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Probabilistic topic models

As more information becomes
available, it becomes more difficult
to find and discover what we need.

We need new tools to help us
organize, search, and understand
these vast amounts of information.




Probabilistic topic models

Topic modeling provides methods for automatically organizing, understanding,
searching, and summarizing large electronic archives.

© Discover the hidden themes that pervade the collection.
@ Annotate the documents according to those themes.

@ Use annotations to organize, summarize, and search the texts.
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Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo
Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics
Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo
Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation
Diagnosing convergence of Markov chain Monte Carlo algorithms

(°t) WIa

Exact Bound for the Convergence of Metropolis Chains
Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo
Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables
A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC
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Probabilistic topic models

e What are topic models?

e What kinds of things can they do?

e How do | compute with a topic model?

e How do | evaluate and check a topic model?

e What are some unsanswered questions in this field?

e How can | learn more?



Probabilistic topic models

Topic modeling is a case study in probabilistic modeling. It touches on

e Directed graphical models

e Conjugate priors and nonconjugate priors

e Time series modeling

e Modeling with graphs

e Hierarchical Bayesian methods

e Approximate posterior inference (MCMC, variational methods)
e Exploratory and descriptive data analysis

e Model selection and Bayesian nonparametric methods

e Mixed membership models

e Prediction from sparse and noisy inputs



If you remember one picture...

Make assumptions
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Organization

Introduction to topic modeling: Latent Dirichlet allocation

Beyond latent Dirichlet allocation

e Posterior computation with scalable variational inference

Model diagnostics with posterior predictive checks

Discussion, open questions, and resources



Some caveats

e This is a curated view of the field—we skip a lot of important ideas.
o Gibbs sampling
e Bayesian nonparametrics

e We focus on examples from our research group.

e To declutter, most references appear at the end. (Except, not yet.)



Introduction to Topic Modeling



Latent Dirichlet allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an[Organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forlife:
One research team, using computer analy

ses to compare known genomes, concluded
that today’'sjorganisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 venes. The e
other researcher mapped genes /
in a simple parasite and esti-  /
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t be enough.
Although the numbers don't
match precisely, those predictions

>~

Haemophilus
genome

1703 genes

Hycoplasma

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE ¢ VOL * 24 MAY 1996

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
80C number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of organizing
any newly sequenced explains
Arcady Mushegian, a computational mo-
lecular biologist at the National Center
Information (NCBI)

<]
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\ Z2genes oo
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Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

Simple intuition: Documents exhibit multiple topics.



Latent Dirichlet allocation (LDA)
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e Each topic is a distribution over words
e Each document is a mixture of corpus-wide topics

e Each word is drawn from one of those topics



Latent Dirichlet allocation (LDA)
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Topics Documents .
P assignments
Seeking Life’s Bare (Genetic) Necessities
COLD SPRING HARBOR, NEW YORK— ar 1l th:
/
/
/ * Genome Mapping and S ~——
ing, G Sprin Haroor, New ok, Stripping down. Computer anaisis 1ias an e
ey ato mate o1 tho mimimum odom and andient genomes.
L
b |
/

e In reality, we only observe the documents

e The other structure are hidden variables



Latent Dirichlet allocation (LDA)

. Topic proportions and
Topics Documents pic prop
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e QOur goal is to infer the hidden variables
l.e., compute their distribution conditioned on the documents

p(topics, proportions, assignments |documents)



LDA as a graphical model

Per-word

Proportions . .
topic assignment

parameter
Per-document Observed i Topic
topic proportions word Topics  parameter
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e Encodes assumptions
e Defines a factorization of the joint distribution

e Connects to algorithms for computing with data



LDA as a graphical model

Per-word

Proportions . .
topic assignment
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e Nodes are random variables; edges indicate dependence.
e Shaded nodes are observed.

e Plates indicate replicated variables.



LDA as a graphical model
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LDA as a graphical model
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e This joint defines a posterior.

e From a collection of documents, infer
o Per-word topic assignment z4,,
e Per-document topic proportions 64
o Per-corpus topic distributions By

e Then use posterior expectations to perform the task at hand, e.g.,
information retrieval, document similarity, exploration, ...



LDA as a graphical model
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Approximate posterior inference algorithms

e Mean field variational methods (Blei et al., 2001, 2003)
Expectation propagation (Minka and Lafferty, 2002)
Collapsed Gibbs sampling (Griffiths and Steyvers, 2002)
Collapsed variational inference (Teh et al., 2006)
Online variational inference (Hoffman et al., 2010)

Also see Mukherjee and Blei (2009) and Asuncion et al. (2009).



Example inference

e Data: The OCR’ed collection of Science from 1990-2000

e 17K documents
e 11M words
e 20K unique terms (stop words and rare words removed)

e Model: 100-topic LDA model using variational inference.
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Example inference
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Aside: The Dirichlet distribution

e The Dirichlet distribution is an exponential family distribution over the
simplex, i.e., positive vectors that sum to one

I (A
p(01d) = —H(Zr(ag [Tor

e |t is conjugate to the multinomial. Given a multinomial observation, the
posterior distribution of @ is a Dirichlet.

e The parameter a controls the mean shape and sparsity of 6.

e The topic proportions are a K dimensional Dirichlet.
The topics are a V dimensional Dirichlet.
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Why does LDA “work”?

e Word probabilities are maximized by dividing the words among the topics.
(More terms means more mass to be spread around.)

e In a mixture, this is enough to find clusters of co-occurring words.

e In LDA, the Dirichlet on the topic proportions can encourage sparsity, i.e., a
document is penalized for using many topics.

e Loosely, this can be thought of as softening the strict definition of
“co-occurrence” in a mixture model.

e This flexibility leads to sets of terms that more tightly co-occur.



LDA summary
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e LDA is a probabilistic model of text. It casts the problem of discovering
themes in large document collections as a posterior inference problem.

e |t lets us visualize the hidden thematic structure in large collections, and
generalize new data to fit into that structure.

o Builds on latent semantic analysis (Deerwester et al., 1990; Hofmann, 1999)
It is mixed membership model (Erosheva, 2004).
It relates to PCA and matrix factorization (Jakulin and Buntine, 2002)
Was independently invented for genetics (Pritchard et al., 2000)



LDA summary

{e

s

' A Parse trees
@ grouped info M
documents

%

:‘/O\‘o oﬂg y

©

e Organizing and finding patterns in data has become important in the
sciences, humanties, industry, and culture.

e LDA can be embedded in more complicated models that capture richer
assumptions about the data.

e Algorithmic improvements let us fit models to massive data.



Example: LDAInR (Jonathan Chang)

perspective identifying tumor suppressor genes in human...
letters global warming report leslie roberts article global....
research news a small revolution gets under way the 1990s....
a continuing series the reign of trial and error draws to a close...
making deep earthquakes in the laboratory lab experimenters...
quick fix for freeways thanks to a team of fast working...
feathers fly in grouse population dispute researchers...

245 1897:1 1467:1 1351:1 731:2 800:5 682:1 315:6 3668:1 14:1
260 4261:2 518:1 271:6 2734:1 2662:1 2432:1 683:2 1631:7

279 2724:1 107:3 518:1 141:3 3208:1 32:1 2444:1 182:1 250:1
266 2552:1 1993:1 116:1 539:1 1630:1 855:1 1422:1 182:3 2432:1
233 1372:1 1351:1 261:1 501:1 1938:1 32:1 14:1 4067:1 98:2
148 4384:1 1339:1 32:1 4107:1 2300:1 229:1 529:1 521:1 2231:1
193 569:1 3617:1 3781:2 14:1 98:1 3596:1 3037:1 1482:12 665:2

docs <- read.documents("mult.dat")
K <- 20

alpha <- 1/20
eta <- 0.001
model <- lda.collapsed.gibbs.sampler(documents, K, vocab, 1000, alpha, eta)
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Beyond Latent Dirichlet Allocation



Extending LDA
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LDA is a simple topic model
Can be used to find topics that describe a corpus
Each document exhibits multiple topics

How can we build on this simple model of text?




Extending LDA

Make assumptions
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Collect data

Infer the posterior

Predict
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Extending LDA
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e LDA can be embedded in more complicated models, embodying further
intuitions about the structure of the texts.

e E.g., used in models that also account for syntax, authorship, word sense,
dynamics, correlation, hierarchies, ...



Extending LDA
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e The data generating distribution can be changed, allowing us to apply
mixed-membership assumptions to many kinds of data.

e E.g., can be adapted to images, social networks, music, purchase histories,
computer code, genetic data, click-through-data, neural spike trains, ...




Extending LDA

grouped into M
documents

L

@ Parse trees
oo

e The posterior can be used in creative ways.
e E.g., for IR, recommendation, document similarity, visualization, ...

e (For now, we will assume that we can compute the posterior.)



Extending LDA

e These different kinds of extensions can be combined.

e (Really, these ways of extending LDA are a big advantage of using
probabilistic modeling to analyze data.)

e To give a sense of how LDA can be extended, I'll describe several
examples of extensions that my group has worked on.

e |n this section we will discuss

o Correlated topic models

e Dynamic topic models & measuring scholarly impact
e Supervised topic models

Relational topic models

Ideal point topic models



Correlated topic models

e The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.
e |t assumes that components are nearly independent.

* Inreal data, an article about fossil fuels is more likely to also be about
geology than about genetics.



Correlated topic models

e The logistic normal is a distribution on the simplex that can model
dependence between components (Aitchison, 1980).

e The log of the parameters of the multinomial are drawn from a multivariate
Gaussian distribution,

X ~ JVK_1([,L,Z)
0 o« expi{x}.



Correlated topic models
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Noconjugate prior
on topic proportions

e Draw topic proportions from a logistic normal

This allows topic occurrences to exhibit correlation.

Provides a “map” of topics and how they are related

Provides a better fit to text data, but is more complex to compute with
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Dynamic topic models

1789 2009

Inaugural addresses
My fellow citizens: I stand here today humbled by the task AMONG the vicissitudes incident to life no event could
before us, grateful for the trust you have bestowed, mindful have filled me with greater anxieties than that of which
of the sacrifices borne by our ancestors... the notification was transmitted by your order...

e LDA assumes that the order of documents does not matter.
e Not appropriate for corpora that span hundreds of years

e We may want to track how language changes over time.



Dynamic topic models
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Dynamic topic models
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e Use a logistic normal distribution to model topics evolving over time.

e Embed it in a state-space model on the log of the topic distribution

Bkl Bi—1x ~ N (Bi—1x lo?)
p(w|Bik) o exp{Bik}

e As for CTMs, this makes computation more complex. But it lets us make
inferences about sequences of documents.
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Dynamic topic models

Original article Most likely words from top topics
..................... ® sequence devices data
Sequencing the Genome, Fast genome device information

genes materials network
sequences current web
human high computer
gene gate language
dna light networks
sequencing silicon time
chromosome  material software
regions technology  system
analysis electrical words
data fiber algorithm
genomic power number

number based internet



Dynamic topic models

1880 1890 1900 1910 1920 1930 1940
electric electric apparatus air apparatus tube air
machine power steam water tube apparatus tube
power company power engineering air glass apparatus
engine steam engine apparatus pressure air glass
steam — electrical —¥{ engineering —| room —»| water —#| mercury —| laboratory
two machine water laboratory glass laboratory rubber
machines two construction engineer gas pressure pressure
iron system engineer made made made small
battery motor room gas laboratory gas mercury
wire engine feet tube mercury small g,as
1950 1960 1970 1980 1990 2000
tube tube air high materials devices
apparatus system heat power high device
glass temperature power design power materials
air air system heat current current
chamber | heat | temperature | system || applications || gate
instrument chamber chamber systems technology high
small power high devices devices light
laboratory high flow instruments design silicon
pressure instrument tube control device material
rubber control design large heat technology




Dynamic topic models

"Theoretical Physics™

"Neuroscience"

1880 1900 1920 1940 1960 1980 2000

OXYGEN

1880 1900 1920 1940 1960 1980 2000




Dynamic topic models

e Time-corrected similarity shows a new way of using the posterior.

e Consider the expected Hellinger distance between the topic proportions of
two documents,

K

o= | > (/B VT
k=1

e Uses the latent structure to define similarity

e Time has been factored out because the topics associated to the
components are different from year to year.

e Similarity based only on topic proportions
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Dynamic topic models

Representation of the Visual Field on the Medial Wall
of Occipital-Parietal Cortex in the Owl Monkey (1976)




Measuring scholarly impact

Einstein's
Theory of Relativity
g Relativity paper #1
S, Relativity paper #3
,g Relativity paper #2
Relativity paper #4
My crackpot theory

History of Science

We built on the DTM to measure scholarly impact with sequences of text.

Influential articles reflect future changes in language use.

The “influence” of an article is a latent variable.

Influential articles affect the drift of the topics that they discuss.

The posterior gives a retrospective estimate of influential articles.



Measuring scholarly impact
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Measuring scholarly impact

’ ?
ZMQ e Each document has an influence score /.

e Each topic drifts in a way that is biased towards the
Wan l documents with high influence.

e We can examine the posterior of the influence
I scores to retrospectively find articles that best
Q’~ explain the changes in language.
\




Measuring scholarly impact
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e This measure of impact only uses the words of the documents.
It correlates strongly with citation counts.

e High impact, high citation: “The Mathematics of Statistical Machine
Translation: Parameter Estimation” (Brown et al., 1993)

e “Low” impact, high citation: “Building a large annotated corpus of English:
the Penn Treebank” (Marcus et al., 1993)



Measuring scholarly impact

Derek E. Wildman et al., Implications of Natural Selection in Shaping 99.4% Nonsynonymous
DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo, PNAS (2003)
[178 citations]

0030~
Jared M. Diamond, Distributional Ecology of New Guinea Birds. Science (1973)
0025~ 296 citations]
8
§ oo~
E William K. Gregory, The New Anthropogeny: Twenty-Five Stages of
3 oots- Vertebrate Evolution, from Silurian Chordate to Man, Science (1933)
b= 3 citations]
5 . s
g '
= oot0- \ . DRI H

0.005-

0.000- cibeseseisestoblsninnibinatl

1920 1940 1960 1980 2000

1850
W. B. Scott, The lsthmus of Panama in Its Relation to the Animal Life of North and South AmeXéa. Science (1916)
[3 citations]

e PNAS, Science, and Nature from 1880—2005
e 350,000 Articles
e 163M observations

e Year-corrected correlation is 0.166



Summary: Correlated and dynamic topic models

e The Dirichlet assumptions on topics and topic proportions makes strong
conditional independence assumptions about the data.

e The correlated topic model uses a logistic normal on the topic
proportions to find patterns in how topics tend to co-occur.

e The dynamic topic model uses a logistic normal in a linear dynamic
model to capture how topics change over time.

e What's the catch? These models are harder to compute with. (Stay tuned.)



Supervised LDA

e LDA is an unsupervised model. How can we build a topic model that is
good at the task we care about?

e Many data are paired with response variables.
e User reviews paired with a number of stars
e Web pages paired with a number of “likes”
e Documents paired with links to other documents
e Images paired with a category

e Supervised LDA are topic models of documents and responses, fit to find
topics predictive of the response.



Supervised LDA
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© Draw topic proportions 6 | & ~ Dir(a).
® For each word

« Draw topic assignment z,| 6 ~ Mult(9).
 Draw word wy | z,, B1:x ~ Mult(S,,).

© Draw response variable y | zy.n, 1,02 ~ N(nTZ 02), where

z=(1/N)YN_, z,.



Supervised LDA

e Fit sLDA parameters to documents and responses.
This gives: topics B1.x and coefficients 11.x.
e Given a new document, predict its response using the expected value:

E |:Y|W12N)a,ﬂ1ZK!n!O-2] :T]TE[2|W1:N]

e This blends generative and discriminative modeling.



Supervised LDA

: least ; bad more awful ihis i both
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e 10-topic sSLDA model on movie reviews (Pang and Lee, 2005).
e Response: number of stars associated with each review

e Each component of coefficient vector 1) is associated with a topic.
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Supervised LDA

O+OFQ-@

a 9(1 Zd,n Wd,7

"N

N

o

Yy

D

e SLDA enables model-based regression where the predictor is a document.

e |t can easily be used wherever LDA is used in an unsupervised fashion

(e.g., images, genes, music).

e SLDA is a supervised dimension-reduction technique, whereas LDA

performs unsupervised dimension reduction.

e SLDA has been extended to generalized linear models, e.g., for image
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classification and other non-continuous responses.



Supervised LDA
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We will discuss two extensions of sLDA

e Relational topic models

e |deal point topic models

n,o*




Relational topic models

e Many data sets contain connected observations.

e For example:
o Citation networks of documents
e Hyperlinked networks of web-pages.
o Friend-connected social network profiles



Relational topic models

e Research has focused on finding communities and patterns in the
link-structure of these networks.

e We adapted sLDA to pairwise response variables.
This leads to a model of content and connection.

e Relational topic models find related hidden structure in both types of data.



Relational topic models

Per-pair binary
n link variable

0; Q
/@‘\ : v
Yij

5]6 U This structure is repeated
for all pairs of documents
K B

e Adapt fitting algorithm for sLDA with binary GLM response

e RTMs allow predictions about new and unlinked data.
e These predictions are out of reach for traditional network models.



Relational topic models

Markov chain Monte Carlo convergence diagnostics: A comparative review

Minorization conditions and convergence rates for Markov chain Monte Carlo
Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics
Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo
Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation
Diagnosing convergence of Markov chain Monte Carlo algorithms

(°p) WI™

Exact Bound for the Convergence of Metropolis Chains
Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo
Gibbs-markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables
A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

uorssaadoy + vdT

Given a new document, which documents is it likely to link to?




Relational topic models

Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations
A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning
Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms
A promising genetic algorithm approach to job-shop scheduling. ..
Evolutionary Module Acquisition
An Empirical Investigation of Multi-Parent Recombination Operators. ..

(P) W™

A New Algorithm for DNA Sequence Assembly
Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms
A promising genetic algorithm approach to job-shop scheduling. ..
A genetic algorithm for passive management
The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search
Mutation rates as adaptations

uoissaa3oy + VAT

Given a new document, which documents is it likely to link to?




Ideal point topic models
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e The ideal point model uncovers voting patterns in legislative data
e We observe roll call data v;.

e Bills attached to discrimination parameters g;.
Senators attached to ideal points x;.
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e Posterior inference reveals the political spectrum of senators

e Widely used in quantitative political science.



Ideal point topic models
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e We can predict a missing vote.
e But we cannot predict all the missing votes from a bill.
o Cf. the limitations of collaborative filtering



Ideal point topic models
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predicted

discrimination

e Use supervised LDA to predict bill discrimination from bill text.

e But this is a latent response.



Ideal point topic models
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Ideal point topic models

tax credit,budget authority,energy,outlays tax - @
county eligible,ballot,election,jurisdiction - .
bank transfer,requires, holding company,industrial - .
housing,mortgage,loan,family,recipient - L]
energy,fuel,standard,administrator,lamp - .
student, loan,institution,lender,school - °
medicare,medicaid,child,chip,coverage -
defense,irag,transfer,expense,chapter -
business,administrator,bills,business concern,loan -
trar ion,rail,railroad, security -

coverbills bridge transaction, following -
bills tax,subparagraph,loss,taxable - [ ]
loss,crop,producer,agriculture,trade - .
head,start,child,technology,award - [ )
computer,alien,bills,user,collection - °
science,director,technology, mathematics, bills - [ ]
coast guard,vessel,space,administrator,requires ~ L]
child,center,poison,victim,abuse - [ ]
land,site,bills,interior, river - [ ]
energy,bills, price,commodity,market - °
surveillance,director,court,electronic,flood - [ ]
child fire,attorney, internet,bills - [ ]
drug,pediatric,product,device,medical - L]
human,vietnam,united nations,call,people - [ ]
bills,iran, official,company,sudan - °
coin,inspector,designee,automobile,lebanon - [ )
producer,eligible,crop,farm,subparagraph - .
people,woman,american,nation,school - .
veteran,veterans, bills, care,injury - [}
dod,defense,defense and appropriation, military,subtitle - o

In addition to senators and bills, IPTM places topics on the spectrum.



Summary: Supervised topic models

e Many documents are associated with response variables.

e Supervised LDA embeds LDA in a generalized linear model that is
conditioned on the latent topic assignments.

¢ Relational topic models use sLDA assumptions with pair-wise responses
to model networks of documents.

o lIdeal point topic models demonstrates how the response variables can
themselves be latent variables. In this case, they are used downstream in a
model of legislative behavior.

e (SLDA, the RTM, and others are implemented in the R package “Ida.”)



Still other ways to build on LDA

New applications—
e Syntactic topic models
e Topic models on images
e Topic models on social network data
e Topic models on music data

e Topic models for recommendation systems

Testing and relaxing assumptions—
e Spike and slab priors
e Models of word contagion

e N-gram topic models



Posterior Inference



Posterior inference

Make assumptions

CHS-8-O0)]

I~~~

Collect data

Infer the posterior

Predict

e We can express many kinds of assumptions.

e How can we analyze the collection under those assumptions?

Explore




Posterior inference
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e Posterior inference is the main computational problem.
e Inference links observed data to statistical assumptions.

e Inference on large data is crucial for topic modeling applications.



Posterior inference
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e Qur goal is to compute the distribution of the hidden variables conditioned
on the documents

p(topics, proportions, assignments |documents)



Posterior inference for LDA

OHOHO-@—H0—+0
L | Za Waw o | B |
D K

e The joint distribution of the latent variables and documents is

l_[,K:1 p(ﬁf I T’) ng‘l p(ed | a) (l_[rl\;lz1 p(zd,n I gd)p(wd,n | ﬁ1:Ky Zd,n)) .

e The posterior of the latent variables given the documents is

p(B,0,z|w).



Posterior inference for LDA

O~O1O—0 O
o/
a bo | Zan Wan O
N D K
e This is equal to
p(B,6,2,w)

[ 1o 22p(B.0.2w)

* We can't compute the denominator, the marginal p(w).

e This is the crux of the inference problem.



Posterior inference for LDA
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e There is a large literature on approximating the posterior, both within topic
modeling and Bayesian statistics in general.

o We will focus on mean-field variational methods.

e We will derive stochastic variational inference, a generic approximate
inference method for very large data sets.



Stochastic variational inference

e We want to condition on large data sets and approximate the posterior.

e |n variational inference, we optimize over a family of distributions to find
the member closest in KL divergence to the posterior.

e Variational inference usually results in an algorithm like this:
e Infer local variables for each data point.
e Based on these local inferences, re-infer global variables.
¢ Repeat.



Stochastic variational inference

e This is inefficient. We should know something about the global structure
after seeing part of the data.

e And, it assumes a finite amount of data. We want algorithms that can
handle data sources, information arriving in a constant stream.

e With stochastic variational inference, we can condition on large data and
approximate the posterior of complex models.



Stochastic variational inference

e The structure of the algorithm is:

Subsample the data—one data point or a small batch.

Infer local variables for the subsample.

Update the current estimate of the posterior of the global variables.
Repeat.

e This is efficient—we need only process one data point at a time.

e We will show: Just as easy as “classical” variational inference



Stochastic variational inference for LDA

5

O

Sample one document Analyze it Update the model

@ Sample a document wy from the collection

@ Infer how wy exhibits the current topics

©® Create “fake” topics, formed as though the wy is the only document
@ Adjust the current topics according to the fake topics.

O Repeat.



Stochastic variational inference for LDA

Online 98K
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850 -
>80 . »
£ Online 3.3M ™ Batch 88K
b 750 -
2700 -
[0
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600 -
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1038 10 10%5 10° 1058 108 1088
Documents seen (log scale)
Documents 2048 4096 8192 12288 16384 32768 49152 65536
analyzed
systems systems service service service business business business
road health systems systems companies  service service industry
made  communication health companies systems companies companies service
Top eight service service companies  business  business industry industry companies
words announced billion market company company  company services services
national language  communication  billion industry management company company
west care company health market systems  management management
language road billion industry billion services public public



Stochastic variational inference for LDA
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Sample one document Analyze it Update the model

We have developed stochastic variational inference algorithms for
e Latent Dirichlet allocation

e The hierarchical Dirichlet process

The discrete infinite logistic normal

Mixed-membership stochastic blockmodels

Bayesian nonparametric factor analysis

Recommendation models and legislative models



Organization

Describe a generic class of models

Derive mean-field variational inference in this class

Derive natural gradients for the variational objective

Review stochastic optimization

Derive stochastic variational inference



Organization
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e We consider a generic model.

e Hidden variables are local or global.

e We use variational inference.

e Optimize a simple proxy distribution to be close to the posterior
o Closeness is measured with Kullback-Leibler divergence

e Solve the optimization problem with stochastic optimization.
o Stochastic gradients are formed by subsampling from the data.



Generic model
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The observations are x = xq:p.

The local variables are z = z.j,.

Th global variables are f3.

The ith data point x; only depends on z; and f3.

Our goal is to compute p(f,z|x).



Generic model
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e A complete conditional is the conditional of a latent variable given the
observations and other latent variable.

e Assume each complete conditional is in the exponential family,

p(zilB.x) = h(z)expine(B.x) zi—a(ne(B,x))}
p(Blz,x) = h(B)exping(z,x)" B —a(ng(z x))}.



Generic model
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Bayesian mixture models

Dirichlet process mixtures, HDPs

e Time series models Multilevel regression
(variants of HMMs, Kalman filters) (linear, probit, Poisson)

Factorial models Stochastic blockmodels

Matrix factorization Mixed-membership models
(e.g., factor analysis, PCA, CCA) (LDA and some variants)



Mean-field variational inference
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e Introduce a variational distribution over the latent variables q(f3, z).

e We optimize the evidence lower bound (ELBO) with respect to q,

log p(x) = Eqg[logp(8, Z, x)] — Eq[log a(B, Z)].

e Up to a constant, this is the negative KL between g and the posterior.




Mean-field variational inference
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» We specify g(3, z) to be a fully factored variational distribution,

a(B.2)=q(BINIT_, a(zil¢)).

e Each instance of each variable has its own distribution.
e Each component is in the same family as the model conditional,
p(Blz,x) = h(B)exping(z x)" B —a(ng(zx))}
a(B12) = h(B)expi2! B —a(2)}

(And, same for the local variational parameters.)




Mean-field variational inference
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e We optimize the ELBO with respect to these parameters,
£ (2, 91:n) =Eqllogp(, Z, x)] — Eqllog a(, Z)].
» Same as finding the q(3, z) that is closest in KL divergence to p(f, z| x)

e The ELBO links the observations/model to the variational distribution.



Mean-field variational inference
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e Coordinate ascent: Iteratively update each parameter, holding others fixed.

e With respect to the global parameter, the gradient is
Vit =d'(2)(Ep[ng(Z,x)| - A).

This leads to a simple coordinate update
A =Ey [ng(Z,x)} .

e The local parameter is analogous.



Mean-field variational inference

Initialize A randomly.
Repeat until the ELBO converges

© For each data point, update the local variational parameters:

0 =B, n[ne(B,x)] forieft,....n}.

@ Update the global variational parameters:
/1([) = E¢)(f) [T]g(Z1 :m X1 :n)]-




Mean-field variational inference for LDA
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e Document variables: Topic proportions 6 and topic assignments z;. .
e Corpus variables: Topics f1.x
e The variational distribution is

D N

K
Q(ﬁ’e’z):n (Bx1 k) l_[q (6al74a) l_[q(Zd,n|¢d,n)
k=1 n=1

d=1



Mean-field variational inference for LDA
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e In the “local step” we iteratively update the parameters for each document,
holding the topic parameters fixed.

7’(H_1) = a+22':1¢5t)
¢r(7t+1) - exp{Eq[bgH]—I—Eq[|ogﬁ4,wn]}'



Mean-field variational inference for LDA

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an organism need to
survive? Last week at the genome mecting
here,* two genome rescarchers with radically
different approaches presented complemen-
tary views of the hasic genes needed for life
One research team, using computer analy
ses to compare known genomes, concluded
that today’s organisms can he sustained with
just 250 enes, and that the earliest life forms

required a mere 128

other rescarcher mapped
in a simple parasite and esti
mated that for this organism,
800 genes are plenty to do the
job—but that anything short
of 100 wouldn’t he enough

Although the numbers don't
match precisely, those predictions
* Genome Mapping and Sequenc-
ing. Cold Spring Harbor, New York,
May 8to 12

SCIENCE » VOL
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“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
800 number. But coming up with a consen
sus answer may be more than just a genetic
numbers game, particularly as more and
more genomes are completely mapped and
sequenced. “It may be a way of o

nizing

any newly sequenc
Arcady Mush

genome,” explains

1n, a computational mo

N lecular biologist at the National Center

A\ for Biotechnology Information (NCBI)

L in Bethesda, Maryland. Comparing an

\ S
— @

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes

—
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Mean-field variational inference for LDA
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e In the “global step” we aggregate the parameters computed from the local
step and update the parameters for the topics,

Ak=1 +ZZ Wa,n@d,n-
d n



Mean-field variational inference for LDA

human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united

tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations



Mean-field variational inference for LDA

1: Initialize topics randomly.

2: repeat

3: for each document do

4 repeat

5 Update the topic assignment variational parameters.
6: Update the topic proportions variational parameters.
7 until document objective converges

8: end for

9:  Update the topics from aggregated per-document parameters.
10: until corpus objective converges.




Mean-field variational inference

Initialize A randomly.
Repeat until the ELBO converges

© Update the local variational parameters for each data point,

0 =B, n[ne(B,x)] forieft,....n}.

@ Update the global variational parameters,
A(t) = E¢)(f) [T]g(Z1 :m X1 :n)]-

e Note the relationship to existing algorithms like EM and Gibbs sampling.

e But we must analyze the whole data set before completing one iteration.



Mean-field variational inference

Initialize A randomly.
Repeat until the ELBO converges

© Update the local variational parameters for each data point,

0 =B, n[ne(B,x)] forieft,....n}.

@ Update the global variational parameters,
A(t) = E¢)(f) [T]g(Z1 :m X1 :n)]-

To make this more efficient, we need two ideas:
e Natural gradients

e Stochastic optimization



The natural gradient

]

q
—%— gradient
—6— Riemannian gradient

(from Honkela et al., 2010)

e In natural gradient ascent, we premultiply the gradient by the inverse of a
Riemannian metric. Amari (1998) showed this is the steepest direction.

e For distributions, the Riemannian metric is the Fisher information.



The natural gradient

R A () B

ELBO

n

¢ In the exponential family, the Fisher information is the second derivative of
the log normalizer,
9 'z G=4'(}).

e So, the natural gradient of the ELBO is
V0¥ = Ey[ng(Z,x)] = A.

e We can compute the natural gradient by computing the coordinate updates
in parallel and subtracting the current variational parameters.



Stochastic optimization

A STOCHASTIC APPROXIMATION METHOD'
By HerBERT RoBBINS AND SuTToN MoONRO

University of North Carolina
1. Summary. Let M (z) denote the expected value at level z of the response
to a certain experiment. M (z) is assumed to be a monotone function of z but is
unknown to the experimenter, and it is desired to find the solution z = 6 of the
equation M(z) = a, where « is a given constant. We give a method for making

successive experiments at levels x; , 2, , - - - in such a way that z, will tend to 6 in
probability.

e Why waste time with the real gradient, when a cheaper noisy estimate of
the gradient will do (Robbins and Monro, 1951)?

e |dea: Follow a noisy estimate of the gradient with a step-size.

e By decreasing the step-size according to a certain schedule, we guarantee
convergence to a local optimum.



Stochastic optimization

RB A () B

ELBO
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We will use stochastic optimization for global variables.

Let V% be a realization of a random variable whose expectation is V. .Z .

Iteratively set 20 — 2(t-1) ¢ €Vl

This leads to a local optimum when
Y e = ©
=11

Zf;e? < o0

Next step: Form a noisy gradient.



A noisy natural gradient

R A e B

ELBO

n

n

e We need to look more closely at the conditional distribution of the global
hidden variable given the local hidden variables and observations.

e The form of the local joint distribution is
p(zi,xi| B) = h(zi, x;) expiB T (zi, xi) — a( B)}.
This means the conditional parameter of f is
Ng(z1:n X1:0) = (a1 + 27:1 (zi, x;), a2 + n).

e See the discussion of conjugacy in Bernardo and Smith (1994).



A noisy natural gradient

e With local and global variables, we decompose the ELBO
% =E[logp(B)] —Ellog q()] + X, Ellog p(z: xi| B)] — E[log g(2)]

e Sample a single data point t uniformly from the data and define
£ =E[logp(B)] —Ellogq(B)] + n(E[logp(z:, x| )] — E[log g(z:)]).

1. The ELBO is the expectation of .£; with respect to the sample.
2. The gradient of the -ELBO is a noisy gradient of the ELBO.
3. The -ELBO is like an ELBO where we saw x; repeatedly.




A noisy natural gradient

Define the conditional as though our whole data set is n replications of x;,

T)t(ZtrXt) ={ay+n- f(Zt,Xt), az+n)

The noisy natural gradient of the ELBO is
V}L.z?t = E¢t[n,(Zt, Xt)] —A.

This only requires the local variational parameters of one data point.

In contrast, the full natural gradient requires all local parameters.



Stochastic variational inference

Initialize global parameters A randomly.
Set the step-size schedule €; appropriately.
Repeat forever

© Sample a data point uniformly,

xt ~ Uniform(xy, ..., xp).
® Compute its local variational parameter,

¢ =Exen[ne(B,x)]-
@ Pretend its the only data point in the data set,
A=Ey[n( 2, x)]-
@ Update the current global variational parameter,
A0 =(1—e)A) 1 g2,




Stochastic variational inference in LDA

Yd ¢d,n )\k
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NN
gd Zd,n Wd,n N 6k
D K

© Sample a document

@ Estimate the local variational parameters using the current topics
@® Form “fake topics” from those local parameters

@ Update the topics to be a weighted average of “fake” and current topics



Stochastic variational inference in LDA

© ® N oo

10:
11:
12: end for

1: Define py= (1o +1t)7¥
2: Initialize 4 randomly.

3: for t=0to oo do

4:

Choose a random document w;

Initialize Y« = 1. (The constant 1 is arbitrary.)

repeat
Set ¢, x expi{Eq[log 0;] + Eq[log B.w, |}
Setyi=a+Y., Pin

until + ", [change in 74| <€

Compute Ax =n+DY., Wen®tn

Set Ay = (1 — pt)lk + Pt k-




Stochastic variational inference in LDA

Online 98K
900
850 -
>80 . »
£ Online 3.3M ™ Batch 88K
b 750 -
2700 -
[0
0. 650 -
600 -
T T T T T T T
1038 10 10%5 10° 1058 108 1088
Documents seen (log scale)
Documents 2048 4096 8192 12288 16384 32768 49152 65536
analyzed
systems systems service service service business business business
road health systems systems companies  service service industry
made  communication health companies systems companies companies service
Top eight service service companies  business  business industry industry companies
words announced billion market company company  company services services
national language  communication  billion industry management company company
west care company health market systems  management management
language road billion industry billion services public public



Stochastic variational inference
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We defined a generic algorithm for scalable variational inference.

e Bayesian mixture models e Dirichlet process mixtures, HDPs
e Time series models e Multilevel regression
(variants of HMMs, Kalman filters) (linear, probit, Poisson)
e Factorial models e Stochastic blockmodels
e Matrix factorization e Mixed-membership models

(e.g., factor analysis, PCA, CCA) (LDA and some variants)



Stochastic variational inference

RB A0 B

ELBO
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See Hoffman et al. (2010) for LDA (and code).

See Wang et al. (2010) for Bayesian nonparametric models (and code).

See Sato (2001) for the original stochastic variational inference.

See Honkela et al. (2010) for natural gradients and variational inference.

Many open issues, e.g., how to handle nonconjugacy (CTM, DTM)?

This conference

o Sparse Stochastic Inference for Latent Dirichlet Allocation (Mimno,
Hoffman, Blei)
e Nonparametric Variational Inference (Gershman, Hoffman, Blei)



Stochastic variational inference

Make assumptions

CtS-e4io)

I~~~

Collect data

Infer the posterior

Predict

e Many applications posit a model, condition on data, and use the posterior.

e We can now apply this kind of data analysis to very large data sets.

Explore




Using and Checking Topic Models



Evaluating topic models

Make assumptions

Cto-@iiO]

.

Collect data

Infer the posterior

Predict

e How do we check, predict, and explore?

Explore




Evaluating topic models

Questions we should ask in evaluation:

e Does my model work? Is it better than another model?
* Which topic model should | choose? Should | make a new one?

These questions are tied up in the application at hand.

Sometimes evaluation is easy, especially in prediction tasks.

But a promise of topic models is that they give good exploratory tools.
Evaluation is complicated, e.g., is this a good navigator of my collection?

And this leads to more questions:

e How do | interpret a topic model?
o What quantities help me understand what it says about the data?



Evaluating topic models

e How to interpret and evaluate topic models is an active area of research.
Visualizing topic models

Naming topics

Matching topic models to human judgements

Matching topic models to external ontologies

Computing held out likelihoods in different ways

e We will discuss posterior predictive checks for topic modeling.



Posterior predictive checks

prior distribution
p (0|4

9

p(y|8.4)

contours of
p(y|6.4)

— 2
.A)

posterior distribution
p(0]y4A)
»

contours of predictive distribution

Y1

This is a predictive check from Box (1980).



Posterior predictive checks

e Three stages to model building: estimation, criticism, and revision.
¢ In criticism, the model “confronts” our data.

e Suppose we observe a data set y. The predictive distribution is the
distribution of data if the model is true:

p(ylM)ZJ p(y10)p(0)
0

e Locating y in the predictive distribution indicates if we can “trust” the model.

* Or, locating a discrepancy function g(y) in its predictive distribution
indicates if what is important to us is captured in the model.



Posterior predictive checks

* Rubin (1984) located the data y in the posterior p(y |y, M).

e Gelman, Meng, Stern (1996) expanded this idea to “realized discrepancies”
that include hidden variables g(y, z).

e We might make modeling decisions based on a variety of simplifying
considerations (e.g., algorithmic). But we can design the realized
discrepancy function to capture what we really care about.

e Further, realized discrepancies let us consider which parts of the model fit
well and which parts don’t. This is apt in exploratory tasks.



Posterior predictive checks in topic models

e Consider a decomposition of a corpus into topics, i.e., {Wq n, Z4,n}. Note
that z4 » is a latent variable.

e For all the observations assigned to a topic, consider the variable {wy n, d}.
This is the observed word and the document it appeared in.

e One measure of how well a topic model fits the LDA assumptions is to look
at the per-topic mutual information between w and d.

e [f the words from the topic are independently generated then we expect
lower mutual information.

e What is “low”? To answer that, we can shuffle the words and recompute.
This gives values of the MI when the words are independent.



Posterior predictive checks

tax
income
taxation
taxes
revenue
estate
subsidies
exemption
organizations
year
treasury
consumption
taxpayers
earnings
funds

6
jury
trial
crime
defendant
defendants
sentencing
judges
punishment
judge
crimes
evidence
sentence
jurors
offense
quilty

labor
workers
employees
union
employer
employers
employment
work
employee
job
bargaining
unions
worker
collective
industrial
15
speech
ree
amendment
freedom
expression
protected
culture
context

ideas
information
protect
content.

in topic models

women
sexual
men
sex
child
family
children
gender
woman
marriage
discrimination
male
social
female
parents

1
firms
price
corporate
firm
value
market
cost
capital
shareholders
stock
insurance
efficient
assets
offer
share

This realized discrepancy measures model fithess

e Can use it to measure model fitness per topic.
e Helps us explore parts of the model that fit well.

13

contract
liability
parties
contracts
party
creditors
agreement
breach
contractual
terms
bargaining
contracting
debt
exchange
limited

16
constitutional
political
constitution
government
justice
amendment
history
people
legislative
opinion
fourteenth
article
majority
citizens
republican



Discussion



This tutorial

e What are topic models?

e What kinds of things can they do?

e How do | compute with a topic model?

e How do | check and evaluate a topic model?

e What are some unsanswered questions in this field?

e How can | learn more?



Introduction to topic modeling

Topics Documents Topic proportions and
assignments
gene 0.04
o Oon Seeking Life’s Bare (Genetic) Necessities
anp wu» SPRING HARBOR, NEW YORK— .
Lifie 0.02

evolve 0.01
organism 0.01

R

brain 0.04
neuron  0.02
nerve 0.01

/ * Genome

ang
g, Cold Sprng Harbor, New York Stripping dowr 5 yields an esti
May81o 12 mate ol ths minium modern and ancient genomes.
data 0.02 CCENCE + YOL 271 e 2 Ay o
number  0.62 o )
computer 0.01
B
=

E—

e LDA assumes that there are K topics shared by the collection.
e Each document exhibits the topics with different proportions.
e Each word is drawn from one topic.

e We discover the structure that best explain a corpus.



Extensions of LDA

) Ojﬁ @9

J ¢ -0 e’»g' 1o

v “” w, o ", —‘; ® » N

N, \ 2 Y K N, I ” Dl
040 R |Jetete
OIONOE=t BT iy T
R A @) |

o4, /|| End

e Topic models can be adapted to many settings

e We can relax assumptions, combine models, or model more complex data.



Posterior inference

900 - Online 98K
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Documents seen (log scale)

e Posterior inference is the central computational problem.
e Stochastic variational inference is a scalable algorithm.

e (Note: There are many types of inference we didn’t discuss.)



Posterior predictive checks

4 10 3 13
tax labor women contract
income workers sexual liability
taxation employees men parties
union sex contracts
revenue employer child party
estate employers family creditors
subsidies employment children agreement
exemption work gender breach
organizations employee woman contractual
job marriage terms
treasury bargaining discrimination bargaining
consumption unions. male contracting
taxpayers. worker social debt
earnings collective female exchange
funds industrial parents limited
6 15 1 16
jury speech firms constitutional
trial free price political
crime amendment corporate constitution
defendant freedom firm government
defendants expression value justice
sentencing protected market amendment
judges culture cost history
punishment context capital people
judge equality shareholders legislative
crimes values stock opinion
evidence conduct insurance fourteenth
sentence ideas efficient article
jurors information assets majority
offense protect offer citizens
guilty content share

republican



Some open issues

e Model interpretation and model checking
Which model should | choose for which task?

¢ Incorporating corpus, discourse, or linguistic structure
How can our knowledge of language help us build and use exploratory
models of text?

¢ Interfaces and “downstream” applications of topic modeling
What can | do with an annotated corpus? How can | incorporate latent
variables into a user interface?

e Theoretical understanding of approximate inference
What do we know about variational inference? Can we analyze it from
either the statistical or learning perspective?



If you remember one picture...

Make assumptions

Siiexcu8)

I~~~

Collect data

Infer the posterior

Predict

Explore




“We should seek out unfamiliar summaries of observational material, and
establish their useful properties... And still more novelty can come from finding,
and evading, still deeper lying constraints.”

(J. Tukey, The Future of Data Analysis, 1962)



