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Abstract

Categorical distributions are ubiquitous in ma-
chine learning, e.g., in classification, language
models, and recommendation systems. However,
when the number of possible outcomes is very
large, using categorical distributions becomes
computationally expensive, as the complexity
scales linearly with the number of outcomes. To
address this problem, we propose augment and
reduce (A&R), a method to alleviate the compu-
tational complexity. A&R uses two ideas: latent
variable augmentation and stochastic variational
inference. It maximizes a lower bound on the
marginal likelihood of the data. Unlike existing
methods which are specific to softmax, A&R is
more general and is amenable to other categorical
models, such as multinomial probit. On several
large-scale classification problems, we show that
A&R provides a tighter bound on the marginal
likelihood and has better predictive performance
than existing approaches.

1. Introduction
Categorical distributions are fundamental to many areas of
machine learning. Examples include classification (Gupta
et al., 2014), language models (Bengio et al., 2006), recom-
mendation systems (Marlin & Zemel, 2004), reinforcement
learning (Sutton & Barto, 1998), and neural attention mod-
els (Bahdanau et al., 2015). They also play an important
role in discrete choice models (McFadden, 1978).

A categorical is a die with K sides, a discrete random vari-
able that takes on one of K unordered outcomes; a cate-
gorical distribution gives the probability of each possible
outcome. Categorical variables are challenging to use when
there are many possible outcomes. Such large categoricals
appear in common applications such as image classification
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with many classes, recommendation systems with many
items, and language models over large vocabularies. In this
paper, we develop a new method for fitting and using large
categorical distributions.

The most common way to form a categorical is through the
softmax transformation, which maps a K-vector of reals
to a distribution of K outcomes. Let ψ be a real-valued
K-vector. The softmax transformation is

p(y = k |ψ) = exp {ψk}∑
k′ exp {ψk′}

. (1)

Note the softmax is not the only way to map real vectors
to categorical distributions; for example, the multinomial
probit (Albert & Chib, 1993) is an alternative. Also note that
in many applications, such as in multiclass classification,
the parameter ψk is a function of per-sample features x. For
example, a linear classifier forms a categorical over classes
through a linear combination, ψk = w>k x.

We usually fit a categorical with maximum likelihood esti-
mation or any other closely related strategy. Given a dataset
y1:N of categorical data—each yn is one of K values—we
aim to maximize the log likelihood,

Llog likelihood =

N∑
n=1

log p(yn |ψ). (2)

Fitting this objective requires evaluating both the log proba-
bility and its gradient.

Eqs. 1 and 2 reveal the challenge to using large categoricals.
Evaluating the log probability and evaluating its gradient
are both O(K) operations. But this is not OK: most al-
gorithms for fitting categoricals—for example, stochastic
gradient ascent—require repeated evaluations of both gradi-
ents and probabilities. When K is large, these algorithms
are prohibitively expensive.

Here we develop a method for fitting large categorical dis-
tributions, including the softmax but also more generally.
It is called augment and reduce (A&R). A&R rewrites the
categorical distribution with an auxiliary variable ε,

p(y |ψ) =
∫
p(y, ε |ψ)dε. (3)

A&R then replaces the expensive log probability with a vari-
ational bound on the integral in Eq. 3. Using stochastic
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variational methods (Hoffman et al., 2013), the cost to eval-
uate the bound (or its gradient) is far below O(K).

Because it relies on variational methods, A&R provides a
lower bound on the marginal likelihood of the data. With
this bound, we can embed A&R in a larger algorithm for
fitting a categorical, e.g., a (stochastic) variational expecta-
tion maximization (VEM) algorithm (Beal, 2003). Though
we focus on maximum likelihood, we can also use A&R
in other algorithms that require log p(y |ψ) or its gradient,
e.g., fully Bayesian approaches (Gelman et al., 2003) or the
REINFORCE algorithm (Williams, 1992).

We study A&R on linear classification tasks with up to 104

classes. On simulated and real data, we find that it provides
accurate estimates of the categorical probabilities and gives
better performance than existing approaches.

Related work. There are many methods to reduce the
cost of large categorical distributions, particularly under
the softmax transformation. These include methods that
approximate the exact computations (Gopal & Yang, 2013;
Vijayanarasimhan et al., 2014), those that rely on sampling
(Bengio & Sénécal, 2003; Mikolov et al., 2013; Devlin
et al., 2014; Ji et al., 2016; Botev et al., 2017), those that
use approximations and distributed computing (Grave et al.,
2017), double-sum formulations (Raman et al., 2017; Fagan
& Iyengar, 2018), and those that avail themselves of other
techniques such as noise contrastive estimation (Smith & Ja-
son, 2005; Gutmann & Hyvärinen, 2010) or random nearest
neighbor search (Mussmann et al., 2017).

Other methods change the model. They might replace
the softmax transformation with a hierarchical or stick-
breaking model (Kurzynski, 1988; Morin & Bengio, 2005;
Tsoumakas et al., 2008; Beygelzimer et al., 2009; Dem-
bczyński et al., 2010; Khan et al., 2012). These approaches
can be successful, but the structure of the hierarchy may in-
fluence the learned probabilities. Other methods replace the
softmax with a scalable spherical family of losses (Vincent
et al., 2015; de Brébisson & Vincent, 2016).

A&R is different from all of these techniques. Unlike many
of them, it provides a lower bound on the log probability
rather than an approximation. The bound is useful because
it can naturally be embedded in algorithms like stochastic
VEM. Further, the A&R methodology applies to transfor-
mations beyond the softmax. In this paper, we study large
categoricals via softmax, multinomial probit, and multino-
mial logistic. A&R is the first scalable approach for the
two latter models. It accelerates any transformation that can
be recast as an additive noise model (e.g., Gumbel, 1954;
Albert & Chib, 1993).

The approach that most closely relates to A&R is the one-vs-
each (OVE) bound of Titsias (2016), which is a lower bound
of the softmax. Like the other related methods, it is narrower

than A&R in that it does not apply to transformations beyond
the softmax. We also empirically compare A&R to OVE in
Section 4. A&R provides a tighter lower bound and yields
better predictive performance.

2. Augment and Reduce
We develop augment and reduce (A&R), a method for com-
puting with large categorical random variables.

The utility perspective. A&R uses the additive noise
model perspective on the categorical, which we refer to as
the utility perspective. Define a mean utility ψk for each
possible outcome k ∈ {1, . . . ,K}. To draw a variable y
from a categorical, we draw a zero-mean noise term εk
for each possible outcome and then choose the value that
maximizes the realized utility ψk + εk. This corresponds to
the following process,

εk ∼ φ(·), k ∈ {1, . . . ,K},
y = argmax

k
(ψk + εk) .

(4)

Note the errors εk are drawn fresh each time we draw a vari-
able y. We assume that the errors are independent of each
other, independent of the mean utility ψk, and identically
distributed according to some distribution φ(·).

Now consider the model where we marginalize the errors
from Eq. 4. This results in a distribution p(y |ψ), a cate-
gorical that transforms ψ to the simplex. Depending on the
distribution of the errors, this induces different transforma-
tions. For example, a standard Gumbel distribution recovers
the softmax transformation; a standard Gaussian recovers
the multinomial probit transformation; a standard logistic
recovers the multinomial logistic transformation.

Typically, the mean utility ψk is a function of observed
features x, e.g., ψk = x>wk in linear models or ψk =
fwk

(x) in non-linear settings. In both cases, wk are model
parameters, relating the features to mean utilities.

Let us focus momentarily on a linear classification problem
under the softmax model. For each observation n, the mean
utilities are ψnk = x>nwk and the random errors εnk are
Gumbel distributed. After marginalizing out the errors,
the probability that observation n is in class k is given
by Eq. 1, p(yn = k |xn, w) ∝ exp{x>nwk}. Fitting the
classifier involves learning the weights wk that parameterize
ψ. For example, maximum likelihood uses gradient ascent
to maximize

∑
n log p(yn |xn, w) with respect to w.

Large categoricals. When the number of outcomes K is
large, the normalizing constant of the softmax is a computa-
tional burden; it is O(K). Consequently, it is burdensome
to calculate useful quantities like log p(yn |xn, w) and its
gradient ∇w log p(yn |xn, w). As an ultimate consequence,
maximum likelihood estimation is slow—it needs to evalu-
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ate the gradient for each n at each iteration.

Its difficulty scaling is not unique to the softmax. Simi-
lar issues arise for the multinomial probit and multinomial
logistic. With these transformations as well, evaluating
likelihoods and related quantities is O(K).

2.1. Augment and reduce

We introduce A&R to relieve this burden. A&R accelerates
training in models with categorical distributions and a large
number of outcomes.

Rather than operating directly on the marginal p(y |ψ),
A&R augments the model with one of the error terms and
forms a joint p(y, ε |ψ). (We drop the subscript n to avoid
cluttered notation.) This augmented model has a desirable
property: its log-joint is a sum over all the possible out-
comes. A&R then reduces—it subsamples a subset of out-
comes to construct estimates of the log-joint and its gradient.
As a result, its complexity relates to the size of the subsam-
ple, not the total number of outcomes K.

The augmented model. Let φ(ε) be the distribution over
the error terms, and Φ(ε) =

∫ ε
−∞ φ(τ)dτ the correspond-

ing cumulative distribution function (CDF). The marginal
probability of outcome k is the probability that its realized
utility (ψk + εk) is greater than all others,

p(y = k |ψ) = Pr (ψk + εk ≥ ψk′ + εk′ ∀k′ 6= k) .

We write this probability as an integral over the kth error εk
using the CDF of the other errors,

p(y = k |ψ) =
∫ +∞

−∞
φ(εk)

(∏
k′ 6=k

∫ εk+ψk−ψk′

−∞
φ(εk′)dεk′

)
dεk

=

∫ +∞

−∞
φ(ε)

(∏
k′ 6=k

Φ(ε+ ψk − ψk′)

)
dε. (5)

(We renamed the dummy variable εk as ε to avoid clutter.)
Eq. 5 is the same as found by Girolami & Rogers (2006) for
the multinomial probit model, although we do not assume a
Gaussian density φ(ε). Rather, we only assume that we can
evaluate both φ(ε) and Φ(ε).

We derived Eq. 5 from the utility perspective, which encom-
passes many common models. We obtain the softmax by
choosing a standard Gumbel distribution for φ(ε), in which
case Eqs. 1 and 5 are equivalent. We obtain the multinomial
probit by choosing a standard Gaussian distribution over the
errors, and in this case the integral in Eq. 5 does not have a
closed form. Similarly, we obtain the multinomial logistic
by choosing a standard logistic distribution φ(ε). What is
important is that regardless of the model, the cost to compute
the marginal probability p(y = k |ψ) is O(K).
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Figure 1. (a) Illustration of the parameterization of a categorical
model in terms of the utilities ψk + εk, where ψk is the mean
utility and εk is an error term. The observed outcome is y =
argmaxk(ψk + εk). (b) In this model, the error terms have been
marginalized out. This is the most common model for categorical
distributions; it includes the softmax and multinomial probit. (c)
The augmented model that we consider for A&R. All error terms
have been integrated out, except one. In this model, the log-joint
involves a summation over the possible outcomes k, enabling fast
unbiased estimates of the log probability and its gradient.

We now augment the model with the auxiliary latent variable
ε to form the joint distribution p(y, ε |ψ),

p(y = k, ε |ψ) = φ(ε)
∏
k′ 6=k

Φ(ε+ ψk − ψk′). (6)

This is a model that includes the kth error term from Eq. 4
but marginalizes out all the other errors. By construction,
marginalizing ε from Eq. 6 recovers the original model
p(y |ψ) in Eq. 5. Figure 1 illustrates this idea.

Riihimäki et al. (2013) used Eq. 6 in the nested expectation
propagation for Gaussian process classification. We use it
to scale learning with categorical distributions.

The variational bound. The augmented model in Eq. 6 in-
volves one latent variable ε. But our goal is to calculate the
marginal log p(y |ψ) and its gradient. A&R derives a varia-
tional lower bound on log p(y |ψ) using the joint in Eq. 6.
Define q(ε) to be a variational distribution on the auxiliary
variable. The bound is log p(y |ψ) ≥ L, where

L = Eq(ε)
[
log p(y = k, ε |ψ)− log q(ε)

]
(7)

= Eq(ε)
[
log φ(ε) +

∑
k′ 6=k

logΦ(ε+ ψk − ψk′)− log q(ε)
]
.

In Eq. 7, L is the evidence lower bound (ELBO); it is tight
when q(ε) is equal to the posterior of ε given y, p(ε | y, ψ)
(Jordan et al., 1999; Blei et al., 2017).

The ELBO contains a summation over the outcomes k′ 6= k.
A&R exploits this property to reduce complexity, as we
describe below. Next we show how to use the bound in a
variational expectation maximization (VEM) procedure and
we describe the reduce step of A&R.

Variational expectation maximization. Consider again a
linear classification task, where we have a dataset of features
xn and labels yn ∈ {1, . . . ,K} for n = 1, . . . , N . The
mean utility for each observation n is ψnk = w>k xn, and
the goal is to learn the weights wk by maximizing the log
likelihood

∑
n log p(yn |xn, w).
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A&R replaces each term in the data log likelihood with its
bound using Eq. 7. The objective becomes

∑
n L(n). Maxi-

mizing this objective requires an iterative process with two
steps. In one step, A&R optimizes the objective with respect
to w. In the other step, A&R optimizes each L(n) with re-
spect to the variational distribution. The resulting procedure
takes the form of a VEM algorithm (Beal, 2003).

The VEM algorithm requires optimizing the ELBO with
respect to w and the variational distributions.1 This is chal-
lenging for two reasons. First, the expectations in Eq. 7
might not be tractable. Second, the cost to compute the
gradients of Eq. 7 is still O(K).

Section 3 addresses these issues. To sidestep the intractable
expectations, A&R forms unbiased Monte Carlo estimates
of the gradient of the ELBO. To alleviate the computational
complexity, A&R uses stochastic optimization, subsampling
a set of outcomes k′.

Reduce by subsampling. The subsampling step in the
VEM procedure is one of the key ideas behind A&R. Since
Eq. 7 contains a summation over the outcomes k′ 6= k,
we can apply stochastic optimization techniques to obtain
unbiased estimates of the ELBO and its gradient.

More specifically, consider the gradient of the ELBO in
Eq. 7 with respect to w (the parameters of ψ). It is

∇wL =
∑
k′ 6=k

Eq(ε)
[
∇w logΦ(ε+ ψk − ψk′)

]
.

A&R estimates this by first randomly sampling a subset of
outcomes S ⊆ {1, . . . ,K}�{k} of size |S|. A&R then
uses the outcomes in S to approximate the gradient,

∇̃wL =
K − 1

|S|
∑
k′∈S

Eq(ε)
[
∇w logΦ(ε+ ψk − ψk′)

]
.

This is an unbiased estimator2 of the gradient ∇wL. Cru-
cially, A&R only needs to iterate over |S| outcomes to obtain
it, reducing the complexity to O(|S|).

The reduce step is also applicable to optimize the ELBO
with respect to q(ε). Section 3 gives further details about
the stochastic VEM procedure in different settings.

3. Algorithm Description
Here we provide the details to run the variational expectation
maximization (VEM) algorithm for the softmax model (Sec-

1Note that maximizing the ELBO in Eq. 7 with respect to the
distribution q(ε) is equivalent to minimizing the Kullback-Leibler
divergence from q(ε) to the posterior p(ε | y, ψ).

2This is not the only way to construct an unbiased estimator.
Alternatively, we can draw the outcomes k′ using importance
sampling, taking into account the frequency of each class. We
leave this for future work.

tion 3.1) and for more general models including the multi-
nomial probit and multinomial logistic (Section 3.2). These
models only differ in the prior over the errors φ(ε).

Augment and reduce (A&R) is not limited to point-mass
estimation of the parameters w. It is straightforward to
extend the algorithm to perform posterior inference on w
via stochastic variational inference, but for simplicity we
describe maximum likelihood estimation.

3.1. Augment and Reduce for Softmax

In the softmax model, the distribution over the error terms
is a standard Gumbel (Gumbel, 1954),

φsoftmax(ε) = exp{−ε− e−ε}, Φsoftmax(ε) = exp{−e−ε}.

In this model, the optimal distribution q?(ε), which achieves
equality in the bound, has closed-form expression:

q?softmax(ε) = Gumbel(ε ; log η?, 1),

with η? = 1 +
∑
k′ 6=k e

ψk′−ψk . However, even though
q?softmax(ε) has an analytic form, its parameter η? is computa-
tionally expensive to obtain because it involves a summation
over K − 1 classes. Instead, we set

qsoftmax(ε ; η) = Gumbel(ε ; log η, 1).

Substituting this choice for qsoftmax(ε ; η) into Eq. 7 gives
the following evidence lower bound (ELBO):

Lsoftmax = 1− log(η)− 1

η

1 +
∑
k′ 6=k

eψk′−ψk

 . (8)

Eq. 8 coincides with the log-concavity bound (Bouchard,
2007; Blei & Lafferty, 2007), although we have derived it
from a completely different perspective. This derivation al-
lows us to optimize η efficiently, as we describe next.

The Gumbel(ε ; log η, 1) is an exponential family distribu-
tion whose natural parameter is η. This allows us to use
natural gradients in the stochastic inference procedure. A&R
iterates between a local step, in which we update η, and a
global step, in which we update the parameters ψ.

In the local step (E step), we optimize η by taking a step in
the direction of the noisy natural gradient, yielding ηnew =
(1 − α)ηold + αη̃. Here, η̃ is an estimate of the optimal
natural parameter, which we obtain using a random set
of outcomes, i.e., η̃ = 1 + K−1

|S|
∑
k′∈S e

ψk′−ψk , where
S ⊆ {1, . . . ,K}�{k}. The parameter α is the step size;
it must satisfy the Robbins-Monro conditions (Robbins &
Monro, 1951; Hoffman et al., 2013).

In the global step (M step), we take a gradient step with
respect to w (the parameters of ψ), holding η fixed. Simi-
larly, we can estimate the gradient of Eq. 8 with complexity
O(|S|) by leveraging stochastic optimization.
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Algorithm 1 Softmax A&R for classification

Input: data (xn, yn), minibatch sizes |B| and |S|
Output: weights w = {wk}Kk=1

Initialize all weights and natural parameters
for iteration t = 1, 2, . . . , do
# Sample minibatches:
Sample a minibatch of data, B ⊆ {1, . . . , N}
for n ∈ B do

Sample a set of labels, Sn ⊆ {1, . . . ,K}�{yn}
end for
# Local step (E step):
for n ∈ B do

Compute η̃n = 1 + K−1
|S|

∑
k′∈Sn e

ψnk′−ψnyn

Update natural param., ηn ← (1−α(t))ηn+α
(t)η̃n

end for
# Global step (M step):
Set g = − N

|B|
K−1
|S|

∑
n∈B

1
ηn

∑
k′∈Sn∇we

ψnk′−ψnyn

Gradient step on the weights, w ← w + ρ(t)g
end for

Algorithm 1 summarizes the procedure for a classification
task. In this example, the dataset consists of N datapoints
(xn, yn), where xn is a feature vector and yn ∈ {1, . . . ,K}
is the class label. Each observation is associated with its pa-
rameters ψnk; e.g., ψnk = x>nwk. We posit a softmax
likelihood, and we wish to infer the weights via maxi-
mum likelihood using A&R. Thus, the objective function is∑
n L

(n)
softmax. (It is straightforward to obtain the maximum a

posteriori solution by adding a regularizer.) At each itera-
tion, we process a random subset of observations as well as
a random subset of classes for each one.

Finally, note that we can perform posterior inference on the
parameters w (instead of maximum likelihood) using A&R.
One way is to consider a variational distribution q(w) and
take gradient steps with respect to the variational parame-
ters of q(w) in the global step, using the reparameterization
trick (Rezende et al., 2014; Titsias & Lázaro-Gredilla, 2014;
Kingma & Welling, 2014) to approximate that gradient. In
the local step, we only need to evaluate the moment gener-
ating function, estimating the optimal natural parameter as
η̃ = 1 + K−1

|S|
∑
k′∈S Eq(w)

[
eψk′−ψk

]
.

3.2. Augment and Reduce for Other Models

For most models, the expectations of the ELBO in Eq. 7 are
intractable, and there is no closed-form solution for the opti-
mal variational distribution q?(ε). Fortunately, we can ap-
ply A&R, using the reparameterization trick to build Monte
Carlo estimates of the gradient of the ELBO with respect to
the variational parameters (Rezende et al., 2014; Titsias &
Lázaro-Gredilla, 2014; Kingma & Welling, 2014).

More in detail, consider the variational distribution q(ε ; ν),

Algorithm 2 General A&R for classification

Input: data (xn, yn), minibatch sizes |B| and |S|
Output: weights w = {wk}Kk=1

Initialize all weights and local variational parameters
for iteration t = 1, 2, . . . , do
# Sample minibatches:
Sample a minibatch of data, B ⊆ {1, . . . , N}
for n ∈ B do

Sample a set of labels, Sn ⊆ {1, . . . ,K}�{yn}
end for
# Local step (E step):
for n ∈ B do

Sample auxiliary variable un ∼ q(rep)(un)
Transform auxiliary variable, εn = T (un ; νn)

Estimate the gradient ∇̃νnL(n) (Eq. 9)
Update variational param., νn ← νn+α

(t)∇̃νnL(n)

end for
# Global step (M step):
Sample εn ∼ q(εn ; νn) for all n ∈ B
Set g= N

|B|
K−1
|S|

∑
n∈B

∑
k′∈Sn
∇wlogΦ(εn+ψnyn−ψnk′)

Gradient step on the weights, w ← w + ρ(t)g
end for

parameterized by some variational parameters ν. We as-
sume that this distribution is reparameterizable, i.e., we can
sample from q(ε ; ν) by first sampling an auxiliary variable
u ∼ q(rep)(u) and then setting ε = T (u ; ν).

In the local step, we fit q(ε ; ν) by taking a gradient step
of the ELBO with respect to the variational parameters ν.
Since the expectations in Eq. 7 are not tractable, we obtain
Monte Carlo estimates by sampling ε from the variational
distribution. To sample ε, we sample u ∼ q(rep)(u) and set
ε = T (u ; ν). To alleviate the computational complexity,
we apply the reduce step, sampling a random subset S ⊆
{1, . . . ,K}�{k} of outcomes. We thus form a one-sample
gradient estimator as

∇̃νL = ∇ε log p̃(y, ε |ψ)∇νT (u ; ν) +∇νH[q(ε ; ν)],
(9)

where H[q(ε ; ν)] is the entropy of the variational distribu-
tion,3 and log p̃(y, ε |ψ) is a log joint estimate,

log p̃(y, ε |ψ) = log φ(ε)+
K − 1

|S|
∑
k′∈S

logΦ(ε+ψk−ψk′).

In the global step, we estimate the gradient of the ELBO
with respect to w. Following a similar approach, we ob-
tain an unbiased one-sample gradient estimator as ∇̃wL =
K−1
|S|

∑
k′∈S ∇w logΦ(ε+ ψk − ψk′).

Algorithm 2 summarizes the procedure to efficiently run

3We can estimate the gradient of the entropy when it is not
available analytically. Even when it is, the Monte Carlo estimator
may have lower variance (Roeder et al., 2017).
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maximum likelihood on a classification problem. We sub-
sample observations and classes at each iteration.

Finally, note that we can perform posterior inference on
the parameters w by positing a variational distribution q(w)
and taking gradient steps with respect to the variational
parameters of q(w) in the global step. In this case, the repa-
rameterization trick is needed in both the local and global
step to obtain Monte Carlo estimates of the gradient.

We now particularize A&R for the multinomial probit and
multinomial logistic models.

A&R for multinomial probit. Consider a standard Gaus-
sian distribution over the error terms,

φprobit(ε) =
1√
2π
e−

1
2 ε

2

, Φprobit(ε) =

∫ ε

−∞
φprobit(τ)dτ.

A&R chooses a Gaussian variational distribution
qprobit(ε ; ν) = N (ε ; µ, σ2) and fits the variational param-
eters ν = [µ, σ]>. The Gaussian is reparameterizable in
terms of a standard Gaussian, i.e., q(rep)

probit(u) = N (u ; 0, 1).
The transformation is ε = T (u ; ν) = µ + σu. Thus,
the gradients in Eq. 9 are ∇νT (u ; ν) = [1, u]> and
∇νH[qprobit(ε ; ν)] = [0, 1/σ]>.

A&R for multinomial logistic. Consider now a standard
logistic distribution over the errors,

φlogistic(ε) = σ(ε)σ(−ε), Φlogistic(ε) = σ(ε),

where σ(ε) = 1
1+e−ε is the sigmoid function. (The logistic

distribution has heavier tails than the Gaussian.) Under this
model, the ELBO in Eq. 7 takes the form

Llogistic=Eq(ε)
[
log

σ(ε)σ(−ε)
q(ε)

+
∑
k′ 6=k

log σ(ε+ψk−ψk′)
]
.

Note the close resemblance between this expression and the
one-vs-each (OVE) bound of Titsias (2016),

LOVE =
∑
k′ 6=k

log σ(ψk − ψk′). (10)

However, while the former is a bound on the multinomial
logistic model, the OVE is a bound on the softmax.

A&R sets qlogistic(ε ; ν) = 1
βσ
(
ε−µ
β

)
σ
(
− ε−µ

β

)
, a lo-

gistic distribution. The variational parameters are ν =
[µ, β]>. The logistic distribution is reparameterizable,
with q(rep)

logistic(u) = σ(u)σ(−u) and transformation ε =
T (u ; ν) = µ+ βu. The gradient of the entropy in Eq. 9 is
∇νH[qlogistic(ε ; ν)] = [0, 1/β]>.

4. Experiments
We showcase augment and reduce (A&R) on a linear classifi-
cation task. Our goal is to assess the predictive performance

of A&R in this classification task, to assess the quality of the
marginal bound of the data, and to compare its complexity4

with existing approaches.

We run A&R for three different models of categorical dis-
tributions (softmax, multinomial probit, and multinomial
logistic).5 For the softmax model, we compare A&R against
the one-vs-each (OVE) bound (Titsias, 2016). Just like A&R,
OVE is a rigorous lower bound on the marginal likelihood.
It can also run on a single machine,6 and it has been shown
to outperform other approaches.

For softmax, A&R runs nearly as fast as OVE but has better
predictive performance and provides a tighter bound on the
marginal likelihood than OVE. On two small datasets, the
A&R bound closely reaches the marginal likelihood of exact
softmax maximum likelihood estimation.

We now describe the experimental settings. In Section 4.1,
we analyze synthetic data and K = 104 classes. In Sec-
tion 4.2, we analyze five real datasets.

Experimental setup. We consider linear classification,
where the mean utilities are ψnk = w>k xn + w

(0)
k . We fit

the model parameters (weights and biases) via maximum
likelihood estimation, using stochastic gradient ascent. We
initialize the weights and biases randomly, drawing from a
Gaussian distribution with zero mean and standard deviation
0.1 (0.001 for the biases). For each experiment, we use the
same initialization across all methods.

Algorithms 1 and 2 require setting a step size schedule
for ρ(t). We use the adaptive step size sequence proposed
by Kucukelbir et al. (2017), which combines RMSPROP
(Tieleman & Hinton, 2012) and Adagrad (Duchi et al., 2011).
We set the step size using the default parameters, i.e.,

ρ(t) = ρ0 × t−1/2+10−16

×
(
1 +

√
s(t)
)−1

,

s(t) = 0.1(g(t))2 + 0.9s(t−1).

We set ρ0 = 0.02 and we additionally decrease ρ0 by a
factor of 0.9 every 2000 iterations. We use the same step
size sequence for OVE.

We set the step size α(t) in Algorithm 1 as α(t) = (1+t)−0.9,
the default values suggested by Hoffman et al. (2013). For
the step size α(t) in Algorithm 2, we set α(t) = 0.01(1 +
t)−0.9. For the multinomial logit and multinomial probit
A&R, we parameterize the variational distributions in terms
of their means µ and their unconstrained scale parameter γ,
such that the scale parameter is log(1 + exp(γ)).

4We focus on runtime cost. A&R requires O(N) memory
storage capacity due to the local variational parameters.

5Code for A&R is available at https://github.com/
franrruiz/augment-reduce.

6A&R is amenable to an embarrassingly parallel algorithm, but
we focus on single-core procedures.

https://github.com/franrruiz/augment-reduce
https://github.com/franrruiz/augment-reduce
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Figure 2. Evolution of the ELBO as a function of wall-clock time.
The softmax A&R method provides a tighter bound than OVE
(Titsias, 2016) for almost all the considered datasets.

4.1. Synthetic Dataset

We mimic the toy experiment of Titsias (2016) to assess how
well A&R estimates the categorical probabilities. We gener-
ate a dataset with 104 classes andN = 3×105 observations,
each assigned label k with probability pk ∝ p̃2k, where each
p̃k is randomly generated from a uniform distribution in
[0, 1]. After generating the data, we have K = 9,035 effec-
tive classes (thus we use this value for K). In this simple
setting, there are no observed covariates xn.

We estimate the probabilities pk via maximum likelihood
on the biases w(0)

k . We posit a softmax model, and we apply
both the variational expectation maximization (VEM) in
Section 3.1 and the OVE bound. For both approaches, we
choose a minibatch size of |B| = 500 observations and
|S| = 100 classes, and we run 5× 105 iterations.

We run each approach on one CPU core. On average, the
wall-clock time per epoch (one epoch takes N/|B| = 600
iterations) is 0.196 minutes for softmax A&R and 0.189
minutes for OVE. A&R is slightly slower because of the
local step that OVE does not require; however, the bound on
the marginal log likelihood is tighter (by orders of magni-
tude) for A&R than for OVE (−2.62×106 and−1.40×109,
respectively). The estimated probabilities are similar for
both methods: the average absolute error is 3.00 × 10−6

for A&R and 3.65 × 10−6 for OVE; the difference is not
statistically significant.

4.2. Real Datasets

We now turn to real datasets. We consider MNIST and Bib-
tex (Katakis et al., 2008; Prabhu & Varma, 2014), where
we can compare against the exact softmax. We also ana-
lyze Omniglot (Lake et al., 2015), EURLex-4K (Mencia &
Furnkranz, 2008; Bhatia et al., 2015), and AmazonCat-13K
(McAuley & Leskovec, 2013).7 Table 1 gives information
about the structure of these datasets.

We run each method for a fixed number of iterations. We
set the minibatch sizes |B| and |S| beforehand. The specific
values for each dataset are also in Table 1.

Data preprocessing. For MNIST, we divide the pixel
values by 255 so that the maximum value is one. For Om-
niglot, following other works in the literature (e.g., Burda
et al., 2016), we resize the images to 28 × 28 pixels. For
EURLex-4K and AmazonCat-13K, we normalize the co-
variates dividing by their maximum value.

Bibtex, EURLex-4K, and AmazonCat-13K are multi-class
datasets, i.e., each observation may be assigned more than
one label. Following Titsias (2016), we keep only the first
non-zero label for each data point. See Table 1 for the
resulting number of classes in each case.

Evaluation. For the softmax, we compare A&R against the
OVE bound.8 We also compare against the exact softmax on
MNIST and Bibtex, where the number of classes is small.
For the multinomial probit and multinomial logistic models,
we also report the predictive performance of A&R.

We evaluate performance with test log likelihood and ac-
curacy. The accuracy is the fraction of correctly classified
instances, assuming that we assign the most likely label (i.e.,
the one with the highest mean utility). To compute the test
log likelihood, we use Eq. 1 for the softmax and Eq. 5 for
the multinomial probit and multinomial logistic models. We
approximate the integral in Eq. 5 with 1,000 samples using
importance sampling (we use a Gaussian distribution with
mean 5 and standard deviation 5 as a proposal).

Results. Table 2 shows the wall-clock time per epoch for
each method and dataset. In general, softmax A&R is almost
as fast as OVE because the extra local step can be performed
efficiently without additional expensive operations. It re-
quires to evaluate exponential functions that can be reused
in the global step. Multinomial probit A&R and multinomial

7MNIST is available at http://yann.lecun.com/
exdb/mnist. Omniglot can be found at https://github.
com/brendenlake/omniglot. Bibtex, EURLex-4K, and
AmazonCat-13K are available at http://manikvarma.org/
downloads/XC/XMLRepository.html.

8We also implemented the approach of Botev et al. (2017), but
we do not report the results because it did not outperform OVE
in terms of test log-likelihood on four out of the five considered
datasets. On the fifth dataset, softmax A&R was still superior.

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist
https://github.com/brendenlake/omniglot
https://github.com/brendenlake/omniglot
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
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Table 1. Statistics and experimental settings of the considered datasets. Ntrain and Ntest are the number of training and test data points. The
number of classes is the resulting value after the preprocessing step (see text). The minibatch sizes correspond to |B| and |S|, respectively.

dataset

MNIST
Bibtex

Omniglot
EURLex-4K

AmazonCat-13K

Ntrain Ntest covariates classes

60, 000 10, 000 784 10
4, 880 2, 413 1, 836 148
25, 968 6, 492 784 1, 623
15, 539 3, 809 5, 000 896

1, 186, 239 306, 782 203, 882 2, 919

minibatch (obs.) minibatch (classes) iterations

500 1 35, 000
488 20 5, 000
541 50 45, 000
379 50 100, 000
1, 987 60 5, 970

Table 2. Average time per epoch for each method and dataset. Softmax A&R (Section 3.1) is almost as fast as OVE. The A&R approaches
in Section 3.2 take longer because they require some additional computations, but they are still competitive.

dataset

MNIST
Bibtex

Omniglot
EURLex-4K

AmazonCat-13K

OVE (Titsias, 2016)

0.336 s
0.181 s
4.47 s
5.54 s
2.80 h

A&R [this paper]
softmax multi. probit multi. logistic

0.337 s 0.431 s 0.511 s
0.188 s 0.244 s 0.246 s
4.65 s 5.63 s 5.57 s
5.65 s 6.46 s 6.23 s
2.80 h 2.82 h 2.91 h

Table 3. Test log likelihood and accuracy for each method and dataset. The table on the left compares the approaches based on the softmax.
Softmax A&R outperforms OVE in four out of the five datasets. The two tables on the right show the performance of other models
(multinomial probit and multinomial logistic), for which A&R is also competitive.

dataset

MNIST
Bibtex

Omniglot
EURLex-4K

AmazonCat-13K

softmax model
exact OVE (Titsias, 2016) A&R [this paper]

log lik acc log lik acc log lik acc

−0.261 0.927 −0.276 0.919 −0.271 0.924
−3.188 0.361 −3.300 0.352 −3.036 0.361
− − −5.667 0.179 −5.171 0.201
− − −4.241 0.247 −4.593 0.207
− − −3.880 0.388 −3.795 0.420

multi. probit
A&R [this paper]
log lik acc

−0.302 0.918
−4.184 0.346
−7.350 0.178
−4.193 0.263
−3.593 0.411

multi. logistic
A&R [this paper]
log lik acc

−0.287 0.917
−3.151 0.353
−5.395 0.184
−4.299 0.226
−4.081 0.350

logistic A&R are slightly slower because of the local step,
but they are still competitive.

For the five datasets, Figure 2 shows the evolution of the
evidence lower bound (ELBO) as a function of wall-clock
time for the softmax A&R (Eq. 8), compared to the OVE
(Eq. 10). For easier visualization, we plot a smoothed ver-
sion of the bounds after applying a moving average window
of size 100. (For AmazonCat-13K, we only compute the
ELBO every 50 iterations and we use a window of size
5.) Softmax A&R provides a significantly tighter bound
for most datasets (except for Bibtex, where the ELBO of
A&R is close to the OVE bound). For MNIST and Bibtex,
we also plot the marginal likelihood obtained after running
maximum likelihood estimation on the exact softmax model.
The ELBO of A&R nearly achieves this value.

Finally, Table 3 shows the predictive performance for all
methods across all datasets. We report test log likelihood
and accuracy. Softmax A&R outperforms OVE in both met-
rics on all but one dataset (except EURLex-4K). Although
our goal is not to compare performance across different
models, for completeness Table 3 also shows the predictive
performance of multinomial probit A&R and multinomial
logistic A&R. In general, softmax A&R provides the highest

test log likelihood, but multinomial probit A&R outperforms
all other methods in EURLex-4K and AmazonCat-13K. Ad-
ditionally, multinomial logistic A&R presents better predic-
tive performance than OVE on Omniglot and Bibtex.

5. Conclusion
We have introduced augment and reduce (A&R), a scal-
able method to fit models involving categorical distributions.
A&R is general and applicable to many models, including
the softmax and the multinomial probit. On classification
tasks, we found that A&R outperforms state-of-the art algo-
rithms with little extra computational cost.
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