
e Probabilistic graphical models are a useful way to express
assumptions about the hidden structure of complicated data.
e Variational methods allow us to perform posterior inference to
automatically infer that structure from large data sets.
e Current research
« Choosing the number of topics
« Continuous time dynamic topic models
« Topic models for prediction
« Inferring the impact of a document
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“We should seek out unfamiliar summaries of observational material,
and establish their useful properties... And still more novelty can
come from finding, and evading, still deeper lying constraints.”

(John Tukey, The Future of Data Analysis, 1962)
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Supervised topic models (with Jon McAuliffe)

e Most topic models are unsupervised. They are fit by maximizing
the likelihood of a collection of documents.
o Consider documents paired with response variables.
For example:
e Movie reviews paired with a number of stars
o Web pages paired with a number of “diggs”
o We develop supervised topic models, models of documents and
responses that are fit to find topics predictive of the response.
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Supervised LDA

ot-ofc-e—HIo

@ 0o | Zan\ Wan N O i
N
o—0O
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© Draw topic proportions 6 | & ~ Dir(a).
® For each word
© Draw topic assignment z, |6 ~ Mult(#).
® Draw word w;, | z, f1:x ~ Mult(f;,).
©® Draw response variable y | .y, 7,02 ~ N(5" 2, 02), where

z=01/N)XN_ zn.
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Comments

e SLDA is used as follows.
e Fit coefficients and topics from a collection of
document-response pairs.
» Use the fitted model to predict the responses of previously
unseen documents,

E[Yl Wi.N, &, 181:K, 77,0-2] = ”TE[Zl WinN, @, ﬁ1:K]-

e The process enforces that the document is generated first,
followed by the response. The response is generated from the
particular topics that were realized in generating the document.
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Example: Movie reviews

{least ‘bad more fawful ihis boih
problem quys has ifeaturing ;| their motion
{unfortunately ‘watchable than routine i character simple
supposed iits films idry imany perfect
iworse not director offered i :while fascinating
iflat one will charlie :iperformance power
dull movie characters : i paris between complex
T T T T T 1
0 = 0 ihave not i %one ‘however 1 »
ilike iabout | ifrom cinematography
you movie: :there iscreenplay
was all which performances
just would: iwho ; pictures
some they much : effective
out its what picture

o We fit a 10-topic sSLDA model to movie review data (Pang and
Lee, 2005).

e The documents are the words of the reviews.

« The responses are the number of stars associated with
each review (modeled as continuous).

o Each component of coefficient vector 7 is associated with a topic.
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Simulations

Predictive R2
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Diversion: Variational inference

e Let xq.y be observations and zy.y be latent variables
e Our goal is to compute the posterior distribution

p(Z1:m, X1:N)
fp(z1:M, X1:N)dz1:M

p(zim | X1:N) =

e For many interesting distributions, the marginal likelihood of the
observations is difficult to efficiently compute
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Variational inference

e Use Jensen’s inequality to bound the log prob of the
observations:

log p(x1.n) > Eg,[log p(z1.m, X1:n)] — Eq, [0 v (Z1:m)].

o We have introduced a distribution of the latent variables with free
variational parameters v.

e We optimize those parameters to tighten this bound.

e This is the same as finding the member of the family g, that is
closest in KL divergence to p(z1.m | X1:n)-
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Mean-field variational inference

e Complexity of optimization is determined by factorization of g,
e In mean field variational inference q, is fully factored

M
G (Zim) = [ | Qum(@m).
m=1

e The latent variables are independent.
e Each is governed by its own variational parameter v,.

¢ In the true posterior they can exhibit dependence
(often, this is what makes exact inference difficult).
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MFVI and conditional exponential families

e Suppose the distribution of each latent variable conditional on
the observations and other latent variables is in the exponential
family:

P(Zm | Z-m, X) = hn(Zm) exp{gm(Z_m, X) sz — am(9i(Z—m, X))}

e Assume g, is fully factorized and each factor is in the same
exponential family:

Qo (Zm) = hm(Zm) exp{v,f,zm — am(vm)}
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MFVI and conditional exponential families

 Variational inference is the following coordinate ascent algorithm

Vm = Eq.; [gm(z—m> X)]

« Notice the relationship to Gibbs sampling

D. Blei Modeling Science 52/53



Variational family for the DTM

Br.1 B2 Br,r

O
i M

v
Br1

Distribution of 8 and z is fully-factorized (Blei et al., 2003)
Distribution of {f1«, ..., 1.k} is a variational Kalman filter
Gaussian state-space model with free observations fy ;.

Fit observations such that the corresponding posterior over the
chain is close to the true posterior.

D. Blei Modeling Science 53/53



Variational family for the DTM

Br B2 BT
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e Given a document collection, use coordinate ascent on all the
variational parameters until the KL converges.

e Yields a distribution close to the true posterior of interest
o Take expectations w/r/t the simpler variational distribution
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