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Abstract
We introduce Bayesian Poisson Tucker decom-
position (BPTD) for modeling country–country
interaction events of the form “country i took ac-
tion a toward country j at time t.” BPTD discov-
ers overlapping country–community member-
ships, including the number of latent communi-
ties, as well as directed community–community
interaction networks that are specific to “topics”
of action types and temporal “regimes.” We show
that BPTD yields an MCMC inference algorithm
that is provably more efficient than related al-
gorithms, achieves better predictive performance
than related models, and discovers interpretable
latent structure that agrees with and contributes
to our knowledge of international relations.

1. Introduction
Like their inhabitants, countries interact with one another:
they consult, negotiate, trade, threaten, and fight. These
interactions are seldom uncoordinated. Rather, they are
connected by a fabric of overlapping communities, such as
security coalitions, treaties, trade cartels, and military al-
liances. For example, OPEC coordinates the petroleum ex-
port policies of its thirteen member countries, LAIA fosters
trade among Latin American countries, and NATO guaran-
tees collective defense against attacks by external parties.

A single country can belong to multiple communities, re-
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flecting its different identities. For example, Venezuela—
an oil-producing country and a Latin American country—is
a member of both OPEC and LAIA. When Venezuela inter-
acts with other countries, it sometimes does so as an OPEC
member and sometimes does so as a LAIA member.

Countries engage in both within-community and between-
community interactions. For example, when acting as
an OPEC member, Venezuela consults with other OPEC
countries, but trades with non-OPEC, oil-importing coun-
tries. Moreover, although Venezuela engages in between-
community interactions when trading as an OPEC member,
it engages in within-community interactions when trading
as a LAIA member. To understand or predict how one
country will act toward another, we must therefore account
for their respective community memberships, as well as the
influence that those memberships have on their actions.

In this paper, we take a new approach to learning unob-
served overlapping communities from interaction events of
the form “country i took action a toward country j at time
t.” A data set of such interaction events can be represented
as either 1) a set of event tokens, 2) a tensor of event type
counts, or 3) a series of weighted multinetworks. Mod-
els that use the token representation naturally yield effi-
cient inference algorithms, models that use the tensor rep-
resentation exhibit good predictive performance, and mod-
els that use the network representation learn latent structure
that aligns with well-known concepts such as communi-
ties. Previous models of interaction event data have each
taken advantage of a subset of these representations. In
contrast, we present Bayesian Poisson Tucker decomposi-
tion (BPTD), which takes advantage of all three (section 3).

BPTD leads to an MCMC inference algorithm that is prov-
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Figure 1. Latent structure learned by BPTD from country–
country interaction events between 1995 and 2000. Top right:
A community–community interaction network specific to a single
topic of actions and temporal regime. The inferred topic placed
most of its mass on the Intend to Cooperate and Consult actions,
so this network represents cooperative community–community
interactions. The two strongest between-community interactions
(circled) are 2−→5 and 2−→7. Left: Each row depicts the over-
lapping community memberships for a single country. We show
only those countries whose strongest community membership is
to either community 2, 5, or 7. We ordered the countries ac-
cordingly. Countries strongly associated with community 7 are
at highlighted in red; countries associated with community 5 are
highlighted in green; and countries associated with community
2 are highlighted in purple. Bottom right: Each country is col-
ored according to its strongest community membership. The la-
tent communities have a very strong geographic interpretation.

ably more efficient than related algorithms (section 4),
achieves better predictive performance than related models
(section 7), and discovers interpretable structure that agrees
with and contributes to our knowledge of international
relations (section 8). Figure 1 illustrates this structure.
BPTD learns latent country–community memberships, in-
cluding the number of communities, as well as directed
community–community interaction networks that are spe-
cific to “topics” of action types and temporal “regimes.”

2. Background and Technical Motivation
We can represent a data set of interaction events as a set
of N event tokens, where a single token en = (i

a−→j, t)
indicates that sender country i ∈ [V ] took action a ∈ [A]
toward receiver country j ∈ [V ] during time step t ∈ [T ].
Alternatively, we can aggregate these event tokens into a
four-dimensional tensor Y , where element y(t)

i
a−→j

is a count

of the number of events of type (i
a−→j, t). This tensor will

be sparse because most event types never actually occur
in practice. Finally, we can equivalently view this count
tensor as a series of T weighted multinetwork snapshots,
where the weight on edge i a−→j in the tth snapshot is y(t)

i
a−→j

.

Researchers have recently begun to analyze interaction
events in order to discover latent structure of various sorts.
The most appropriate models for such data are those that
capture its discrete nature and its sparsity, and thus yield
inference algorithms that scale with the number of event to-
kens, the number of non-zero elements in the tensor, or the
number of observed edges. DuBois & Smyth (2010) devel-
oped a model that assigns each event token (ignoring time
steps) to one ofQ latent classes, where each class q ∈ [Q] is
characterized by three categorical distributions—θ→q over
senders, θ←q over receivers, and φq over actions—i.e.,

P (en =(i
a−→j, t) | zn =q) = θ→iq θ

←
jq φaq. (1)

Inference in this model consists of allocating event to-
kens to classes and thus scales with the number of to-
kens. Schein et al. (2015) developed a Poisson-based
model that uses the canonical polyadic (CP) tensor decom-
position (Harshman, 1970) to factorize Y into four latent
factor matrices, which jointly embed senders, receivers, ac-
tions and time steps into a single Q-dimensional space:

y
(t)

i
a−→j
∼ Po

(
Q∑

q=1

θ→iq θ
←
jq φaq ψtq

)
, (2)

where θ→iq , θ←jq , φaq , and ψtq are now positive real numbers.
Although this model is most naturally expressed in terms
of a tensor of event type counts, the relationship between
the multinomial and Poisson distributions (Kingman, 1972)
means that we can also write it in terms of a set of event
tokens. This yields an expression similar to equation 1:

P (en =(i
a−→j, t) | zn =q) ∝ θ→iq θ←jq φaq ψtq. (3)

Conversely, DuBois & Smyth’s model can be expressed
as a CP tensor decomposition. This equivalence is anal-
ogous to the relationship between Poisson matrix factor-
ization (Cemgil, 2009; Gopalan et al., 2015; Zhou & Carin,
2015) and latent Dirichlet allocation (Blei et al., 2003).

CP decomposition models require each latent class to
jointly summarize information about senders, receivers, ac-
tions, and time steps. This requirement conflates com-
munities of countries and topics of actions, thus forc-
ing each class to capture potentially redundant informa-
tion. Moreover, by definition, these models cannot ex-
press between-community interactions and cannot express
sender–receiver asymmetry without learning completely
separate latent factor matrices for senders and receivers.
These limitations make it hard to interpret CP decompo-
sition models as learning latent community memberships.
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The CP decomposition is not the only form of tensor de-
composition. The Tucker decomposition (Tucker, 1964)
factorizes a tensor, such as Y , into latent factor matri-
ces that embed each dimension into its own space—e.g.,
senders and receivers into communities, actions into top-
ics, and time steps into regimes. Hoff (2015) recently de-
veloped a model based on the Tucker decomposition for
analyzing interaction event data, though because it uses a
Gaussian likelihood, its inference algorithm does not take
advantage of the discrete nature of the data or its sparsity.

In the next section, we present Bayesian Poisson Tucker
decomposition (BPTD). This model factorizes Y into three
latent factor matrices (embedding countries into communi-
ties, actions into topics, and time steps into regimes) and
a four-dimensional core tensor that interacts communities,
topics, and regimes. Each element of the core tensor cap-
tures the rate at which community c takes actions associ-
ated with topic k toward community d during regime r. The
country–community factors enable BPTD to learn overlap-
ping community memberships, while the core tensor en-
ables it to learn directed community–community interac-
tion networks that are specific to particular “topics” of ac-
tions. BPTD is amenable to all three representations of in-
teraction event data—as a set of event tokens, as a tensor of
event type counts, and as a series of weighted multinetwork
snapshots. As a result, it yields an efficient inference al-
gorithm, exhibits good predictive performance, and learns
meaningful latent structure. Finally, in addition to general-
izing DuBois & Smyth’s and Schein et al.’s models, BPTD
generalizes several state-of-the-art network models.

3. Bayesian Poisson Tucker Decomposition
BPTD models each element of tensor Y as follows:

y
(t)

i
a−→j
∼ Po

(
C∑

c=1

θic

D∑
d=1

θjd

K∑
k=1

φak

R∑
r=1

ψtr λ
(r)

c
k−→d

)
, (4)

where θic, θjd, φak, ψtr, and λ(r)
c

k−→d
are positive real num-

bers. Factors θic and θjd capture the rates at which coun-
tries i and j participate in communities c and d, respec-
tively; factor φak captures the strength of association be-
tween action a and topic k; and ψtr captures how well
regime r explains the events in time step t. We can col-
lectively view the V × C country–community factors as a
latent factor matrix Θ, where the ith row represents country
i’s community memberships. Similarly, we can view the
A×K action–topic factors and the T×R time-step–regime
factors as latent factor matrices Φ and Ψ, respectively. Fac-
tor λ(r)

c
k−→d

captures the rate at which community c takes ac-

tions associated with topic k toward community d during
regime r. The C × C × K × R such factors form a core
tensor Λ that interacts communities, topics, and regimes.

The country–community factors are gamma-distributed:

θic ∼ Γ(αi, βi) , (5)

where the shape and rate parameters αi and βi are specific
to country i. We place an uninformative gamma prior over
these shape and rate parameters: αi, βi ∼ Γ(ε0, ε0). This
hierarchical prior enables BPTD to express heterogeneity
in the countries’ rates of activity. For example, we expect
that the US will engage in more interactions than Burundi.

The action–topic and time-step–regime factors are also
gamma-distributed; however, we assume that these factors
are drawn directly from an uninformative gamma prior:

φak, ψtr ∼ Γ(ε0, ε0) . (6)

Because BPTD learns a single embedding of countries into
communities, it preserves the traditional network-based no-
tion of community membership. Sender–receiver asymme-
try is instead captured by the core tensor Λ, which we can
view as a compression of count tensor Y . By allowing
on-diagonal elements, which we denote by λ(r)

c �k
and off-

diagonal elements to be non-zero, the core tensor can rep-
resent both within- and between-community interactions.

The elements of the core tensor are gamma-distributed:

λ
(r)

c �k
∼ Γ

(
η �
c η↔c νk ρr, δ

)
(7)

λ
(r)

c
k−→d
∼ Γ(η↔c η↔d νk ρr, δ) for c 6= d. (8)

Each community c ∈ [C] has two positive weights η �

c

and η↔c that capture its rates of within- and between-
community interaction, respectively. Each topic k ∈ [K]
has a positive weight νk, while each regime r ∈ [R] has a
positive weight ρr. We place an uninformative prior over
the within-community interaction rates and gamma shrink-
age priors over the other weights: η �

c ∼ Γ(ε0, ε0), η↔c ∼
Γ(γ0 /C, ζ), νk ∼ Γ(γ0 /K, ζ), and ρr ∼ Γ(γ0 /R, ζ).
These priors bias BPTD toward learning latent structure
that is sparse. Finally, we assume that δ and ζ are drawn
from an uninformative gamma prior: δ, ζ ∼ Γ(ε0, ε0).

As K → ∞, the topic weights and their corresponding
action–topic factors constitute a drawGK =

∑∞
k=1 νk 1φk

from a gamma process (Ferguson, 1973). Similarly, as
R → ∞, the regime weights and their correspond-
ing time-step–regime factors constitute a draw GR =∑∞

r=1 ρr 1ψr
from another gamma process. As C → ∞,

the within- and between-community interaction weights
and their corresponding country–community factors con-
stitute a draw GC =

∑∞
c=1 η

↔
c 1θc

from a marked gamma
process (Kingman, 1972). The mark associated with atom
θc = (θ1c, . . . , θVc) is η �

c . The elements of the core tensor
and their corresponding factors can be considered a draw
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G =
∑∞

c=1

∑∞
d=1

∑∞
k=1

∑∞
r=1 λ

(r)

c
k−→d

1θc,θd,φk,ψr
from a

gamma process, provided that the expected sum of the core
tensor elements is finite. This multirelational gamma pro-
cess extends the relational gamma process of Zhou (2015).

Proposition 1: In the limit as C,K,R →∞, the expected
sum of the core tensor elements is finite and equal to

E

 ∞∑
c=1

∞∑
k=1

∞∑
r=1

λ(r)
c �k

+
∑
d6=c

λ
(r)

c
k−→d

 =
1

δ

(
γ30
ζ3

+
γ40
ζ4

)
.

We prove this proposition in the supplementary material.

4. Posterior Inference
Given an observed count tensor Y , inference involves “in-
verting” BPTD’s generative process to obtain the posterior
distribution over the model parameters conditioned on Y
and hyperparameters ε0 and γ0. The posterior distribution
is analytically intractable; however, we can approximate it
using a set of posterior samples. We draw these samples us-
ing a Gibbs sampling algorithm that consists of repeatedly
resampling the value of each parameter from its conditional
posterior given Y , ε0, γ0, and the current values of the
other parameters. We can express each parameter’s con-
ditional posterior in a closed form using gamma–Poisson
conjugacy and the auxiliary variable techniques of Zhou &
Carin (2012). We provide the conditional posteriors, along
with their derivations, in the supplementary material.

The conditional posteriors depend on Y via a set of “la-
tent sources” (Cemgil, 2009) or subcounts. Because of the
Poisson additivity theorem (Kingman, 1972), each latent
source y(tr)

ic
ak−→jd

is a Poisson-distributed random variable:

y
(tr)

ic
ak−→jd

∼ Po
(
θic θjd φak ψtr λ

(r)

c
k−→d

)
(9)

y
(t)

i
a−→j

=

C∑
c=1

D∑
d=1

K∑
k=1

R∑
r=1

y
(tr)

ic
ak−→jd

. (10)

Together, equations 9 and 10 are equivalent to equation 4.
In practice, we can equivalently view each latent source in
terms of the token representation described in section 2:

y
(tr)

ic
ak−→jd

=

N∑
n=1

1(en =(i
a−→j, t))1(zn =(c

k−→d, r)), (11)

where each token’s class assignment zn is an auxiliary la-
tent variable. Using this representation, computing the la-
tent sources (given the current values of the model param-
eters) simply involves allocating event tokens to classes,
much like the inference algorithm for DuBois & Smyth’s

model, and aggregating them using equation 11. The con-
ditional posterior for each token’s class assignment is

P (zn =(c
k−→d, r) | en =(i

a−→j, t),Y , ε0, γ0, . . .)

∝ θic θjd φak ψtr λ
(r)

c
k−→d
. (12)

The main computational bottleneck in our Gibbs sampling
algorithm is the normalizing constant for equation 12:

Z
(t)

i
a−→j

=

C∑
c=1

C∑
d=1

K∑
k=1

R∑
r=1

θic θjd φak ψtr λ
(r)

c
k−→d
. (13)

Computing this normalizing constant naı̈vely involves
O(C × C × K × R) operations; however, because each
latent class (c

k−→d, r) is composed of four separate dimen-
sions, we can improve efficiency by instead computing

Z
(t)

i
a−→j

=

C∑
c=1

θic

C∑
d=1

θjd

K∑
k=1

θak

R∑
r=1

ψtr λ
(r)

c
k−→d
, (14)

which involves O(C + C +K +R) operations.

Compositional allocation using equations 12 and 14 im-
proves computational efficiency significantly over naı̈ve
non-compositional allocation using equations 12 and 13. In
practice, we setC,K, andR to large values to approximate
the nonparametric interpretation of BPTD. If, for example,
C = 50, K = 10, and R = 5, computing the normalizing
constant for equation 12 using equation 13 requires 2,753
times the number of operations implied by equation 14.

Proposition 2: For an M -dimensional core tensor with
D1 × . . .×DM elements, computing the normalizing con-
stant using non-compositional allocation requires 1 ≤ π <
∞ times the number of operations required to compute it
using compositional allocation. When D1 = . . .=DM =1,
π=1; as Dm, Dm′ →∞ for any m and m′ 6=m, π →∞.

We prove this proposition in the supplementary material.

Tucker decomposition models like BPTD naturally lead to
efficient compositional allocation inference algorithms be-
cause they assign each M -dimensional event token to an
M -dimensional latent class. In contrast, CP decomposi-
tion models, such as those of DuBois & Smyth (2010)
and Schein et al. (2015), do not permit compositional al-
location. For example, while BPTD allocates each token
en = (i

a−→j, t) to a four-dimensional latent class (c
k−→d, r),

Schein et al.’s model allocates en to a one-dimensional la-
tent class q that cannot be decomposed. Therefore, when
Q=C × C ×K ×R, BPTD will yield a faster allocation-
based inference algorithm than Schein et al.’s model.
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5. Connections to Previous Work
Poisson CP decomposition: As we described in section 2,
we can express the models of both DuBois & Smyth (2010)
and Schein et al. (2015) as a CP decomposition model with
a Poisson likelihood. We can make this model nonparamet-
ric by adding a per-class positive weight λq as follows:

y
(t)

i
a−→j
∼ Po

(
Q∑

q=1

θ→iq θ
←
jq φaq ψtq λq

)
. (15)

As Q → ∞ the per-class weights and their corresponding
latent factors constitute a draw from a gamma process.

Tucker decomposition is equivalent to CP decomposition
when the cardinalities of the latent dimensions are equal
and the off-diagonal elements of the core tensor are zero.
DuBois & Smyth’s and Schein et al.’s models therefore
constitute a highly constrained special case of BPTD that
cannot capture dimension-specific structure, such as top-
ics of actions or communities of countries that engage in
between-community interactions. CP decomposition mod-
els are also unable to express sender–receiver asymmetry
without learning separate latent factor matrices for senders
and receivers. These limitations strain the interpretation of
these models as learning latent community memberships.

Bayesian Poisson CP decomposition itself generalizes sev-
eral recent Bayesian Poisson matrix factorization mod-
els (Cemgil, 2009; Gopalan et al., 2014; 2015; Zhou &
Carin, 2015), as well as non-Bayesian versions of Poisson
CP decomposition (Chi & Kolda, 2012; Welling & Weber,
2001). In general, researchers working on Poisson factor-
ization methods have ignored the Tucker decomposition.

Infinite relational models: The infinite relational model
(IRM) of Kemp et al. (2006) also learns latent structure
specific to each dimension of an M -dimensional tensor;
however, unlike BPTD, the elements of this tensor are bi-
nary, indicating the presence or absence of the correspond-
ing event type. The IRM therefore uses a Bernoulli like-
lihood. Schmidt & Mørup (2013) extended the IRM to
model a tensor of event counts by replacing the Bernoulli
likelihood with a Poisson likelihood (and gamma priors):

y
(t)

i
a−→j
∼ Po

(
λ
(zt)

zi
za−→zj

)
, (16)

where zi, zj ∈ [C] are the respective community assign-
ments of countries i and j, za ∈ [K] is the topic as-
signment of action a, and zt ∈ [R] is the regime assign-
ment of time step t. This model, which we refer to as the
gamma–Poisson IRM (GPIRM), allocates M -dimensional
event types to M -dimensional latent classes—e.g., it allo-
cates all tokens of type (i

a−→j, t) to class (zi
za−→zj , zt).

The GPIRM is a special case of BPTD, in which the rows
of the latent factor matrices are constrained to be “one-hot”

binary vectors—i.e., θic = 1(zi = c), θjd = 1(zj = d),
φak = 1(za = k), and ψtr = 1(zt = r). With this con-
straint, the Poisson rate in equation 4 is equal to the Pois-
son rate in equation 16. Unlike BPTD, the GPIRM is a
single-membership model. In addition, it cannot express
heterogeneity in the countries’ rates of activity. The lat-
ter limitation can be remedied by allowing θizi and θjzj to
be positive real numbers. We refer to this variant of the
GPIRM as the degree-corrected GPIRM (DCGPIRM).

Stochastic block models: The IRM itself generalizes
the stochastic block model (SBM) of Nowicki & Sni-
jders (2001), which learns latent structure from binary net-
works. Although the SBM was originally specified using a
Bernoulli likelihood, Karrer & Newman (2011) introduced
an alternative specification that uses the Poisson likelihood:

yi−→j ∼ Po

(
C∑

c=1

θic

C∑
d=1

θjd λc−→d

)
, (17)

where θic = 1(zi = c), θj = 1(zj = d), and λc−→d is a
positive real number. Like the IRM and the GPIRM, the
SBM is a single-membership model and cannot express
heterogeneity in the countries’ rates of activity. Airoldi
et al. (2008) addressed the former limitation by letting
θic ∈ [0, 1] such that

∑C
c=1 θic = 1. Meanwhile, Karrer

& Newman (2011) addressed the latter limitation by allow-
ing both θizi and θjzj to be positive real numbers, much
like the DCGPIRM. Ball et al. (2011) simultaneously ad-
dressed both limitations by letting θic, θjd ≥ 0, but con-
strained λc−→d = λd−→c. Finally, Zhou (2015) extended
Ball et al.’s model to be nonparametric and introduced the
Poisson–Bernoulli distribution to link binary data to the
Poisson likelihood in a principled fashion. In this model,
the elements of the core matrix and their corresponding fac-
tors constitute a draw from a relational gamma process.

Non-Poisson Tucker decomposition: Researchers some-
times refer to the Poisson rate in equation 17 as be-
ing “bilinear” because it can equivalently be written as
θj Λθ

>
i . Nickel et al. (2012) introduced RESCAL—

a non-probabilistic bilinear model for binary data that
achieves state-of-the-art performance at relation extraction.
Nickel et al. (2015) then introduced several extensions for
extracting relations of different types. Bilinear models,
such as RESCAL and its extensions, are all special cases
(albeit non-probabilistic ones) of Tucker decomposition.

As we described in section 2, Hoff (2015) recently devel-
oped a model based on the Tucker decomposition for ana-
lyzing interaction event data. This model uses a Gaussian
likelihood and thus does not naturally yield an inference
algorithm that takes advantage of the sparsity of the data.

Finally, there are many other Tucker decomposition meth-
ods (Kolda & Bader, 2009). Although these include non-
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parametric (Xu et al., 2012) and nonnegative variants (Kim
& Choi, 20007; Mørup et al., 2008; Cichocki et al., 2009),
BPTD is the first such model to use a Poisson likelihood.

6. Country–Country Interaction Event Data
Our data come from the Integrated Crisis Early Warn-
ing System (ICEWS) of Boschee et al. and the Global
Database of Events, Language, and Tone (GDELT) of Lee-
taru & Schrodt (2013). ICEWS and GDELT both use the
Conflict and Mediation Event Observations (CAMEO) hi-
erarchy (Gerner et al.) for senders, receivers, and actions.

The top-level CAMEO coding for senders and receivers
is their country affiliation, while lower levels in the hier-
archy incorporate more specific attributes like their sec-
tors (e.g., government or civilian) and their religious or
ethnic affiliations. When studying international relations
using CAMEO-coded event data, researchers usually con-
sider only the senders’ and receivers’ countries. There are
249 countries represented in ICEWS, which include non-
universally recognized states, such as Occupied Palestinian
Territory, and former states, such as Former Yugoslav Re-
public of Macedonia; there are 233 countries in GDELT.

The top level for actions, which we use in our analyses,
consists of twenty action classes, roughly ranked according
to their overall sentiment. For example, the most negative is
20—Use Unconventional Mass Violence. CAMEO further
divides these actions into the QuadClass scheme: Verbal
Cooperation (actions 2–5), Material Cooperation (actions
6–7), Verbal Conflict (actions 8–16), and Material Conflict
(16–20). The first action (1—Make Statement) is neutral.

7. Predictive Analysis
Baseline models: We compared BPTD’s predictive perfor-
mance to that of three baseline models, described in sec-
tion 5: 1) GPIRM, 2) DCGPIRM, and 3) the Bayesian
Poisson tensor factorization (BPTF) model of Schein et al.
(2015). All three models use a Poisson likelihood and have
the same two hyperparameters as BPTD—i.e., ε0 and γ0.
We set ε0 to 0.1, as recommended by Gelman (2006), and
we set γ0 so that (γ0 /C)

2
(γ0 /K) (γ0 /R) = 0.01. This

parameterization encourages the elements of the core ten-
sor Λ to be sparse. We implemented an MCMC inference
algorithm for each model. We provide the full generative
process for all three models in the supplementary material.

GPIRM and DCGPIRM are both Tucker decomposition
models and thus allocate events to four-dimensional la-
tent classes. The cardinalities of these latent dimensions
are the same as BPTD’s—i.e., C, K, and R. In con-
trast, BPTF is a CP decomposition model and thus allo-
cates events to one-dimensional latent classes. We set the

cardinality of this dimension so that the total number of
latent factors in BPTF’s likelihood was equal to the to-
tal number of latent factors in BPTD’s likelihood—i.e.,
Q = d (V×C)+(A×K)+(T×R)+(C2×K×R)

V+V+A+T+1 e. We chose not
to let BPTF and BPTD use the same number of latent
classes—i.e., to set Q = C2 × K × R. BPTF does not
permit non-compositional allocation, so MCMC inference
becomes very slow for even moderate values of C, K, and
R. CP decomposition models also tend to overfit when Q
is large (Zhao et al., 2015). Throughout our predictive ex-
periments, we let C= 25, K= 6, and R= 3. These values
were well-supported by the data, as we explain in section 8.

Experimental design: We constructed twelve different ob-
served tensors—six from ICEWS and six from GDELT.
Five of the six tensors for each source (ICEWS or GDELT)
correspond to one-year time spans with monthly time steps,
starting with 2004 and ending with 2008; the sixth corre-
sponds to a five-year time span with monthly time steps,
spanning 1995–2000. We divided each tensor Y into a
training tensor Y train = Y (1), . . . ,Y (T−3) and a test ten-
sor Y test = Y (T−3), . . . ,Y (T ). We further divided each
test tensor into a held-out portion and an observed por-
tion via a binary mask. We experimented with two dif-
ferent masks: one that treats the elements involving the
most active fifteen countries as the held-out portion and the
remaining elements as the observed portion, and one that
does the opposite. The first mask enabled us to evaluate
the models’ reconstructions of the densest (and arguably
most interesting) portion of each test tensor, while the sec-
ond mask enabled us to evaluate their reconstructions of
its complement. Across the entire GDELT database, for
example, the elements involving the most active fifteen
countries—i.e., 6% of all 233 countries—account for 30%
of the event tokens. Moreover, 40% of these elements are
non-zero. These non-zero elements are highly dispersed,
with a variance-to-mean ratio of 220. In contrast, only
0.7% of the elements involving the other countries are non-
zero. These elements have a variance-to-mean ratio of 26.

For each combination of the four models, twelve tensors,
and two masks, we ran 5,000 iterations of MCMC inference
on the training tensor; clamped the country–community
factors, the action–topic factors, and the core tensor; and
then inferred the time-step–regime factors for the test ten-
sor using its observed portion by running 1,000 iterations of
MCMC inference. We saved every tenth sample after the
first 500. We used each sample, along with the country–
community factors, the action–topic factors, and the core
tensor, to compute the Poisson rate for each element in the
held-out portion of the test tensor. Finally, we averaged
these rates across samples and used each element’s average
rate to compute its probability. We combined the held-out
elements’ probabilities by taking their geometric mean or,
equivalently, computing their inverse perplexity. We chose
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Figure 2. Predictive performance. Each plot shows the inverse perplexity (higher is better) for the four models: the GPIRM (blue), the
DCGPIRM (green), BPTF (red), and BPTD (yellow). In the experiments depicted in the top row, we treated the elements involving the
most active countries as the held-out portion; in the experiments depicted in the bottom row, we treated the remaining elements as the
held-out portion. For ease of comparison, we scaled the inverse perplexities to lie between zero and one; we give the scales in the top-left
corners of the plots. BPTD outperformed the baselines significantly when predicting the denser portion of each test tensor (top row).

this combination strategy to ensure that the models were
penalized heavily for making poor predictions on the non-
zero elements and were not rewarded excessively for mak-
ing good predictions on the zero elements. By clamping
the country–community factors, the action–topic factors,
and the core tensor after training, our experimental design
is analogous to that used to assess collaborative filtering
models’ strong generalization ability (Marlin, 2004).

Results: We report the results for each combination of the
four models, twelve tensors, and two masks in figure 2.
The top row contains the results from the twelve experi-
ments involving the first mask, where the elements involv-
ing the most active fifteen countries were treated as the
held-out portion. BPTD outperformed the baselines signif-
icantly. BPTF—itself a state-of-the-art model—performed
better than BPTD in only one experiment. In general, the
Tucker decomposition allows BPTD to learn richer latent
structure that generalizes better to held-out data. The bot-
tom row contains the results from the experiments involv-
ing the second mask. The models’ performance was closer
in these experiments, probably because of the large pro-
portion of easy-to-predict zero elements. BPTD and BPTF
performed indistinguishably in these experiments, and both
models outperformed the GPIRM and the DCGPIRM. The
single-membership nature of the GPIRM and the DCG-
PIRM prevents them from expressing high levels of hetero-
geneity in the countries’ rates of activity. When the held-
out elements were highly dispersed, these models some-
times made extremely inaccurate predictions. In contrast,
the mixed-membership nature of BPTD and BPTF allows
them to better express heterogeneous rates of activity.

8. Exploratory Analysis
We used a tensor of ICEWS events spanning 1995–2000,
with monthly time steps, to explore the latent structure dis-
covered by BPTD. We initially let C = 50, K = 8, and
R= 3—i.e., C × C × K × R = 60, 000 latent classes—

and used the shrinkage priors to adaptively learn the most
appropriate numbers of communities, topics, and regimes.
We found C = 15 communities and K = 5 topics with
weights that were significantly greater than zero. We pro-
vide a plot of the community weights in the supplementary
material. Although all three regimes had non-zero weights,
one had a much larger weight than the other two. For
comparison, Schein et al. (2015) used fifty latent classes
to model the same data, while Hoff (2015) used C = 4,
K=4, and R=4 to model a similar tensor from GDELT.

Topics of actions: We show the inferred action–topic fac-
tors as a heatmap in the left subplot of figure 3. We ordered
the topics by their weights ν1, . . . , νK , which we display
above the heatmap. The inferred topics correspond very
closely to CAMEO’s QuadClass scheme. Moving from left
to right, the topics place their mass on increasingly nega-
tive actions. Topics 1 and 2 place most of their mass on
Verbal Cooperation actions; topic 3 places most of its mass
on Material Cooperation actions and the neutral 1—Make
Statement action; topic 4 places most of its mass on Ver-
bal Conflict actions and the 1—Make Statement action; and
topics 5 and 6 place their mass on Material Conflict actions.

Topic-partitioned community–community networks: In
the right subplot of figure 3, we visualize the inferred com-
munity structure for topic k=1 and the most active regime
r. The bottom-left heatmap is the community–community
interaction network Λ

(r)
k . The top-left heatmap depicts the

rate at which each country i acts as a sender in each com-
munity c—i.e., θic

∑V
j=1

∑C
d=1 θjd λ

(r)

c
k−→d

. Similarly, the

bottom-right heatmap depicts the rate at which each coun-
try acts as a receiver in each community. The top-right
heatmap depicts the number of times each country i took
an action associated with topic k toward each country j

during regime r—i.e.,
∑C

c=1

∑C
d=1

∑A
a=1

∑T
t=1 y

(tr)

ic
ak−→jd

.

We grouped the countries by their strongest community
memberships and ordered the communities by their within-
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Figure 3. Left: Action–topic factors. The topics are ordered by ν1, . . . , νK (above the heatmap). Right: Latent structure discovered by
BPTD for topic k = 1 and the most active regime, including the community–community interaction network (bottom left), the rate at
which each country acts as a sender (top left) and a receiver (bottom right) in each community, and the number of times each country i
took an action associated with topic k toward each country j during regime r (top right). We show only the most active 100 countries.

community interaction weights η �

1 , . . . , η

�

C , from smallest
to largest; the thin green lines separate the countries that are
strongly associated with one community from the countries
that are strongly associated with its adjacent communities.

Some communities contain only one or two strongly as-
sociated countries. For example, community 1 contains
only the US, community 6 contains only China, and com-
munity 7 contains only Russia and Belarus. These com-
munities mostly engage in between-community interac-
tion. Other larger communities, such as communities 9
and 15, mostly engage in within-community interaction.
Most communities have a strong geographic interpreta-
tion. Moving upward from the bottom, there are com-
munities that correspond to Eastern Europe, East Africa,
South-Central Africa, Latin America, Australasia, Central
Europe, Central Asia, etc. The community–community in-

teraction network summarizes the patterns in the top-right
heatmap. This topic is dominated by the 4–Consult action,
so the network is symmetric; the more negative topics have
asymmetric community–community interaction networks.
We therefore hypothesize that cooperation is an inherently
reciprocal type of interaction. We provide visualizations
for the other five topics in the supplementary material.

9. Summary
We presented Bayesian Poisson Tucker decomposition
(BPTD) for learning the latent structure of internation rela-
tions from country–country interaction events of the form
“country i took action a toward country j at time t.” Unlike
previous models, BPTD takes advantage of all three repre-
sentations of an interaction event data sets: 1) a set of event
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tokens, 2) a tensor of event type counts, and 3) a series of
weighted multinetwork snapshots. BPTD uses a Poisson
likelihood and therefore respects the discrete nature of the
data and its inherent sparsity. Moreover, BPTD yields a
compositional allocation inference algorithm that is orders
of magnitude more efficient than non-compositional allo-
cation algorithms. Because it is a Tucker decomposition
model, BPTD shares parameters across latent classes. In
contrast, CP decomposition models force each latent class
to capture potentially redundant information. BPTD there-
fore “does more with less.” This efficiency is reflected
in our predictive analysis: BPTD outperforms BPTF—
a CP decomposition model—as well as two other base-
lines. BPTD learns highly interpretable latent structure that
aligns with well-known concepts from the networks litera-
ture. Specifically, BPTD learns latent country–community
memberships, including the number of communities, as
well as directed community–community interaction net-
works that are specific to “topics” of action types and tem-
poral “regimes.” This structure captures the complexity
of country–country interactions, while surfacing clear pat-
terns that agree with and contribute to our knowledge of in-
ternational relations. Finally, although we presented BPTD
in the context of interaction event data, BPTD is well suited
to learning latent structure from many other types of data.
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