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Abstract

We consider problems involving groups of data, where eademation within a group is
a draw from a mixture model, and where it is desirable to sh@réure components between
groups. We assume that the number of mixture componentisouwn a priori and is to be
inferred from the data. In this setting it is natural to caolesisets of Dirichlet processes, one
for each group, where the well-known clustering propertyhef Dirichlet process provides a
nonparametric prior for the number of mixture componenthiwieach group. Given our desire
to tie the mixture models in the various groups, we considgeearchical model, specifically
one in which the base measure for the child Dirichlet proeessitself distributed according to
a Dirichlet process. Such a base measure being discrethitddirichlet processes necessar-
ily share atoms. Thus, as desired, the mixture models iniffexeht groups necessarily share
mixture components. We discuss representations of higaidirichlet processes in terms of
a stick-breaking process, and a generalization of the Ghinestaurant process that we refer
to as the “Chinese restaurant franchise.” We present Mackain Monte Carlo algorithms
for posterior inference in hierarchical Dirichlet procestures, and describe applications to

problems in information retrieval and text modelling.

Keywords: clustering, mixture models, nonparametric Bayaian statistics, hierarchical

models, Markov chain Monte Carlo



1 INTRODUCTION

A recurring theme in statistics is the need to separate ediiens into groups, and yet allow the
groups to remain linked—to “share statistical strength.tHe Bayesian formalism such sharing is
achieved naturally via hierarchical modeling; paramedeesshared among groups, and the random-
ness of the parameters induces dependencies among the gistpnates based on the posterior
distribution exhibit “shrinkage.”

In the current paper we explore a hierarchical approactetpribblem of model-based clustering
of grouped data. We assume that the data are subdivided g#bad groups, and that within each
group we wish to find clusters that capture latent structardé data assigned to that group. The
number of clusters within each group is unknown and is to berried. Moreover, in a sense that
we make precise, we wish to allow clusters to be shared anengroups.

An example of the kind of problem that motivates us can be danrgenetics. Consider a set
of k binary markers (e.g., single nucleotide polymorphisms3MPs") in a localized region of the
human genome. While an individual human could exhibit ang’oflifferent patterns of markers
on a single chromosome, in real populations only a smalletudfssuch patterns-haplotypes—are
actually observed (Gabriel et al. 2002). Given a meiotic ehddr the combination of a pair of
haplotypes into genotypeduring mating, and given a set of observed genotypes in alsanom
a human population, it is of great interest to identify thelemying haplotypes (Stephens et al.
2001). Now consider an extension of this problem in whichgbpulation is divided into a set of
groups; e.g., African, Asian and European subpopulatids.may not only want to discover the
sets of haplotypes within each subpopulation, but we may\lsh to discover which haplotypes
are shared between subpopulations. The identification af baplotypes would have significant
implications for the understanding of the migration paiseof ancestral populations of humans.

As a second example, consider the problem from the field ofimdtion retrieval (IR) of mod-
eling of relationships among sets of documents. In IR, damtmare generally modeled under
an exchangeability assumption, the “bag of words” asswnpin which the order of words in a
document is ignored (Salton and McGill 1983). It is also camnrto view the words in a document
as arising from a number of latent clusters or “topics,” vehartopic is generally modeled as a
multinomial probability distribution on words from somedi@avocabulary (Blei et al. 2003). Thus,

in a document concerned with university funding the wordghadocument might be drawn from



the topics “education” and “finance.” Considering a coll@etof such documents, we may wish
to allow topics to be shared among the documents in the cofpoisexample, if the corpus also
contains a document concerned with university footbadl ttpics may be “education” and “sports,”
and we would want the former topic to be related to that disoed in the analysis of the document
on university funding.

Moreover, we may want to extend the model to allow for mudtipbrpora. For example, doc-
uments in scientific journals are often grouped into therees ,(“empirical process theory,” “mul-

tivariate statistics,” “survival analysis”), and it woultk of interest to discover to what extent the
latent topics that are shared among documents are alsadsaaress these groupings. Thus in
general we wish to consider the sharing of clusters acro$tspheunested groupings of data.

Our approach to the problem of sharing clusters among nyltiplated groups is a nonpara-
metric Bayesian approach, reposing onlftiéchlet procesgFerguson 1973). The Dirichlet process
DP(ap, Gp) is @ measure on measures. It has two parametexsalang parametery, > 0 and a
base probability measur€y. An explicit representation of a draw from a Dirichlet presgDP)
was given by Sethuraman (1994), who showed th&t# DP(«ag, Go), then with probability one:

o0
G=> Bl 1)
k=1
where theg;, are independent random variables distributed accordirg)tavhered,, is an atom
at ¢, and where the “stick-breaking weights;. are also random and depend on the paramejer
(the definition of thedy, is provided in Section 3.1).

The representation in (1) shows that draws from a DP areades¢with probability one). The
discrete nature of the DP makes it unsuitable for generdicapions in Bayesian nonparametrics,
but it is well suited for the problem of placing priors on mixt components in mixture modeling.
The idea is basically to associate a mixture component veith etom inG. Introducing indica-
tor variables to associate data points with mixture comptsmehe posterior distribution yields a
probability distribution on partitions of the data. A numlazé authors have studied sué€birichlet
process mixture mode{&ntoniak 1974; Escobar and West 1995; MacEachern andevib98).
These models provide an alternative to methods that attengptect a particular number of mixture
components, or methods that place an explicit parametigc pn the number of components.

Let us now consider the setting in which the data are subelividto a number of groups. Given

our goal of solving a clustering problem within each group, a@nsider a set of random measures
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G, one for each group, whereG; is distributed according to a group-specific Dirichlet @ss
DP(avj,Goj). To link these clustering problems, we link the group-sped®Ps. Many authors
have considered ways to induce dependencies among midifsdesia links among the parameters
Gy, and/orag; (Cifarelli and Regazzini 1978; MacEachern 1999; Tomlind898; Muller et al.
2004, De lorio et al. 2004; Kleinman and Ibrahim 1998; M&land Walker 1997; Ishwaran and
James 2004). Focusing on t6g;, one natural proposal is a hierarchy in which the meastreme
conditionally independent draws from a single underlyirigdblet procesDP («g, Go(7)), where
Go(7) is a parametric distribution with random parametefCarota and Parmigiani 2002; Fong
et al. 2002; Muliere and Petrone 1993). Integrating evirduces dependencies among the DPs.

That this simple hierarchical approach will not solve owtpem can be observed by consider-
ing the case in whicld7(7) is absolutely continuous with respect to Lebesgue measur@rhost
all 7 (e.g.,Gy is Gaussian with mean). In this case, given that the draw arise as conditionally
independent draws frorf¥(7), they necessarily have no atoms in common (with probalulitg).
Thus, although clusters arigathin each group via the discreteness of draws from a DP, the atoms
associated with the different groups are different andetieeno sharing of clustetsetweergroups.
This problem can be skirted by assuming tbatlies in a discrete parametric family, but such an
assumption would be overly restrictive.

Our proposed solution to the problem is straightforwardfoi@e GGy to be discrete and yet
have broad support, we consider a nonparametric hieralcamodel in whichGy is itself a draw
from a Dirichlet proces®P (v, H). This restores flexibility in that the modeler can choéséo be
continuous or discrete. In either case, with probabilite,dr, is discrete and has a stick-breaking
representation as in (1). The atomg are shared among the multiple DPs, yielding the desired

sharing of atoms among groups. In summary, we consider #rarhical specification:

GO ’ V?H ~ DP('.Y?H)

Gj | g, Gg ~ DP(O&(),GQ) for eachj, 2)

which we refer to as dierarchical Dirichlet process The immediate extension taerarchical
Dirichlet process mixture modejgelds our proposed formalism for sharing clusters amoiajed
clustering problems.

Related nonparametric approaches to linking multiple D& lbeen discussed by a number of

authors. Our approach is a special case of a general frarkdardidependent Dirichlet processes”
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due to MacEachern (1999) and MacEachern et al. (2001). $rfrdamework the random variables
0O, and ¢ in (1) are general stochastic processes (i.e., indexedatimlhs of random variables);
this allows very general forms of dependency among DPs. @uartthical approach fits into this
framework; we endow the stick-breaking weighits in (1) with a second subscript indexing the
groupsj, and view the weightg;;, as dependent for each fixed valuetofindeed, as we show in
Section 4, the definition in (2) yields a specific, canonicahf of dependence among the weights
Bik-

Our approach is also a special case of a framework referraddnalysis of densitieAnDe)
by Tomlinson (1998) and Tomlinson and Escobar (2003). TheeAmodel is a hierarchical model
for multiple DPs in which the common base meadtifeis random, but rather than treatidg, as
a draw from a DP, as in our case, it is treated as a draw from aumixf DPs. The resulting:
is continuous in general (Antoniak 1974), which, as we haseugsed, is ruinous for our problem
of sharing clusters. It is an appropriate choice, howewarttie problem addressed by Tomlin-
son (1998), which is that of sharing statistical strengtfoagnmultiple sets of density estimation
problems. Thus, while the AnDe framework and our hiera@hidP framework are closely related
formally, the inferential goal is rather different. Moreyas we will see, our restriction to discrete
Gy has important implications for the design of efficient MCMf@arence algorithms.

The terminology of “hierarchical Dirichlet process” has@been used by Muller et al. (2004)
to describe a different notion of hierarchy than the oneutised here. These authors consider a
model in which a coupled set of random measuresre defined a&/; = eFy + (1 — €)F}, where
Fyp and theF; are draws from DPs. This model provides an alternative ampréo sharing clusters,
one in which the shared clusters are given the same stiekimg weights (those associated with
Fp) in each of the groups. By contrast, in our hierarchical nhoithe drawsG; are based on the
same underlying base measurg, but each draw assigns different stick-breaking weighthéo
shared atoms associated with). Thus, atoms can be partially shared.

Finally, the terminology of “hierarchical Dirichlet progg’ has been used in yet a third way by
Beal et al. (2002) in the context of a model known asitifimite hidden Markov modgeh hidden
Markov model with a countably infinite state space. The ‘dmehical Dirichlet process” of Beal
etal. (2002) is, however, not a hierarchy in the Bayesiasesgmather, it is an algorithmic description
of a coupled set of urn models. We discuss this model in maialdie Section 7, where we show

that the notion of hierarchical DP presented here yieldslegaat treatment of the infinite hidden



Markov model.

In summary, the notion of hierarchical Dirichlet procesattive explore is a specific example
of a dependency model for multiple Dirichlet processes, specifically aimed at the problem of
sharing clusters among related groups of data. It involvsisnple Bayesian hierarchy where the
base measure for a set of Dirichlet processes is itselfilnlistd according to a Dirichlet process.
While there are many ways to couple Dirichlet processes, iex this simple, canonical Bayesian
hierarchy as particularly worthy of study. Note in partenuthe appealing recursiveness of the
definition; a hierarchical Dirichlet process can be readityended to multiple hierarchical levels.
This is natural in applications. For example, in our appicmato document modeling, one level
of hierarchy is needed to share clusters among multiple ™deats within a corpus, and second
level of hierarchy is needed to share clusters among melltaptpora. Similarly, in the genetics
example, it is of interest to consider nested subdivisidimpulations according to various criteria
(geographic, cultural, economic), and to consider the flblhaplotypes on the resulting tree.

As is the case with other nonparametric Bayesian methodgn#icsant component of the chal-
lenge in working with the hierarchical Dirichlet processc@mputational. To provide a general
framework for designing procedures for posterior infeeent the hierarchical Dirichlet process
that parallel those available for the Dirichlet processs mecessary to develop analogs for the hi-
erarchical Dirichlet process of some of the representatibat have proved useful in the Dirichlet
process setting. We provide these analogs in Section 4 whemiscuss a stick-breaking repre-
sentation of the hierarchical Dirichlet process, an anabthe Polya urn model that we refer to
as the “Chinese restaurant franchise,” and a represemtatithe hierarchical Dirichlet process in
terms of an infinite limit of finite mixture models. With thesepresentations as background, we
present MCMC algorithms for posterior inference underdnghical Dirichlet process mixtures in

Section 5. We present experimental results in Section 6 egspt our conclusions in Section 8.

2 SETTING

We are interested in problems where the observations aamiary intogroups and assumed ex-
changeable both within each group and across groups. Tcebesey lettingj index the groups and
i index the observations within each group, we assumeathat:;o, ... are exchangeable within

each groupj. We also assume that the observations are exchangeabke gibtlp level, that is, if



x; = (z1,2;2,...) denote all observations in groypthenz;, z,, ... are exchangeable.
Assuming each observation is drawn independently from dumgxmodel, there is a mixture
component associated with each observation. él.etlenote a parameter specifying the mixture
component associated with the observatign We will refer to the variableg;; asfactors Note
that these variables are not generally distinct; we willedep a different notation for the distinct
values of factors. LefF'(6;;) denote the distribution af;; given the factod;;. Let G; denote a
prior distribution for the factor®; = (01,62, ...) associated with group. We assume that the

factors are conditionally independent given. Thus we have the following probability model:

05| G ~ Gy for each; andj,

xji | 05 ~ F(0j) for eachj ands, (3)

to augment the specification given in (2).

3 DIRICHLET PROCESSES

In this section, we provide a brief overview of Dirichlet passes. After a discussion of basic
definitions, we present three different perspectives omihiehlet process: one based on the stick-
breaking construction, one based on a Polya urn model, aadbased on a limit of finite mixture
models. Each of these perspectives has an analog in thedhieal Dirichlet process, which is
described in Section 4.

Let (©, B) be a measurable space, with a probability measure on the space. bgtbe a
positive real number. Mirichlet processDP (ag, Gy) is defined to be the distribution of a random
probability measuré& over (©, B) such that, for any finite measurable partitiofy, Ao, ..., A,)
of ©, the random vectofG(4,),...,G(A,)) is distributed as a finite-dimensional Dirichlet distri-
bution with parametergyGo(A1), ..., a0Go(Ar)):

(G(Al), ‘o ,G(A,n)) ~ Dir(OéQG()(Al), N 7040G0(A7n)) . (4)

We write G ~ DP(«p, Gy) if G is a random probability measure with distribution given bg t

Dirichlet process. The existence of the Dirichlet proceas @stablished by Ferguson (1973).



3.1 The stick-breaking construction

Measures drawn from a Dirichlet process are discrete wibhaility one (Ferguson 1973). This
property is made explicit in thstick-breaking constructiodue to Sethuraman (1994). The stick-

breaking construction is based on independent sequendesiofandom variablegr;)2° , and

(¢k)i°:11
7, | a0, Go ~ Beta(l, ap) ¢k | g, Go ~ Gy . (5)

Now define a random measutkas
k-1

T, = 7, H(l — ) G= Zwk5¢k ) (6)
k=1

=1
whered,; is a probability measure concentratedsatSethuraman (1994) showed titatas defined
in this way is a random probability measure distributed egiog to DP («, Go).

It is important to note that the sequense= (m;);°, constructed by (5) and (6) satisfies
> re, mr = 1 with probability one. Thus we may interpretas a random probability measure on
the positive integers. For convenience, we shall wtite: GEM(«ay) if 7 is a random probability
measure defined by (5) and (6) (GEM stands for Griffiths, ErgjghMcCloskey; e.g. see Pitman
2002b).

3.2 The Chinese restaurant process

A second perspective on the Dirichlet process is providethbyolya urn scheméBlackwell and
MacQueen 1973). The Pblya urn scheme shows that draws frerDirichlet process are both
discrete and exhibit a clustering property.

The Polya urn scheme does not refe€tdirectly; it refers to draws frond. Thus, letd, 0, . ..
be a sequence of i.i.d. random variables distributed aguptd G. That is, the variableg,, 6, . ..
are conditionally independent give#, and hence exchangeable. Let us consider the successive
conditional distributions of); givené+, ..., 0;_1, whereG has been integrated out. Blackwell and

MacQueen (1973) showed that these conditional distribatitave the following form:

i—1
1 a
0; ‘ 01,...,0i—1,00,Go ~ ;f<§

— Gy . 7
+ g 0[+’L'—1+Oéo 0 ()

We can interpret the conditional distributions in terms &liraple urn model in which a ball of a

distinct color is associated with each atom. The balls amevdrequiprobably; when a ball is drawn
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it is placed back in the urn together with another ball of #a@e color. In addition, with probability
proportional tony a new atom is created by drawing fraiy and a ball of a new color is added to
the urn.

Expression (7) shows thét has positive probability of being equal to one of the presidtaws.
Moreover, there is a positive reinforcement effect; theemaften a point is drawn, the more likely
it is to be drawn in the future. To make the clustering propexplicit, it is helpful to introduce a
new set of variables that represent distinct values of thst Definepq, ... , ¢ x to be the distinct
values taken on by, ...,60;_1, and letm; be the number of value® that are equal t@; for
1 <4 < i. We can re-express (7) as

K

my Qo
0;|6q,...,0;_ Gy ~ —— ——Go. 8
2| 1 ,Ui—1,Q0,Go ;Z’_1+a0 ¢k+’i—1+040 0 ()

Using a somewhat different metaphor, the Pélya urn schemksely related to a distribution
on partitions known as th€hinese restaurant proce¢aldous 1985). This metaphor has turned
out to be useful in considering various generalization$efl@irichlet process (Pitman 2002a), and
it will be useful in this paper. The metaphor is as follows.n€ider a Chinese restaurant with an
unbounded number of tables. Eaghcorresponds to a customer who enters the restaurant, while
the distinct values, correspond to the tables at which the customers sit.iffloeistomer sits at the
table indexed byp;., with probability proportional to the number of customets already seated
there (in which case we séf = ¢;), and sits at a new table with probability proportionaldi®

(incrementk, draw¢x ~ G and set); = ¢x).

3.3 Dirichlet process mixture models

One of the most important applications of the Dirichlet @& is as a nonparametric prior on the

parameters of a mixture model. In particular, suppose ths¢mwationse; arise as follows:

;|G ~ G

whereF'(6;) denotes the distribution of the observatigrgivené;. The factors); are conditionally
independent givery, and the observation; is conditionally independent of the other observations

given the facto,. Wheng is distributed according to a Dirichlet process, this madekferred
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to as aDirichlet process mixture modelA graphical model representation of a Dirichlet process
mixture model is shown in Figure 1 (Left).

SinceG can be represented using a stick-breaking constructignhi@factord); take on values
¢ with probability 7. We may denote this using an indicator variabjevhich takes on positive
integral values and is distributed accordingst@interpretings as a random probability measure on
the positive integers). Hence an equivalent representafia Dirichlet process mixture is given by

the following conditional distributions:

| ag ~ GEM(«ap) zi|m ~m

¢k | Go ~ Go wi | ziy (P)her ~ F(9z) - (10)

Moreover,G = 3 72 | 104, andd; = ¢.,.

3.4 The infinite limit of finite mixture models

A Dirichlet process mixture model can be derived as the lohad sequence of finite mixture mod-
els, where the number of mixture components is taken to tpfiiNeal 1992; Rasmussen 2000;
Green and Richardson 2001; Ishwaran and Zarepour 20023.lilfiting process provides a third
perspective on the Dirichlet process.

Suppose we havé mixture components. Let = (mq, ...z ) denote the mixing proportions.
Note that we previously used the symholo denote the weights associated with the atonds.iliVe
have deliberately overloaded the definitionmohere; as we shall see later, they are closely related.
In fact, in the limit L — oo these vectors are equivalent up to a randire-biased permutatioof
their entries (Pitman 1996).

We place a Dirichlet prior oar with symmetric parameter@y /L, ...,a9/L). Let ¢, denote
the parameter vector associated with mixture compoheand let¢, have prior distributionzg.
Drawing an observatiom; from the mixture model involves picking a specific mixturergmonent
with probability given by the mixing proportions; lef denote that component. We thus have the

following model:

7w | ag ~ Dir(ag/L,...,o/L) zi|m ~m

¢ | Go ~ Go i | 2, (Pk)iey ~ F(82) (11)
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Let GE = Z,le 04, IShwaran and Zarepour (2002) show that for every measaifahttion f

integrable with respect t6'y, we have, ad, — oo:

/ £(6)dGE(9) 2 / £(6)dG(6) . (12)

A consequence of this is that the marginal distribution cetlion the observations, ..., z, ap-

proaches that of a Dirichlet process mixture model.

4 HIERARCHICAL DIRICHLET PROCESSES

We propose a nonparametric Bayesian approach to the mgaelgrouped data, where each group
is associated with a mixture model, and where we wish to ldsé mixture models. By analogy
with Dirichlet process mixture models, we first define therapgate nonparametric prior, which
we refer to as théierarchical Dirichlet process We then show how this prior can be used in the
grouped mixture model setting. We present analogs of tteetherspectives presented earlier for
the Dirichlet process—a stick-breaking construction, @n€$e restaurant process representation,
and a representation in terms of a limit of finite mixture mede

A hierarchical Dirichlet process is a distribution over agerandom probability measures over
(©,B). The process defines a set of random probability meaguyesne for each group, and a
global random probability measuég). The global measur€, is distributed as a Dirichlet process

with concentration parameterand base probability measuf&
Go | /7>H ~ DP(/%H) ) (13)

and the random measurés are conditionally independent givé&r,, with distributions given by a

Dirichlet process with base probability measutig
Gj | ap,Go ~ DP(ag,Go) - (14)

The hyperparameters of the hierarchical Dirichlet proasssist of the baseline probability
measured, and the concentration parameterandag. The baselingd provides the prior distribu-
tion for the factord);;. The distributionG varies around the priaff, with the amount of variability

governed byy. The actual distributiorty; over the factors in thg™ group deviates fron@, with
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the amount of variability governed hy,. If we expect the variability in different groups to be dif-
ferent, we can use a separate concentration paramgfer each group. In this paper, following
Escobar and West (1995), we put vague gamma priorgamd oy .

A hierarchical Dirichlet process can be used as the pridribigion over the factors for grouped
data. For each let ;1,0;2,... be i.i.d. random variables distributed @. Eachd;; is a factor

corresponding to a single observatiep. The likelihood is given by:

0i | Gj ~ Gj

zji | 05 ~ F(05) . (15)

This completes the definition offaerarchical Dirichlet process mixture modelhe corresponding
graphical model is shown in Figure 1 (Right).

The hierarchical Dirichlet process can readily be extertdadore than two levels. That is, the
base measurél can itself be a draw from a DP, and the hierarchy can be extefuteas many
levels as are deemed useful. In general, we obtain a treeiagnatDP is associated with each node,
in which the children of a given node are conditionally indegent given their parent, and in which
the draw from the DP at a given node serves as a base measitedoildren. The atoms in the
stick-breaking representation at a given node are thugdl@gnong all descendant nodes, providing

a notion of shared clusters at multiple levels of resolution

4.1 The stick-breaking construction

Given that the global measufg, is distributed as a Dirichlet process, it can be expressid) s
stick-breaking representation:
Go = Z Brbgy (16)
k=1
whereg¢;, ~ H independently an@ = (3;)32, ~ GEM(v) are mutually independent. Sincg
has support at the points = (¢1.)7> ;, eachG; necessarily has support at these points as well, and

can thus be written as:
Gj=> mikbs, - (7)
k=1

Letm; = (m;x)72,. Note that the weights ; are independent give® (since the’7; are independent

givenGy). We now describe how the weights are related to the global weights
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Let (44,...,A,) be a measurable partition 6fand letK; = {k : ¢ € A} fori =1,...,r.
Note that(K71, ..., K,) is a finite partition of the positive integers. Further, assg thatH is
non-atomic, thes;’s are distinct with probability one, so any partition of thesitive integers cor-

responds to some patrtition 6f Thus, for eachy we have:

(Gj(A1),...,Gj(Ay)) ~ Dir(agGo(Ar), ..., Go(Ar))
:(ijk,...,zﬂjk) ~D1r<a025k,...,a025k) , (18)
keK1 kEK, keK1 kEK,

for every finite partition of the positive integers. Hencelea; is independently distributed accord-
ing to DP (v, 3), where we interpreB and; as probability measures on the positive integers. If
H is non-atomic then a weaker result still holdswif ~ DP(«, 3) thenG; as given in (17) is still
DP(av, Go) distributed.

As in the Dirichlet process mixture model, since each faéfpis distributed according tG';, it
takes on the valug;, with probability ;. Again letz;; be an indicator variable such thtgt = ¢. ..
Givenz;j; we haver;; ~ F(¢.,,). Thus we obtain an equivalent representation of the higizat

Dirichlet process mixture via the following conditionaktiibutions:
B~ ~ GEM(y)
7j | a0, ~ DP(ap,B) zji | w5~
oI | H ~ H L g4 | Zji»(‘bk:)zozl ~ F(¢Zji) : (19)

We now derive an explicit relationship between the elemef$ and;. Recall that the stick-

breaking construction for Dirichlet processes defines Hr@tless, in (16) as follows:
k—1
B, ~ Beta(l,7) B =8 [T -5 (20)
I=1

Using (18), we show that the following stick-breaking coustion produces a random probability
measurer; ~ DP(ag, 8):

k k1
. ~ Beta (aoﬁk, g <1 - Zﬁl>> i =i [ J(L—m) - (21)
=1

=1

To derive (21), first notice that for a partitidf1,... &k — 1}, {k},{k + 1,k + 2,...}), (18) gives:

k—1 00 k-1 00
<Z7le77rjk7 > le) ~ Dir <04025l,a05k,a0 > 51)- (22)
=1 I=k+1 =1 I=k+1

14



Removing the first element, and using standard propertigsedDirichlet distribution, we have:
1 o0 ) o
—— (ij, > 7le> ~ Dir (aoﬁk,ao > ﬁz)- (23)
L= i I=k-+1 I=k+1
Finally, definer’, = % and observe that — 37, 3, = Y7°,., (3 to obtain (21).
Together with (20), (16) and (17), this completes the dpsion of the stick-breaking construction

for hierarchical Dirichlet processes.

4.2 The Chinese restaurant franchise

In this section we describe an analog of the Chinese restpracess for hierarchical Dirichlet
processes that we refer to as thhinese restaurant franchisén the Chinese restaurant franchise,
the metaphor of the Chinese restaurant process is extemd#idw multiple restaurants which share
a set of dishes.

The metaphor is as follows (see Figure 2). We have a restafneanchise with a shared menu
across the restaurants. At each table of each restauramtisine ordered from the menu by the
first customer who sits there, and it is shared among all oute® who sit at that table. Multiple
tables in multiple restaurants can serve the same dish.

In this setup, the restaurants correspond to groups andugieroers correspond to the factors
;. We also letpy, ..., ¢x denotek i.i.d. random variables distributed accordingHo this is the
global menu of dishes. We also introduce variahgswhich represent the table-specific choice of
dishes; in particular);; is the dish served at tablen restaurany.

Note that eacly;; is associated with one;;, while eachy;; is associated with ong,. We
introduce indicators to denote these associations. licpéat, lett;; be the index of the);; associ-
ated withd;;, and letk;; be the index ofp, associated with;;. In the Chinese restaurant franchise
metaphor, customerin restaurany sat at tablée ;; while tablet in restauranyj serves dislt;;.

We also need a notation for counts. In particular, we needaimtain counts of customers and
counts of tables. We use the notatigf, to denote the number of customers in restauraat
tablet eating dishk. Marginal counts are represented with dots. Thys, represents the number
of customers in restauraritat tablet andn;.;, represents the number of customers in restayrant
eating dishk. The notationn j;, denotes the number of tables in restaurasérving dishk. Thus,
m;. represents the number of tables in restaujant.;, represents the number of tables serving dish

k, andm.. the total number of tables occupied.
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Let us now compute marginals under a hierarchical Diricpletcess wherGy and G; are
integrated out. First consider the conditional distribatfor 6;; given6;, ..., 0;,_1 andGg, where
G is integrated out. From (8):

o

—C 24
’i—1+()éo 0 ( )

mjA
Nni¢.
Hji ‘ 9]'1’ cee aejn'—laaOaGO ~ g ﬁéwﬂ +
t=1 0

This is a mixture, and a draw from this mixture can be obtaimgdrawing from the terms on the
right-hand side with probabilities given by the corresgagdmixing proportions. If a term in the
first summation is chosen then we 8gt = v;; and lett;; = t for the chosen. If the second term
is chosen then we increment;. by one, draw;,,,; ~ Go and set;; = ¢, andt;; = m;..

Now we proceed to integrate oGYy. Notice thatG, appears only in its role as the distribution
of the variables);;. SinceGy, is distributed according to a Dirichlet process, we cangrie it out

by using (8) again and write the conditional distribution/of as:

m.p,

K
Vit | Y11, P12, hons e Y, H o~ Z gy, + T _nH. (25)
k=1

— m..+7 m.. +7y

If we draw1);; via choosing a term in the summation on the right-hand sideisfequation, we set
Vi = ¢, and letk;; = k for the choserk. If the second term is chosen then we incremg&niby
one, drawpyx ~ H and set);; = ¢ andk;; = K.

This completes the description of the conditional distiiims of thed;; variables. To use these
equations to obtain samples &f, we proceed as follows. For eagtands, first sampled;; using
(24). If a new sample fronir is needed, we use (25) to obtain a new sampleand set);; = ;.

Note that in the hierarchical Dirichlet process the valuethe factors are shared between the

groups, as well as within the groups. This is a key propertyi@farchical Dirichlet processes.

4.3 The infinite limit of finite mixture models

As in the case of a Dirichlet process mixture model, the nadiaal Dirichlet process mixture model
can be derived as the infinite limit of finite mixtures. In tisisction, we present two apparently
different finite models that both yield the hierarchicaliBlilet process mixture in the infinite limit,
each emphasizing a different aspect of the model.

Consider the following collection of finite mixture modelghere3 is a global vector of mixing
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proportions ank ; is a group-specific vector of mixing proportions:

B |~ ~ Dir(y/L,...,v/L)
;i | a0, ~ Dir(af) zji | ®5 ~

x| H ~ H zji | zjis (Or)k=1 ~ F(dz,) - (26)

The parametric hierarchical prior fg@ and« in (26) has been discussed by MacKay and Peto
(1994) as a model for natural languages. We will show thalinhie of this model asl, — o is the
hierarchical Dirichlet process. Let us consider the rangeobability measure€} = 54, frd,
andGJL = S F_, mirds, - Asin Section 3.4, for every measurable functjbimtegrable with respect

to H we have

[ 1@racke) > [ 16)dco). @7)
asL — oo. Further, using standard properties of the Dirichlet thation, we see that (18) still
holds for the finite case for partitions ¢f, ..., L}; hence we have:

G} ~ DP(a,Gf) - (28)

It is now clear that ag. — oo the marginal distribution this finite model induces ®rapproaches
the hierarchical Dirichlet process mixture model.

There is an alternative finite model whose limit is also thednichical Dirichlet process mixture
model. Instead of introducing dependencies between thggrby placing a prior o (as in the
first finite model), each group can instead choose a subgenukture components from a model-

wide set ofL mixture components. In particular consider the followingdal:

B |~ ~ Dir(y/L,...,v/L) kit |B ~ B
7j | ag ~ Dir(ag/T,...,a0/T) tji | w5 ~ m;
on | H ~ H zji | ti, (kje)ier, (Br)bey ~ F(or,,,) - (29)

AsT — oo andL — oo, the limit of this model is the Chinese restaurant franchpiseess; hence

the infinite limit of this model is also the hierarchical @inlet process mixture model.
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5 INFERENCE

In this section we describe three related Markov chain M@uado sampling schemes for the hi-
erarchical Dirichlet process mixture model. The first israightforward Gibbs sampler based on
the Chinese restaurant franchise, the second is based nmurgeented representation involving
both the Chinese restaurant franchise and the posteri@grfowhile the third is a variation on the
second sampling scheme with streamlined bookkeeping.niplisy the discussion we assume that
the base distributio{ is conjugate to the data distributidr; this allows us to focus on the issues
specific to the hierarchical Dirichlet process. The nonggaje case can be approached by adapt-
ing to the hierarchical Dirichlet process techniques dgwedl for nonconjugate DP mixtures (Neal
2000). Moreover, in this section we assume fixed values ctncentration parametetg and-~;

we present a sampler for these parameters in the appendix.

We recall the random variables of interest. The variablgsare the observed data. Each
is assumed to arise as a draw from a distributiof®;;). Let the factord;; be associated with
the tablet;; in the restaurant representation; i.e.,dgt = ;.. The random variable;; is an
instance of mixture component; i.e., ;1 = ¢y,,. The prior over the parametets is H. Let
zji = kjt;; denote the mixture component associated with the obsenvafj. We use the notation
n;y, 1o denote the number of customers in restauyaait tablet eating dishk, while m;, denotes
the number of tables in restaurgingerving dishk. Marginal counts are represented with dots.

Letx = (zj; : all j,4), xj = (x5 ¢ alliwitht;; =t),t = (¢ : all j,i), k = (kj : all j,t),

z = (zj; : allj,i), m = (my;, : all j,k) ande = (¢1,...,¢x). When a superscript is attached
to a set of variables or a count, e.g-7*, k=7t or n]_tﬂ this means that the variable corresponding
to the superscripted index is removed from the set or fromctieulation of the count. In the
examplesg =" = x\xz;;, kIt = k\kjq andnj_gi is the number of observations in grogpvhose
factor is associated with;;, leaving out iteme ;.

Let F'(0) have densityf(-|¢) and H have density:(-). SinceH is conjugate ta' we integrate
out the mixture component parametégrén the sampling schemes. Denote the conditional density
of z;; under mixture componeritgiven all data items except;; as
J £ @ilon) Tyrirggiozy =i £ (@grir | i) (k) debi

f Hj’i';ﬁjmj,i,:k f(xj’i’ |¢kz)h(¢k) d¢kz .

f P wge) = (30)
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Similarly denotef,;mjt(asjt) as the conditional density af;; given all data items associated with
mixture componenkt leaving outz ;.
Finally, we will suppress references to all variables ex¢bpse being sampled in the condi-

tional distributions to follow, in particular we omit refamces tor, oy and-y.

5.1 Posterior sampling in the Chinese restaurant franchise

The Chinese restaurant franchise presented in Sectiona#.®e used to produce samples from
the prior distribution over thé;;, as well as intermediary information related to the tabled a

mixture components. This framework can be adapted to yi€libes sampling scheme for posterior
sampling given observations

Rather than dealing with th#;;’s and+;;’s directly, we shall sample their index variablgs
andkj; instead. The;;'s and;;’s can be reconstructed from these index variables angjlse
This representation makes the Markov chain Monte Carlo 8agiygcheme more efficient (cf. Neal
2000). Notice that the;; and thek;; inherit the exchangeability properties of the and they;;—
the conditional distributions in (24) and (25) can be adapbebe expressed in termsQf andk;;.
The state space consists of values¢ ahdk. Notice that the number df;; variables represented
explicitly by the algorithm is not fixed. We can think of thetaal state space as consisting of an
infinite number oft;;'s; only finitely many are actually associated to data andesgnted explicitly.

Samplingt. To compute the conditional distribution of; given the remainder of the variables,
we make use of exchangeability and tréatas the last variable being sampled in the last group
in (24) and (25). We obtain the conditional posterior fgr by combining the conditional prior
distribution fort;; with the likelihood of generating ;.

Using (24), the prior probability that;; takes on a particular previously used vatuis pro-
portional to@jﬂ whereas the probability that it takes on a new value (& = m;. + 1) is
proportional tag. The likelinood due tar;; givent; = t for some previously usetis f, ' (z;;).
The likelihood fort;; = t"®" can be calculated by integrating out the possible values;@d
using (25):

m.g
m.. +y

K
p(sz | t_ji, t]l = tnew, k) = Z
k=1

fo 7 () + 1 7!)‘};nffvjvi(%‘z’) ; (31)

m.. +
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wheref i (z;) = [ f(zji|¢)h(¢)ds is simply the prior density of;;. The conditional distribu-

tion of ¢;; is then

ot = | £ k) oc n;tﬂf,;f] (zs) if + previously used, (32)
’ 7 aop(wji]t_ji, tj; = tnew, k) if ¢ = ¢"ew,
If the sampled value of;; is t"*", we obtain a sample d@f;;ew by sampling from (31):
(ks = k| £ k) o mify, ' (x;:) if k previously used, (33)
gt ) ’Yf_nfv{/l (1'32) If k? — knew_

If as a result of updating;; some table becomes unoccupied, i.e.;;. = 0, then the probability

that this table will be reoccupied in the future will be zesmce this is always proportional tg;;..

As a result, we may delete the correspondingfrom the data structure. If as a result of deleting

kj; some mixture componeitbecomes unallocated, we delete this mixture component ks we
Sampling k. Since changing:;; actually changes the component membership of all data items

in tablet, the likelihood obtained by settinig; = & is given byfk_w"t(mjt), so that the conditional

probability ofk;; is

m ' f. " (@;:) if kis previously used,

g 34
Y frnon (Tt if k= knew, (34)

plkjr =k | t,k77") {

5.2 Posterior sampling with an augmented representation

In the Chinese restaurant franchise sampling scheme, theligg for all groups is coupled since
G is integrated out. This complicates matters in more eldbaradels (e.g., in the case of the
hidden Markov model considered in Section 7). In this sectie describe an alternative sampling
scheme where in addition to the Chinese restaurant framcbgesentation(yy is instantiated and
sampled from so that the posterior conditioned&yfactorizes across groups.

Given a posterior samplé,(k) from the Chinese restaurant franchise representatiorgane

obtain a draw from the posterior 6fy by noting thatG, ~ DP(~, H) andv;; for each tablé is a

draw fromG)y. Conditioning on they;;'s, G is now distributed a®P (v + m.., P

An explicit construction foiGy is now given as

B=,...,0k,0u) ~ Dir(m.q,...,m.x,) G, ~ DP(v,H)

K
p(oe | t.k) o h(en) [ Flwlér)  Go=_ Bubs, +5uGu  (35)

ji:kjtji =k k=1
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Given a sample of7, the posterior for each group is factorized and sampling ochegoup can
be performed separately. The variables of interest in ttieme aret and k as in the Chinese
restaurant franchise sampling scheme gnabove, while bothp and G, are integrated out (this
introduces couplings into the sampling for each group baaily handled).

Sampling for t and k is almost identical to the Chinese restaurant franchisgpbagnscheme.
The only novelty is that we replace.; by G, and~y by 5, in (31), (32), (33) and (34), and when
a new component™¥ is instantiated we draw ~ Beta(1,v) and setGynew = b3, and g1V =
(1 —b)S,. We can understanidas follows: when a new component is instantiated, it is m&sed
from GG, by choosing an atom i6r,, with probability given by its weighd. Using the fact that the
sequence of stick-breaking weights is a size-biased pationtof the weights in a draw from a
Dirichlet process (Pitman 1996), the weigltorresponding to the chosen atonG will have the
same distribution as the first stick-breaking weight, Beta(1,~).

Sampling for 3 has already been described in (35):

(B1y.-yBr,Bu) | t,k ~ Dir(m.q,...,m.xg,7) . (36)

5.3 Posterior sampling by direct assignment

In both the Chinese restaurant franchise and augmentesseyation sampling schemes, data items
are first assigned to some tablg, and the tables are then assigned to some mixture compbpent
This indirect association to mixture components can magdtokkeeping somewhat involved. In
this section we describe a variation on the augmented remison sampling scheme that directly
assigns data items to mixture components via a varigplehich is equivalent td;; . in the earlier
sampling schemes. The tables are only represented in téitms oumbers of tables ;..

Sampling z can be realized by grouping together terms associated adtein (31) and (32):

(nj_il + aoBk) fr (zj;) if k previously used,

—Tyji . new (37)
O‘Oﬁufknew (1'37,) if &= k"W,

p(zi=k|z 7" m,B) = {

where we have replaced.;, with 8, and~ with 3,,.

Samplingm. Inthe augmented representation sampling scheme, camelition the assignment
of data items to mixture components the only effect oft andk on other variables is vian in
the conditional distribution of8 in (36). As a result it is sufficient to sampie in place oft and

k. To obtain the distribution of;; conditioned on other variables, consider the distributbn;;
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assuming thak;;;; = z;;. The probability that data item;; is assigned to some tablesuch that

ki = kis
pltji = tlhje = k,t79 k. B) oc ", (38)
while the probability that it is assigned a new table undengonent is
p(tji = t"kjmew = k, t 77" k, B) o< a3y, - (39)

These equations form the conditional distributions of abSibampler whose equilibrium distribu-
tion is the prior distribution over the assignmentgf, observations to components in an ordinary
Dirichlet process with concentration parametgp,. The corresponding distribution over the num-
ber of components is then the desired conditional disiobudf m ;.. Antoniak (1974) has shown

that this is:

p(mjxr =m | z,m* B) = P(O};;&k—%s(ng‘.k,m)(aoﬁwm , (40)

wheres(n, m) are unsigned Stirling numbers of the first kind. We have bynitedn thats(0,0) =
s(1,1) =1, s(n,0) = 0 for n > 0 ands(n,m) = 0 for m > n. Other entries can be computed as
s(n+1,m) = s(n,m — 1) + ns(n,m).

Sampling for 3 is the same as in the augmented sampling scheme and is gi{@6)by

5.4 Comparison of Sampling Schemes

Let us now consider the relative merits of these three saigchemes. In terms of ease of im-
plementation, the direct assignment scheme is preferremlise its bookkeeping is straightforward.
The two schemes based on the Chinese restaurant franchidesimore substantial effort. In ad-
dition, both the augmented and direct assignment schemgdesaather than integrate oGY, and
as a result the sampling of the groups is decoupled dixenrhis simplifies the sampling schemes
and makes them applicable in elaborate models such as tierhMarkov model in Section 7.

In terms of convergence speed, the direct assignment schieamges the component mem-
bership of data items one at a time, while in both schemegubm Chinese restaurant franchise
changing the component membership of one table will chahgertembership of multiple data
items at the same time, leading to potentially improvedgrerince. This is akin to split-and-merge

techniques in Dirichlet process mixture modeling (Jain Bledl 2000). This analogy is, however,
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somewhat misleading in that unlike split-and-merge methtte assignment of data items to tables
is a consequence of tipgior clustering effect of a Dirichlet process with).;, samples. As a resullt,
we expect that the probability of obtaining a successfusiggament of a table to another previ-
ously used component will often be small, and we do not necisexpect the Chinese restaurant
franchise schemes to dominate the direct assignment scheme

The inference methods presented here should be viewed astéips in the development of
inference procedures for hierarchical Dirichlet processtumes. More sophisticated methods—
such as split-and-merge methods (Jain and Neal 2000) aratienal methods (Blei and Jordan
2005)—have shown promise for Dirichlet processes and weatxpat they will prove useful for

hierarchical Dirichlet processes as well.

6 EXPERIMENTS

We describe two experiments in this section to highlighttii@aspects of the hierarchical Dirichlet
process: its nonparametric nature and its hierarchicair@atn the next section we present a third
experiment highlighting the ease with which we can exteedrfimework to more complex models,
specifically a hidden Markov model with a countably infinitats space.

The software that we used for these experiments is avaible
http://www.cs.berkeley.edu/hdp. The software implements a hierarchy of Dirichlet processke

arbitrary depth.

6.1 Document modeling

Recall the problem of document modeling discussed in Sedtio Following standard method-
ology in the information retrieval literature (Salton and®ill 1983), we view a document as a
“bag of words”; that is, we make an exchangeability assuonptor the words in the document.
Moreover, we model the words in a document as arising fromxdurd model, in which a mixture

component—a “topic’—is a multinomial distribution over wis from some finite and known vo-
cabulary. The goal is to model a corpus of documents in suchyaas to allow the topics to be
shared among the documents in a corpus.

A parametric approach to this problem is provided by ldtent Dirichlet allocation(LDA)

model of Blei et al. (2003). This model involves a finite mibdunodel in which the mixing propor-
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tions are drawn on a document-specific basis from a Diriatikttibution. Moreover, given these
mixing proportions, each word in the document is an indepahdraw from the mixture model.
That is, to generate a word, a mixture component (i.e., a}dpiselected, and then a word is
generated from that topic.

Note that the assumption that each word is associated witksitpy different topic differs from
a model in which a mixture component is selected once pemdenty and then words are generated
i.i.d. from the selected topic. Moreover, it is interestilmgnote that the same distinction arises in
population genetics, where multiple words in a documenaagtogous to multiple markers along a
chromosome. Indeed, Pritchard et al. (2000) have develapeddel in which marker probabilities
are selected once per marker; their model is essentialhtiaig to LDA.

As in simpler finite mixture models, it is natural to try to emtl LDA and related models by
using Dirichlet processes to capture uncertainty reggrttie number of mixture components. This
is somewhat more difficult than in the case of a simple mixinoelel, however, because in the LDA
model the documents have document-specific mixing prapwti We thus require multiple DPs,
one for each document. This then poses the problem of shauikxtgre components across multiple
DPs, precisely the problem that the hierarchical DP is aegigo solve.

The hierarchical DP extension of LDA thus takes the follggviorm. Given an underlying
measureHd on multinomial probability vectors, we select a random meaé&, which provides a
countably infinite collection of multinomial probabilityeetors; these can be viewed as the set of all
topics that can be used in a given corpus. Forjthedocument in the corpus we samle using
Gy as a base measure; this selects specific subsets of topiesugel in document. FromG;
we then generate a document by repeatedly sampling spedciftmamial probability vectord),;
from G; and sampling words j; with probabilitiesd;;. The overlap among the random measures
G; implements the sharing of topics among documents.

We fit both the standard parametric LDA model and its hieliaedtDP extension to a corpus
of nematode biology abstracts (detp://elegans.swmed.edu/wli/cgcbib). There are 5838 abstracts
in total. After removing standard stop words and words appgdewer than 10 times, we are left
with 476441 words in total. Following standard informatia@trieval methodology, the vocabulary
is defined as the set of distinct words left in all abstrattis; has size 5699.

Both models were as similar as possible beyond the distim¢hiat LDA assumes a fixed finite

number of topics while the hierarchical Dirichlet procesgslnot. Both models used a symmetric
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Dirichlet distribution with parameters ©f5 for the prior H over topic distributions. The concen-
tration parameters were given vague gamma priprs, Gamma(1,.1) andagy ~ Gamma(l,1).
The distribution over topics in LDA is assumed to be symnaedirichlet with parametersy /L
with I being the number of topics;is not used in LDA. Posterior samples were obtained using the
Chinese restaurant franchise sampling scheme, while theeatration parameters were sampled
using the auxiliary variable sampling scheme presenteldarappendix.

We evaluated the models via 10-fold cross-validation. TWeduation metric was thperplex-
ity, a standard metric in the information retrieval literatuiiéhe perplexity of a held-out abstract

consisting of wordsvy, . . ., wy is defined to be:

1 ..
exp <_f log p(w1, . .., wy|Training corpu$> (41)

wherep(-) is the probability mass function for a given model.

The results are shown in Figure 3. For LDA we evaluated thpleeity for mixture component
cardinalities ranging between 10 and 120. As seen in Figtef), the hierarchical DP mixture
approach—which integrates over the mixture componentirtailies—performs as well as the
best LDA model, doing so without any form of model selectisogedure. Moreover, as shown in
Figure 3 (Right), the posterior over the number of topicabtetd under the hierarchical DP mixture

model is consistent with this range of the best-fitting LDAdsls.

6.2 Multiple corpora

We now consider the problem of sharing clusters among thardents in multiple corpora. We
approach this problem by extending the hierarchical Dieicphrocess to a third level. A draw from
a top-level DP yields the base measure for each of a set ofisdepel DPs. Draws from each
of these corpus-level DPs yield the base measures for DBsiate] with the documents within a
corpus. Finally, draws from the document-level DPs proddepresentation of each document as
a probability distribution across topics (which are dmitions across words). The model allows
topics to be shared both within each corpus and between m@orpo

The documents that we used for these experiments consisticies from the proceedings
of the Neural Information Processing SysteifddlPS) conference for the years 1988-1999. The
original articles are available &ittp://books.nips.cc; we use a preprocessed version available at

http://www.cs.utoronto.ca/~roweis/nips. The NIPS conference deals with a range of topics covering
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both human and machine intelligence. Articles are sepdiate nine sections: algorithms and

architectures (AA), applications (AP), cognitive scielf€S), control and navigation (CN), imple-

mentations (IM), learning theory (LT), neuroscience (NSynal processing (SP), vision sciences
(VS). (These are the sections used in the years 1995-1999sddtioning in earlier years differed

slightly; we manually relabeled sections from the earlieang to match those used in 1995-1999.)
We treat these sections as “corpora,” and are interestdueipdttern of sharing of topics among

these corpora.

There were 1447 articles in total. Each article was modeted hag-of-words. We culled
standard stop words as well as words occurring more than difég@ver than 50 times in the whole
corpus. This left us with on average slightly more than 1000@ds per article.

We considered the following experimental setup. Given aofetrticles from a single NIPS
section that we wish to model (the VS section in the expertstrat we report below), we wish to
know whether it is of value (in terms of prediction performajto include articles from other NIPS
sections. This can be done in one of two ways: we can lump dhefarticles together without
regard for the division into sections, or we can use the hibieal DP approach to link the sections.

Thus we consider three models (see Figure 4 for graphicaedseptations of these models):

e M1: This model ignores articles from the other sections anglsimses a hierarchical DP
mixture of the kind presented in Section 6.1 to model the \{8las. This model serves as
a baseline. We usegd ~ Gamma(5,0.1) andagy ~ Gamma(0.1,0.1) as prior distributions

for the concentration parameters.

e M2: This model incorporates articles from other sections, ipnbres the distinction into
sections, using a single hierarchical DP mixture model taehall of the articles. Priors of

v ~ Gamma(5,0.1) anday ~ Gamma(0.1,0.1) were used.

e M3: This model takes a full hierarchical approach and mod& KPS sections as multiple
corpora, linked via the hierarchical DP mixture formalisfine model is a tree, in which the
root is a draw from a single DP for all articles, the first leiged set of draws from DPs for the
NIPS sections, and the second level is set of draws from DRedaarticles within sections.
Priors ofy ~ Gamma(5,0.1), ap ~ Gamma(5,0.1), anda; ~ Gamma(0.1,0.1) were

used.
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In all models a finite and known vocabulary is assumed anddke measurg used is a symmetric
Dirichlet distribution with parameters 6f5.

We conducted experiments in which a set of 80 articles wesserh uniformly at random from
one of the sections other than VS (this was done to balandentiect of different sections, which
are of different sizes). A training set of 80 articles wemoathosen uniformly at random from the
VS section, as were an additional set of 47 test articlegndisfrom the training articles. Results
report predictive performance on VS test articles based wairing set consisting of the 80 arti-
cles in the additional section and VS training articles whereV varies betwee® and80. The
direct assignment sampling scheme is used, while con¢iemtearameters are sampled using the
auxiliary variable sampling scheme in the appendix.

Figure 5 (Left) presents the average predictive performdacall three models over 5 runs as
the numberV of VS training articles ranged from 0 to 80. The performarecemeasured in terms
of the perplexity of single words in the test articles givee training articles, averaged over the
choice of which additional section was used. As seen in thedighe fully hierarchical model M3
performs best, with perplexity decreasing rapidly with mstdvalues ofV. For small values ofV,
the performance of M1 is quite poor, but the performanceagugres that of M3 when more than 20
articles are included in the VS training set. The perforneapicthe partially-hierarchical M2 was
poorer than the fully-hierarchical M3 throughout the ran§eév. M2 dominated M1 for smallV,
but yielded poorer performance than M1 férgreater than 14. Our interpretation is that the sharing
of strength based on other articles is useful when littleothformation is available (smalV), but
that eventually (medium to largh’) there is crosstalk between the sections and it is preferabl
model them separately and share strength via the hierarchy.

While the results in Figure 5 (Left) are an average over tlutiaes, it is also of interest to
see which sections are the most beneficial in terms of entguribe prediction of the articles in
VS. Figure 5 (Right) plots the predictive performance ford®mloM3 when given data from each
of three particular sections: LT, AA and AP. While articlestihe LT section are concerned mostly
with theoretical properties of learning algorithms, thas@&A are mostly concerned with models
and methodology, and those in AP are mostly concerned wijilicaions of learning algorithms to
various problems. As seen in the figure, we see that predipgrformance is enhanced the most
by prior exposure to articles from AP, less by articles from, And still less by articles from LT.

Given that articles in VS tend to be concerned with the ptattpplication of learning algorithms
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to problems in computer vision, this pattern of transfenseesasonable.

Finally, it is of interest to investigate the subject mattentent of the topics discovered by the
hierarchical DP model. We did so in the following experina¢r#etup. For a given section other
than VS (e.g., AA), we fit a model based on articles from thatige. We then introduced articles
from the VS section and continued to fit the model, while haidihe topics found from the earlier
fit fixed, and recording which topics from the earlier sectiware allocated to words in the VS
section. Table 1 displays representations of the two mesguntly occurring topics in this setup
(a topic is represented by the set of words which have highrediability under that topic). These
topics provide qualitative confirmation of our expectasiorgarding the overlap between VS and

other sections.

7 HIDDEN MARKOV MODELS

The simplicity of the hierarchical DP specification—the daseasure for a DP is distributed as a
DP—makes it straightforward to exploit the hierarchical &a building block in more complex
models. In this section we demonstrate this in the case dfitten Markov model.

Recall that a hidden Markov model (HMM) is a doubly stochastiarkov chain in which a
sequence of multinomial “state” variablés, , v, . .., vr) are linked via a state transition matrix,
and each elemeny; in a sequence of “observationsl, o, ..., yr) is drawn independently of
the other observations conditional on(Rabiner 1989). This is essentially a dynamic variant of a
finite mixture model, in which there is one mixture componemtresponding to each value of the
multinomial state. As with classical finite mixtures, it rge@resting to consider replacing the finite
mixture underlying the HMM with a Dirichlet process.

Note that the HMM involves not a single mixture model, buheata set of mixture models—
one for each value of the current state. That is, the “custie” v, indexes a specific row of the
transition matrix, with the probabilities in this row samgias the mixing proportions for the choice
of the “next state,, ;. Given the next state,, the observationy,.; is drawn from the mixture
component indexed by, ;. Thus, to consider a nonparametric variant of the HMM whilbbwes
an unbounded set of states, we must consider a set of DPspioeadh value of the current state.
Moreover, these DPs must be linked, because we want the sdrof‘sext states” to be reachable

from each of the “current states.” This amounts to the reguant that the atoms associated with
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the state-conditional DPs should be shared—exactly tmeewaork of the hierarchical DP.

Thus, we can define a nonparametric hidden Markov model bglgireplacing the set of con-
ditional finite mixture models underlying the classical HMMth a hierarchical Dirichlet process
mixture model. We refer to the resulting model asierarchical Dirichlet process hidden Markov
model(HDP-HMM). The HDP-HMM provides an alternative to metholattplace an explicit para-
metric prior on the number of states or make use of models@temethods to select a fixed number
of states (Stolcke and Omohundro 1993).

In work that served as an inspiration for the HDP-HMM, Beahlet(2002) discussed a model
known as thenfinite hidden Markov modgin which the number of hidden states of a hidden
Markov model is allowed to be countably infinite. Indeed, Betaal. (2002) defined a notion of
“hierarchical Dirichlet process” for this model, but th&merarchical Dirichlet process” is not hier-
archical in the Bayesian sense—involving a distributiortt@parameters of a Dirichlet process—
but is instead a description of a coupled set of urn modelsbiédly review this construction, and
relate it to our formulation.

Beal et al. (2002) considered the following two-level prae for determining the transition
probabilities of a Markov chain with an unbounded numbertafes. At the first level, the prob-
ability of transitioning from a state to a statev is proportional to the number of times the same
transition is observed at other time steps, while with pbiliig proportional toay an “oracle” pro-
cess is invoked. At this second level, the probability ohsiioning to states is proportional to
the number of times statehas been chosen by the oracle (regardless of the prevides, staile
the probability of transitioning to a novel state is propmral to~. The intended role of the oracle
is to tie together the transition models so that they havérdg®n states in common, in much the
same way that the baseline distributi6f ties together the group-specific mixture components in
the hierarchical Dirichlet process.

To relate this two-level urn model to the hierarchical DRrfeavork, let us describe a represen-
tation of the HDP-HMM using the stick-breaking formalism.garticular, consider the hierarchical
Dirichlet process representation shown in Figure 6. Tharpaters in this representation have the

following distributions:

By ~ GEM(y) 7k | a0, ~ DP(a,B) o |H ~ H, (42)
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foreachk = 1,2,..., while for time steps = 1, ..., T the state and observation distributions are:

Vg | 'Ut—la(ﬂ-k)zozl ~ Ty Ut | Ut7(¢k)/§“;1 ~ F(¢Ut) ) (43)

where we assume for simplicity that there is a distinguisim@ihl statev. If we now consider
the Chinese restaurant franchise representation of thilehas discussed in Section 5, it turns out
that the result is equivalent to the coupled urn model of Beal. (2002), hence the infinite hidden
Markov model is an HDP-HMM.

Unfortunately, posterior inference using the Chineseargsint franchise representation is awk-
ward for this model, involving substantial bookkeepingdded, Beal et al. (2002) did not present
an MCMC inference algorithm for the infinite hidden Markov ded proposing instead a heuristic
approximation to Gibbs sampling. On the other hand, bothatigmented representation and di-
rect assignment representations lead directly to MCMC $#ampchemes that are straightforward
to implement. In the experiments reported in the followiegtoon we used the direct assignment
representation.

Practical applications of hidden Markov models often coessets of sequences, and treat these
sequences as exchangeable at the level of sequences. Thpplications to speech recognition, a
hidden Markov model for a given word in the vocabulary is galg trained via replicates of that
word being spoken. This setup is readily accommodated nvitié hierarchical DP framework by
simply considering an additional level of the Bayesiandmiehy, letting a master Dirichlet process

couple each of the HDP-HMMs, each of which is a set of Diritplecesses.

7.1 Alice in Wonderland

In this section we report experimental results for the moblof predicting strings of letters in
sentences taken from Lewis Carrol$ice’s Adventures in Wonderlandomparing the HDP-HMM
to other HMM-related approaches.

Each sentence is treated as a sequence of letters and gjadicestban as a sequence of words).
There are 27 distinct symbols (26 letters and space); casgpuanctuation marks are ignored.
There are 20 training sentences with average length of 5belgmnand there are 40 test sentences
with an average length of 100. The base distributtdris a symmetric Dirichlet distribution over
27 symbols with parametefs1. The concentration parameteysaandag are givenGamma(1,1)

priors.
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Using the direct assignment sampling method for posteriediptive inference, we compared
the HDD-HMM to a variety of other methods for prediction uginidden Markov models: (1) a
classical HMM using maximum likelihood (ML) parameters abed via the Baum-Welch algo-
rithm (Rabiner 1989), (2) a classical HMM using maximum atederi (MAP) parameters, taking
the priors to be independent, symmetric Dirichlet distiidms for both the transition and emission
probabilities, and (3) a classical HMM trained using an agpnation to a full Bayesian analysis—
in particular, a variational Bayesian (VB) method due to Mayg (1997) and described in detail in
Beal (2003). For each of these classical HMMs, we conductpdranents for each value of the
state cardinality ranging from 1 to 60.

We present the perplexity on test sentences in Figure 7)(Lk&dt VB, the predictive probability
is intractable to compute, so the modal setting of pararmetas used. Both MAP and VB models
were given optimal settings of the hyperparameters foumugutie HDP-HMM. We see that the
HDP-HMM has a lower perplexity than all of the models testedNIL, MAP, and VB. Figure 7
(Right) shows posterior samples of the number of states ngétte HDP-HMM.

8 DISCUSSION

We have described a nonparametric approach to the modéigrgups of data, where each group is
characterized by a mixture model and we allow mixture corepts1to be shared between groups.
We have proposed a hierarchical Bayesian solution to tlablem, in which a set of Dirichlet
processes are coupled via their base measure, which isdistlbuted according to a Dirichlet
process.

We have described three different representations th&titeapspects of the hierarchical Dirich-
let process. In particular, we described a stick-breakeygasentation that describes the random
measures explicitly, a representation of marginals in $eofman urn model that we referred to as
the “Chinese restaurant franchise,” and a representafittimegprocess in terms of an infinite limit
of finite mixture models.

These representations led to the formulation of three Mad{min Monte Carlo sampling
schemes for posterior inference under hierarchical Diichrocess mixtures. The first scheme
is based directly on the Chinese restaurant franchise septation, the second scheme represents

the posterior using both a Chinese restaurant franchise aathple from the global measure, while
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the third uses a direct assignment of data items to mixtungoments.

Clustering is an important activity in many large-scaleadamalysis problems in engineering
and science, reflecting the heterogeneity that is oftenepteshen data are collected on a large
scale. Clustering problems can be approached within a piladier framework via finite mixture
models (Fraley and Raftery 2002; Green and Richardson 2@®ib) recent years have seen nu-
merous examples of applications of finite mixtures and tigmamical cousins the HMM in areas
such as bioinformatics (Durbin et al. 1998), speech redimgn{Huang et al. 2001), information
retrieval (Blei et al. 2003) and computational vision (FRtinsand Ponce 2002). These areas also
provide numerous instances of data analyses which involuépie, linked sets of clustering prob-
lems, for which classical clustering methods (model-basetn-model-based) provide little in the
way of leverage. In bioinformatics we have already alludedhe problem of finding haplotype
structure in subpopulations. Other examples in bioinfditeanclude the use of HMMs for amino
acid sequences, where a hierarchical DP version of the HMMIldvallow motifs to be discov-
ered and shared among different families of proteins. Iresip@ecognition multiple HMMs are
already widely used, in the form of word-specific and speakecific models, and adhoc meth-
ods are generally used to share statistical strength amanglsr We have discussed examples
of grouped data in information retrieval; other examplesude problems in which groups are in-
dexed by author or by language. Finally, computationabvisind robotics problems often involve
sets of descriptors or objects that are arranged in a taxan@xamples such as these, in which
there is substantial uncertainty regarding appropriatebars of clusters, and in which the sharing
of statistical strength among groups is natural and ddsiraliggest that the hierarchical nonpara-
metric Bayesian approach to clustering presented here no&dp a generally useful extension of

model-based clustering.

A Posterior sampling for concentration parameters

MCMC samples from the posterior distributions for the concation parameters and oy of the
hierarchical Dirichlet process can be obtained usinggtiforward extensions of analogous tech-
niques for Dirichlet processes. Let the number of observedps be equal td, with n;.. observa-
tions in the;™ group. Consider the Chinese restaurant franchise repegisen The concentration

parameteix, governs the distribution of the number ¢f;'s in each mixture. As noted in Sec-
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tion 5.3 this is given by:

J
p(mi,....myzlag,ni.y...,ny.) = H s(nj.,mj.)ag " (44)

j=1
Further,« does not govern other aspects of the joint distributionchgd4) along with the prior
for «y is sufficient to derive MCMC updates far given all other variables.

In the case of a single mixture moddl & 1), Escobar and West (1995) proposed a gamma prior
and derived an auxiliary variable update fqy, while Rasmussen (2000) observed that (44) is log-
concave inog(«g) and proposed using adaptive rejection sampling instead.a@laptive rejection
sampler of Rasmussen (2000) can be directly applied to the .£a> 1 since the conditional
distribution oflog(«y) is still log-concave. The auxiliary variable method of Hsapand West
(1995) requires a slight modification for the case- 1. Assume that the prior fatyy is a gamma
distribution with parameters andb. For eachj we can write

() 1 1 a0 Ny
L(ag +nj.) r(nj,,)/o wi? (1= ;)™ <1+ —0> dw; . (45)

We define auxiliary variables) = (w;)7_, ands = (s;);_, where eachy; is a variable taking on

values in[0, 1], and eacls; is a binary{0, 1} variable, and define the following distribution:

55
a—1+m.. —aob 1 _ j.o—1 . 46
q(o, w, 8) x aj Hw w;)" <a0 > (46)

Now marginalizingq to «q gives the desired conditional distribution fag. Henceq defines an

auxiliary variable sampling scheme fag. Givenw ands we have:

J X
glaolw, s) < af TR a0 logwy) (47)

which is a gamma distribution with parameters- m.. — Y°7_, s; andb— >-7_, log w;. Givenay,

thew; ands; are conditionally independent, with distributions:

q(wjlag) o w 01 —wj)™ -l (48)
a(s1lan) ox (”i> . (49)

@

which are beta and binomial distributions respectivelyisTdompletes the auxiliary variable sam-
pling scheme fory,. We prefer the auxiliary variable sampling scheme as it $$eedo implement

and typically mixes quickly (within 20 iterations).
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Given the total number.. of 1;;'s, the concentration parametggoverns the distribution over

the number of componenfs:

il m.) = st Ky g (50)

v+m.)
Again other variables are independentyajivenm.. and K, hence we may apply the techniques of

Escobar and West (1995) or Rasmussen (2000) directly tolssgmp
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Figure 1. (Left) A representation of a Dirichlet process i model as a graphical model. (Right)
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A hierarchical Dirichlet process mixture model. In the draal model formalism, each node in the
graph is associated with a random variable, where shadimgiele an observed variable. Rectangles
denote replication of the model within the rectangle. Samet the number of replicates is given

in the bottom right corner of the rectangle.
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Figure 2: A depiction of a Chinese restaurant franchise hEestaurant is represented by a rectan-
gle. Customersi;'s) are seated at tables (circles) in the restaurants. At tdude a dish is served.
The dish is served from a global menty§, whereas the parametgr; is a table-specific indicator
that serves to index items on the global menu. The custémsits at the table to which it has been

assigned in (24).
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Perplexity on test abstacts of LDA and HDP mixture Posterior over number of topics in HDP mixture
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Figure 3: (Left) Comparison of latent Dirichlet allocation and thetarchical Dirichlet process mixture.
Results are averaged over 10 runs; the error bars are ortastiagrror. (Right) Histogram of the number of

topics for the hierarchical Dirichlet process mixture o¥80 posterior samples.
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Figure 4: Three models for the NIPS data. From left to right:, M2 and M3.
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Generalization from LT, AA, AP to VS

Average perplexity over NIPS sections of 3 models
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Figure 5: (Left) Perplexity of single words in test VS articles giveaining articles from VS and another
section for 3 different models. Curves shown are averaged the other sections and 5 runs. (Right)
Perplexity of test VS articles given LT, AA and AP articlespectively, using M3, averaged over 5 runs. In

both plots, the error bars represent one standard error.

Table 1: Topics shared between VS and the other NIPS sectibmsse topics are the most fre-
quently occurring in the VS fit, under the constraint thatytlaee associated with a significant

number of words (greater than 2500) from the other section.

task representation pattern processing trained representations three process unit
CS | patterns

examples concept similarity bayesian hypotheses generalization numbers positive
classes hypothesis

cells cell activity response neuron visual patterns pattern single fig
NS | visual cells cortical orientation receptive contrast spatial cortex stimulus tuning

signal layer gaussian cells fig nonlinearity nonlinear rate eq cell
LT | large examples form point see parameter consider random small optimal

algorithms test approach methods based point problems form large paper
AA | distance tangent image images transformation transformations pattern vectors convolu-
tion simard

processing pattern approach architecture single shows simple based large control
IM | motion visual velocity flow target chip eye smooth direction optical

visual images video language image pixel acoustic delta lowpass flow
SP | signals separation signal sources source matrix blind mixing gradient eq

approach based trained test layer features table classification rate paper
AP | image images face similarity pixel visual database matching facial examples

il tree pomdp observable strategy class stochastic history strategies density
CN | policy optimal reinforcement control action states actions step problems goal
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Figure 6: A graphical representation of a hierarchical dhlet process hidden Markov model.
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Figure 7:(Left) Comparing the HDP-HMM (solid horizontal line) with IM MAP and VB trained hidden
Markov models. The error bars represent one standard ¢nasg for the HDP-HMM are too small to see).

(Right) Histogram for the number of states in the HDP-HMM 104800 posterior samples.
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