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Abstract

The nested Chinese restaurant process (nCRP) is a powerful nonparametric
Bayesian model for learning tree-based hierarchies from data. Since its poste-
rior distribution is intractable, current inference methods have all relied on MCMC
sampling. In this paper, we develop an alternative inference technique based
on variational methods. To employ variational methods, we derive a tree-based
stick-breaking construction of the nCRP mixture model, and a novel variational
algorithm that efficiently explores a posterior over a large set of combinatorial
structures. We demonstrate the use of this approach for text and hand written digits
modeling, where we show we can adapt the nCRP to continuous data as well.

1 Introduction

For many application areas, such as text analysis and image analysis, learning a tree-based hierarchy
is an appealing approach to illuminate the internal structure of the data. In such settings, however,
the combinatoric space of tree structures makes model selection unusually daunting. Traditional
techniques, such as cross-validation, require us to enumerate all possible model structures; this kind
of methodology quickly becomes infeasible in the face of the set of all trees.

The nested Chinese restaurant process (nCRP) [1] addresses this problem by specifying a generative
probabilistic model for tree structures. This model can then be used to discover structure from data
using Bayesian posterior computation. The nCRP has been applied to several problems, such as
fitting hierarchical topic models [1] and discovering taxonomies of images [2, 3].

The nCRP is based on the Chinese restaurant process (CRP) [4], which is closely linked to the
Dirichlet process in its application to mixture models [5]. As a complicated Bayesian nonparametric
model, posterior inference in an nCRP-based model is intractable, and previous approaches all rely
Gibbs sampling [1, 2, 3]. While powerful and flexible, Gibbs sampling can be slow to converge and
it is difficult to assess the convergence [6, 7]. Here, we develop an alternative for posterior inference
for nCRP-based models.

Our solution is to use the optimization-based variational methods [8]. The idea behind variational
methods is to posit a simple distribution over the latent variables, and then to fit this distribution to
be close to the posterior of interest. Variational methods have been successfully applied to several
Bayesian nonparametric models, such as Dirichlet process (DP) mixtures [9, 10, 11], hierarchical
Dirichlet processes (HDP) [12], Pitman-Yor processes [13] and Indian buffet processes (IBP) [14].

The work presented here is unique in that our optimization of the variational distribution searches the
combinatorial space of trees. Similar to Gibbs sampling, our method includes an exploration of a
latent structure associated with the free parameters in addition to their values. First, we describe the
tree-based stick-breaking construction of nCRP, which is needed for variational inference. Second,
we develop our variational inference algorithm, which explores the infinite tree space associated with
the nCRP. Finally, we study the performance of our algorithm on discrete and continuous data sets.
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2 Nested Chinese restaurant process mixtures

The nested Chinese restaurant process (nCRP) is a distribution over hierarchical partitions [1]. It
generalizes the Chinese restaurant process (CRP), which is a distribution over partitions. The CRP
can be described by the following metaphor. Imagine a restaurant with an infinite number of tables,
and imagine customers entering the restaurant in sequence. The dth customer sits at a table according
to the following distribution,

p(cd = k|c1:(d−1)) ∝
{
mk if k is previous occupied
γ if k is a new table, (1)

where mk is the number of previous customers sitting at table k and γ is a positive scalar. After D
customers have sat down, their seating plan describes a partition of D items.

In the nested CRP, imagine now that tables are organized in a hierarchy: there is one table at the first
level; it is associated with an infinite number of tables at the second level; each second-level table
is associated with an infinite number of tables at the third level; and so on until the Lth level. Each
customer enters at the first level and comes out at the Lth level, generating a path with L tables as
she sits in each restaurant. Moving from a table at level ` to one of its subtables at level `+ 1, the
customer draws following the CRP using Equation 1. (This description is slightly different from the
metaphor in [1], but leads to the same distribution.)

The nCRP mixture model can be derived by analogy to the CRP mixture model [15]. (From now
on, we will use the term “nodes” instead of “tables.”) Each node is associated with a parameterw,
wherew ∼ G0 and G0 is called the base distribution. Each data point is drawn by first choosing a
path in the tree according to the nCRP, and then choosing its value from a distribution that depends
on the parameters in that path. An additional hidden variable x represents other latent quantities
that can be used in this distribution. This is a generalization of the model described in [1]. For data
D = {tn}Nn=1, the nCRP mixture assumes that the nth data point tn is drawn as follows:

1. Draw a path cn|c1:(n−1) ∼ nCRP(γ, c1:(n−1)), which contains L nodes from the tree.

2. Draw a latent variable xn ∼ p(xn|λ).

3. Draw an observation tn ∼ p(tn|Wcn ,xn, τ).

The parameters λ and τ are associated with the latent variables x and data generating distribution,
respectively. Note that Wcn contains the wis selected by the path cn. Specific applications of the
nCRP mixture depend on the particular forms of p(w), p(x) and p(t|Wc,x).

The corresponding posterior of the latent variables decomposes the data into a collection of paths, and
provides distributions of the parameters attached to each node in those paths. Even though the nCRP
assumes an “infinite” tree, the paths associated with the data will only populate a portion of that tree.
Through this posterior, the nCRP mixture can be used as a flexible tree-based mixture model that
does not assume a particular tree structure in advance of the data.

Hierarchical topic models. The nCRP mixture described above includes the hierarchical topic
model of [1] as a special case. In that model, observed data are documents, i.e., a list of N words
from a fixed vocabulary. The nodes of the tree are associated with distributions over words (“topics”),
and each document is associated with both a path in the tree and with a vector of proportions over its
levels. Given a path, a document is generated by repeatedly generating level assignments from the
proportions and then words from the corresponding topics. In the notation above, p(w) is a Dirichlet
distribution over the vocabulary simplex, p(x) is a joint distribution of level proportions (from a
Dirichlet) and level assignments (N draws from the proportions), and p(t|Wc,x) are the N draws
from the topics (for each word) associated with x.

Tree-based hierarchical component analysis. For continuous data, if p(w), p(x) and p(t|Wc,x)
are appropriate Gaussian distributions, we obtain hierarchical component analysis, a generalization
of probabilistic principal component analysis (PPCA) [16, 17]. In this model,w is the component
parameter for the node it belongs to. Each path c can be thought as a PPCA model with factor loading
Wc specified by that path. Then each data point chooses a path (also a PPCA model specified by that
path) and draw the factors x. This model can also be thought as an infinite mixtures of PPCA model,
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Figure 1: Left. A possible tree structure in a 3-level nCRP. Right. The tree-based stick-breaking
construction of a 3-level nCRP.

where each PPCA can share components. In addition, we can incorporate the general exponential
family PCA [18, 19] into the nCRP framework.1

2.1 Tree-based stick-breaking construction

CRP mixtures can be equivalently formulated using the Dirichlet process (DP) as a distribution over
the distribution of each data point’s random parameter [21, 4]. An advantage of expressing the CRP
mixture with a DP is that the draw from the DP can be explicitly represented using the stick-breaking
construction [22]. The DP bundles the scaling parameter γ and base distribution G0. A draw from a
DP(γ,G0) is described as

vi ∼ Beta(1, γ), πi = vi

∏i−1
j=1(1− vj), wi ∼ G0, i ∈ {1, 2, · · · }, G =

∑∞
i=1 πiδwi

,

where π are the stick lengths, and
∑∞

i=1 πi = 1 almost surely. This representation also illuminates
the discreteness of a distribution drawn from a DP.

For the nCRP, we develop a similar stick-breaking construction. At the first level, the root node’s
stick length is π1 = v1 ≡ 1. For all the nodes at the second level, their stick lengths are constructed
as for the DP, i.e., π1i = π1v1i

∏i−1
j=1(1 − v1j) for i = {1, 2, · · · ,∞} and

∑∞
i=1 π1i = π1 =

1. The stick-breaking construction is then applied to each of these stick segments at the second
level. For example, the π11 portion of the stick is divided up into an infinite number of pieces
according to the stick-breaking process. For the segment π1k, the stick lengths of its children are
π1ki = π1kv1ki

∏i−1
j=1(1− v1kj), for i = {1, 2, · · · ,∞} and

∑∞
i=1 π1ki = π1k. The whole process

continues for L levels. This construction is best understood by Figure 1 (Right).

Although this stick represents an infinite tree, the nodes are countable and each node is uniquely
identified by a sequence of L numbers. We will denote all Beta draws as V , each of which are
independent draws from Beta(1, γ) (except for the root v1, which is equal to one).

The tree-based stick-breaking construction lets us calculate the conditional probability of a path given
V . Let the path c = [1, c2, · · · , cL],

p(c|V ) =
∏L

`=1 π1,c2,··· ,c`
=
∏L

`=1 v1,c2,··· ,c`

∏c`−1
j=1 (1− v1,c2,··· ,j). (2)

By integrating out V in Equation 2, we recover the nCRP. Given Equation 2, the joint probability of
a data set under the nCRP mixture is

p(t1:N ,x1:N , c1:N ,V ,W ) = p(V )p(W )
∏N

n=1 p(cn|V )p(xn)p(tn|Wcn
,xn). (3)

This representation is the basis for variational inference.

3 Variational inference for the nCRP mixture

The central computational problem in Bayesian modeling is posterior inference: Given data, what is
the conditional distribution of the latent variables in the model? In the nCRP mixture, these latent
variables provide the tree structure and node parameters.

1We note that Bach and Jordan [20] studied tree-dependent component analysis, a generalization of inde-
pendent component analysis where the components are organized in a tree. This model expresses a different
philosophy: Their tree reflects the actual conditional dependencies among the components. Data are not
generated by choosing a path first, but by a linear transformation of all components in the tree.
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Posterior inference in an nCRP mixture has previously relied on Gibbs sampling, in which we sample
from a Markov chain whose stationary distribution is the posterior [1, 2, 3]. Variational inference
provides an alternative methodology: Posit a simple (e.g., factorized) family of distributions over
the latent variables indexed by free parameters (called “variational parameters”). Then fit those
parameters to be close in KL divergence to the true posterior of interest [8, 23].

Variational inference for Bayesian nonparametric models uses a truncated stick-breaking represen-
tation in the variational distribution [9] – free variational parameters are allowed only up to the
truncation level. If the truncation is too large, the variational algorithm will still isolate only a subset
of components; if the truncation is too small, methods have been developed to expand the truncated
stick as part of the variational algorithm [10]. In the nCRP mixture, however, the challenge is that the
tree structure is too large even to effectively truncate. We will address this by defining search criteria
for adaptively adjusting the structure of the variational distribution, searching over the set of trees to
best accommodate the data.

3.1 Variational inference based on the tree-based stick-breaking construction

We first address the problem of variational inference with a truncated tree of fixed structure. Suppose
that we have a truncated tree T and letMT be the set of all nodes in T . Our family of variational
distributions is defined as follows,

q(W ,V ,x1:N , c1:N ) =
∏

i/∈MT
q(wi)q(vi)

∏
i∈MT

p(wi)p(vi)
∏N

n=1 q(cn)q(xn), (4)

where: (1) Distributions p(wi) and p(vi) for i /∈ MT , are the prior distributions, containing
no variational parameters; (2) Distributions q(wi) and q(vi) for i ∈ MT contain the variational
parameters that we want to optimize for the truncated tree T ; (3) Distribution q(cn) is the variational
multinomial distribution over all the possible paths, not just those in the truncated tree T . Note that
there are infinite number of paths. We will address this issue below; (4) Distribution q(xn) is the
variational distribution for the latent variable xn and it is in the same family of distribution, as p(xn).

In summary, this family of distributions retains the infinite tree structure. Moreover, this family is
nested [10, 11]: If a truncated tree T1 is a subtree of a truncated tree T2 then variational distributions
defined over T1 are a special case of those defined over T2. Theoretically, the solution found using
T2 is at least as good as the one found using T1. This allows us to use greedy search to find a better
tree structure.

With the variational distributions (Equation 4) and the joint distributions (Equation 3), we turn to the
details of posterior inference. Equivalent to minimizing KL is tightening the bound on the likelihood
of the observations D = {tn}Nn=1 given by Jensen’s inequality [8],

log p(t1:N ) ≥ Eq [log p(t1:N ,V ,W ,x1:N , c1:N )]−Eq [log q(V ,W ,x1:N , c1:N )]

=
∑

i∈MT
Eq

[
log p(wi)p(vi)

q(wi)q(vi)

]
+
∑N

n=1Eq

[
log p(xn)

q(xn)

]
+
∑N

n=1Eq

[
log p(tn|xn,Wcn )p(cn|V )

q(cn)

]
, L(q). (5)

We optimize L(q) using coordinate ascent. First we isolate the terms that only contain q(cn),

L (q(cn)) = Eq [log p(tn|xn,Wcn
)p(cn|V )]−Eq [log q(cn)] . (6)

Then we find the optimal solution for q(cn) by setting the gradient to zero:

q(cn = c) ∝ Sn,c , exp {Eq [log p(cn = c|V )] +Eq [log p(tn|xn,Wc)]} . (7)

Since the values of q(cn = c) is infinite, operating coordinate ascent over q(cn = c) is difficult. We
plug the optimal q(cn) (Equation 7) into Equation 6 to obtain the lower bound

L (q(cn)) = log
∑

c Sn,c. (8)

Two issues arise: 1) the variational distribution q(cn) has infinite number of values, and we need
to find an efficient way to manipulate this. 2) the lower bound log

∑
c Sn,c (Equation 8) contains

infinite sum, which pose a problem in evaluation. In the appendix, we show that all the operations
can be done only via the truncated tree T . We summarize the results as follows. Let c̄ be a path in
T , either an inner path (a path ending at an inner node) or a full path (a path ending at a leaf node).
Note that the inner path is only defined for the truncated tree T . The number of such c̄ is finite. In the
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nCRP tree, denote child(c̄) as the set of all full paths that are not in T but include c̄ as a sub path.
As a special case, if c̄ is a full path, child(c̄) just contains itself. As shown in the appendix, we can
compute these quantities efficiently:

q(cn = c̄) ,
∑

c:c∈child(c̄) q(cn = c) and Sn,c̄ ,
∑

c:c∈child(c̄) Sn,c. (9)

Consequently iterating over the truncated tree T using c̄ is the same as iterating all the full paths in
the nCRP tree. And these are all we need for doing variational inference.

Next, we move to optimize q(vi|ai, bi) for i ∈MT , where ai and bi are variational parameters for
Beta distribution q(vi). Let the path containing vi be [1, c2, · · · , c`0 ], where `0 ≤ L. We isolate the
term that only contains vi from the lower bound (Equation 5),

L (q(vi)) = Eq [log p(vi)− log q(vi)] +
∑N

n=1

∑
c q(cn = c) log p(cn = c|V ). (10)

After plugging Equation 2 into 10 and setting the gradient to be zero, we obtain the optimal q(vi),

q(vi) ∝ v
a∗i−1
i (1− vi)b∗i−1,

a∗i = 1 +
∑N

n=1

∑
c`0+1,··· ,cL

q(cn = [1, c2, · · · , c`0 , c`0+1, · · · , cL]),

b∗i = γ +
∑N

n=1

∑
j,c`0+1,··· ,cL:j>c`0

q(cn = [1, c2, · · · , c`0−1, j, c`0+1, · · · , cL]), (11)

where the infinite sum involved can be solved using Equations 9.

The variational update functions forW and x depend on the actual distributions we use, and deriving
them is straightforward. If they include an infinite sum then we apply similar techniques as we did
for q(vi).

3.2 Refining the tree structure during variational inference

Since our variational distribution is nested, a larger truncated tree will always (theoretically) achieve
a lower bound at least as tight as a smaller truncated tree. This allows us to search the infinite tree
space until a certain criterion is satisfied (e.g., relative change of the lower bound). To achieve this,
we present several heuristics to guide us to do so. All these operations are performed on the truncated
tree T .

Grow. This operation is similar to what Gibbs sampling does in searching the tree space. We
implement two heuristics: 1) Randomly choose several data points, and for each of them sample
a path c̄ according to q(cn = c̄). If it is an inner path, expand it a full path; 2) For every inner
path in T , first compute the quantity g(c̄) =

∑N
n=1 q(cn = c̄). Then sample an inner path (say c̄∗)

according to g(c̄), and expand it to full path.

Prune. If a certain path gets very little probability assignments from all data points, we eliminate
this path – for path c, the criterion is

∑N
n=1 q(cn = c) < δ, where δ is a small number. We use

δ = 10−6). This mimics Gibbs sampling in the sense that for nCRP (or CRP), if a certain path (table)
gets no assignments in the sampling process, it will never get any assignment any more according to
Equation 1.

Merge. If paths i and j give almost equal posterior distributions, merging these two paths is
employed [24]. The measure is J(i, j) = P T

i Pj/|Pi||Pj |, where Pi = [q(c1 = i), · · · , q(cN =
i)]T . We use 0.95 as the threshold in our experiments.

In theory, Prune and Merge may decrease the lower bound. Empirically, we found even sometime
it does, the effect is negligible. (but reduced the size of the tree). For continuous data settings, we
additionally implement the Split method used in [24].

4 Experiments

In this section, we demonstrate variational inference for the nCRP. We analyze both discrete and
continuous data using the two applications discussed in Section 2.
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Per-word test set likelihood
Method JACM Psy. Review PNAS

Gibbs sampling −5.3922± 0.0052 −5.7834± 0.0149 −6.4961± 0.0068
Var. inference −5.4331± 0.0100 −5.8430± 0.0153 −6.5736± 0.0050

Var. inference (G) −5.4495± 0.0118 −5.8593± 0.0157 −6.5996± 0.0153

Table 1: Test set likelihood comparison on three datasets. Var. inference (G): variational inference
initialized from the initialization of Gibbs sampling. Variational inference can give competitive
performance on test set likelihood.

4.1 Hierarchical topic modeling

For discrete data, we compare variational inference compared with Gibbs sampling for hierarchical
topic modeling. Three corpora are used in the experiments: (1) JACM: a collection of 536 abstracts
from the Journal of the ACM from years 1987 to 2004 with a vocabulary size of 1,539 and around
68K words; (2) Psy. Review: a collection of 1,272 psychology abstracts from Psychological Review
from years 1967 to 2003, with a vocabulary size of 1,971 and around 137K words; (3) PNAS: a
collection of 5,000 abstracts from the Proceedings of the National Academy of Sciences from years
1991 to 2001, with a vocabulary size of 7762 and around 895K words. Those terms occurring in
fewer than 5 documents were removed.

Local maxima can be a problem for both Gibbs sampling and variational inference. To avoid them in
Gibbs sampling, we randomly restart the sampler 200 times and take the trajectory with the highest
average posterior likelihood. We run the Gibbs sampling for 10000 iterations and collect the results
for post analysis. For variational inference, we use two types of initializations 1) similar to Gibbs
sampling, we gradually add data points during the variational inference as well – add a new path for
each document in the initialization; 2) we initialize the variational inference from the initialization
for Gibbs sampling – using the MAP estimate using one Gibbs sample. We set L = 3 for all the
experiments and use the same hyperparameters in both algorithms. Specifically, the stick-breaking
prior parameter γ is set to 1.0; the symmetric Dirichlet prior parameter for the topics is set to 1.0; the
prior for level proportions is skewed to favor high levels (50, 20, 10). (This is suggested in [1].) We
run the variational inference until the relative change of log-likelihood is less than 0.001.

Per-word test set likelihood. We use test set likelihood as a measure of performance. The proce-
dure is to divide the corpus into a training setDtrain and a test setDtest, and approximate the likelihood
of Dtest given Dtrain. We use the same method in Teh et al. [12] to approximate it. Specifically, we
use posterior means θ̂ and β̂ to represent the estimated topic mixture proportions over L levels and
topic multinomial parameters. For the variational method, we use

p({t1, · · · , tN}test) =
∏N

n=1

∑
c q(cn = c)

∏
j

∑
n,` θ̂n,`β̂c`,tnj

,

where θ̂ and β̂ are estimated using mean values from the variational distributions. For Gibbs sampling,
we use S samples and compute

p({t1, · · · , tN}test) =
∏N

n=1
1
S

∑S
s=1

∑
c δcs

n

∏
j

∑
n,` θ̂

s
n,`β̂

s
c`,tnj

,

where θ̂s and β̂s are estimated using sample s [25, 12]. We use 30 samples collected at a lag of
10 after a 200-sample burn-in for a document in test set. Actually, 1/S

∑S
s=1

∑
c δcs

n
gives the

empirical estimation of p(cn), where in variational inference, we approximate it using q(cn). Table 1
shows the test likelihood comparison using five-fold cross validation. This shows our model can give
competitive performance in term of the test set likelihood. This discrepancy is similar to that in [12]
when variational inference is compared the collapsed Gibbs sampling for HDP.

Topic visualizations. Figures 2 and 3 show the tree-based topic visualizations from JACM and
PNAS datasets. These are quite similar to those obtained by Gibbs sampling (see [1]).

4.2 Modeling handwritten digits using hierarchical component analysis

For continuous data, we use the hierarchical component analysis for modeling handwritten digits
(http://archive.ics.uci.edu/ml). This dataset contains 3823 handwritten digits as a training set and
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Figure 2: A sub network discovered on JACM dataset, each topic represented by top 5 terms. The
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Figure 3: A sub network discovered on PNAS dataset, each topic represented by top 5 terms. The
whole tree has 45 nodes, with an average branching factor 2.93.

1797 as a testing set. Each digit contains 64 integer attributes, ranging from 0-16. As described in
section 2, we use PPCA [16] as the basic model for each path. We use a global mean parameter µ for
all paths, although a model with an individual mean parameter for each path can be similarly derived.
We put broad priors over the parameters similar to those in variational Bayesian PCA [17]. The
stick-breaking prior parameter γ = 1 is set to be 1.0; for each node,w ∼ N (0, 103); µ ∼ N (0, 103);
the inverse of the variance for the noise model in PPCA is τ and τ ∼ Gamma(10−3, 10−3). Again,
we run the variational inference until the relative change of log-likelihood is less than 0.001.

We compare the reconstruction error with PCA. To compute the reconstruction error for our model,
we first select the path for each data point using its MAP estimation by ĉn = arg maxc q(cn = c).
Then we use the similar approach [26, 24] to reconstruct tn,

t̂n = Wĉn
(Wĉn

TWĉn
)−1Wĉn

T (tn − µ̂) + µ̂.

We test our model using depth L = 2, 3, 4, 5. All of our models run within 2 minutes. The
reconstruction errors for both the training and testing set are shown in Table 2. Our model gives lower
reconstruction errors than PCA.

5 Conclusions

In this paper, we presented the variational inference algorithm for the nested Chinese restaurant
process based on its tree-based stick-breaking construction. Our result indicates that the variational
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Reconstruction error on handwritten digits
#Depth HCA (tr) PCA (tr) HCA (te) PCA (te)

2(9) 631.6 863.0 699.4 878.5
3(14) 559.8 722.3 585.6 727.7
4(18) 463.4 621.0 506.1 633.0
5(22) 384.8 553.0 461.8 564.2

Table 2: Reconstruction error comparison (Tr: train; Te: test). HCA stands for hierarchical component
analysis. PCA uses L largest components. In the first column, 2(9) means L = 2 with 9 nodes
inferred using our model. Others are similarly defined. HCA gives lower reconstruction errors.

inference is a powerful alternative method for the widely used Gibbs sampling. We also adapt the
nCRP to model continuous data, e.g. in hierarchical component analysis.
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supported by ONR 175-6343, NSF CAREER 0745520, and grants from Google and Microsoft.

Appendix: efficiently manipulating Sn,c and q(cn = c)

Case 1: All nodes of the path are in T , c ⊂MT . Let Z0 , Eq [log p(tn|xn,Wc)]. We have

Sn,c = exp
{
Eq

[∑L
`=1(log(v1,c2,··· ,c`

) +
∑c`−1

j=1 log(1− v1,c2,··· ,j))
]

+ Z0

}
. (12)

Case 2: At least one node is not in T , c 6⊂ MT . Although c 6⊂ MT , c must have some nodes
inMT . Then c can be written as c = [c̄, c`0+1, · · · , cL], where c̄ , [1, c2, · · · , c`0 ] ⊂ MT and
[c̄, c`0+1, · · · , c`] 6⊂ MT for any ` > `0. In the truncated tree T , let j0 be the maximum index
for the child node whose parent path is c̄, then we know if c`0+1 > j0, [c̄, c`0+1, · · · , cL] 6⊂ MT .
Now we fix the sub path c̄ and let [c`0+1, · · · , cL] vary (satisfying c`0+1 > j0). All these possible
paths constitute a set: child(c̄) , {[c̄, c`0+1, · · · , cL] : c`0+1 > j0}. According to Equation 4, for
any c ∈ child(c̄) , Z0 , Eq [log p(tn|xn,Wc)] is constant, since the variational distribution for w
outside the truncated tree is the same prior distribution. We have∑

c∈child(c̄) Sn,c =
∑

c∈child(c̄) exp
{
Z0 +Eq

[∑L
`=1(log(v1,··· ,c`

) +
∑c`−1

j=1 log(1− v1,c2,··· ,j))
]}

= exp(Z0+(L−`0)Ep[log(v)])

(1−exp(Ep[log(1−v)]))L−`0
exp

{
Eq

[∑`0
`=1(log(v1,c2,··· ,c`

) +
∑c`−1

j=1 log(1− v1,c2,··· ,j))
]}

exp
(
Eq

[∑j0
j=1 log(1− v1,c2,··· ,c`0 ,j)

])
, (13)

where v ∼ Beta(1, γ). Such cases contain all inner nodes in the truncated tree T . Note that Case 1
is a special case of Case 2 by setting `0 = L. Given all these,

∑
c Sn,c can be computed efficiently.

Furthermore, given Equations 13 and Equation 7, we define

q(cn = c̄) ,
∑

c∈child(c̄) q(cn = c) ∝
∑

c∈child(c̄) Sn,c, (14)

which corresponds the sum of probabilities from all paths in child(c̄). We note that this organization
only depends on the truncated tree T and is sufficient for variational inference.
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