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Many online companies sell advertisement space in second-price I !
auctions with reserve. In this paper, we develop a probabilistic V
method to learn a profitable strategy to set the reserve price. We
use historical E}uction 'data with ff:ature's to fit a predictor of the OV approach et
best reserve price. This problem is delicate—the structure of the
auction is such that a reserve price set too high is much worse
than a reserve price set too low. To address this we develop ob- ] predict
Jective variables, an approach for combining probabilistic model- test data ] ] _
ing with optimal decision-making. Objective variables are "hallu- (future auctions) features reserve prices bids

cinated observations" that transform the revenue maximization task
into a regularized maximum likelihood estimation problem, which
we solve with the EM algorithm. This framework enables a variety
of prediction mechanisms to set the reserve price. As examples,
we study objective variable methods with regression, kernelized
regression, and neural networks on simulated and real data. Our
methods outperform previous approaches both in terms of scalabil-
ity and profit.
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1. INTRODUCTION

Many online companies earn money from auctions, selling ad-
vertisement space or other items. One of the most common auc-
tion mechanisms is second-price auctions with reserve [10]]. This
type of auction works as follows. First, the company sets a re-
serve price, the minimal price at which they are willing to sell the
item. Then the auction is opened and potential buyers cast their
bids; they cannot see each other’s bids. Finally, the auction is com-
pleted. If the highest bid is smaller than the reserve price then there
is no transaction and the company does not earn any money. If any
bid is larger than the reserve price then the highest bidding buyer
wins the auction, paying the larger of the second-highest bid and
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Figure 1: The objective variable approach uses features and bids
from past auctions to learn a predictor of profitable reserve prices.

the reserve price. This mechanism is incentive compatible [[3]—it
rewards buyers who bid their true idea of what the item is worth.

A company that runs such auctions faces the important challenge
of how to set the reserve price of each item in order to maximize
profit. Specifically, a company maximizes its profit by setting the
reserve as close as possible to the (future and unknown) highest
bid, but no higher. This gives rise to an important machine learning
challenge [[13]—how can we use historical data to map the proper-
ties of a new item to a good reserve price? In this paper, we develop
a new method to solve this problem.

gives a schematic of our method. We are given histor-
ical data about past auctions, namely features of the items and the
two highest bids. These features might be properties of the product,
such as the placement of the advertisement, properties of the poten-
tial buyers, such as each one’s average past bids, or other external
features, such as time of day of the auction. Given the data, our
method learns a predictor of reserve price that maximizes the profit
of future auctions. Finally, we use the predictor to set the reserve
price of new items. Note that our method only requires past items
and bids. It does not require previously set reserve prices.

A traditional machine learning solution treats this problem as
simple prediction: given a set of features x, use a parameterized
predictor f(x;w) to predict the high bids B (because setting the re-
serve to the high bid promises the maximum possible profit). There
are many ways of solving such prediction problems, including lin-
ear regression, regularized linear regression, or nonlinear methods
such as a neural network. At a high level, these methods all fit the
parameters w to minimize a symmetric error function, such as mean
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(a) Revenue function of 4 auctions from the eBay data set as a function of (b) A scatter plot of the first and second highest bid in a test set of 2000 auc-

reserve price. In second-price auctions with reserve the revenue depends

on the highest and the second highest bid (dashed lines).

tions taken from the eBay data set. Three example auctions are highlighted
in red to emphasize the nuances of the reserve price prediction task.

Figure 2: Example auctions from the eBay data set we study in

squared error, between a historical data set of true bids and the
corresponding predictions. Note that the symmetric error function
equally weights overestimating and underestimating the prediction.

But predicting a good reserve price is more delicate than this.
The reason is that the revenue function for each auction—the amount
of money that we make as a function of the reserve price y—is
asymmetric. It remains constant to the second bid b, increases to
the highest bid B, and is zero beyond the highest bid. Formally,

b ify<b
R(y,B,b)={y ifb<y<B. (1)
0 otherwise

The revenue function reveals two nuances to forming a good
prediction of the best reserve price. First, from the perspective of
profit, overestimating the reserve price can be substantially worse
than underestimating it. Thus a predictor should err on the side of
underestimating the highest bid. Second, it is the size of the gap be-
tween the second bid and the highest bid that determines the poten-
tial to profit. If the gap is small then the company can comfortably
underestimate the highest bid in order to receive the (almost opti-
mal) second highest bid. Thus we would like a predictor to focus
on cases where the gap tends to be large.

illustrates the revenue function for four sports col-
lectibles from eBay, each one a function of the first and second
bids. This figure puts the delicacy into relief. For example, con-
sider the top left panel in [Figure 2a] which might be a Sandy Ko-
ufax baseball card. (The items in our data are anonymized, but we
use this example for concreteness.) The best reserve price in ret-
rospect is $43.03. A method that minimizes squared error (such as
linear regression) is just as likely to overestimate as to underesti-
mate. It fails to reflect that setting the price in advance to $44.00
would yield zero earnings while setting it to $40.00 would yield the
full reserve.

Now consider the first panel in the second row. Here the gap
between the first and second bid is small. For this auction, we
profit nearly as much setting the risk-free reserve price of zero as
trying to accurately predict the highest bid (which runs the risk of
overestimation). While a technique like linear regression treats this
auction equally important to the Sandy Koufax auction, a better
predictor will focus on predicting well for items with a large gap.

In this paper, we develop the objective variables approach (OV
approach) to setting the reserve price. Our method fits the param-
eters of a common predictor, such as linear regression or a neural
network, but uses an alternative fitness function that implicitly ac-
counts for the special structure of the revenue. (We describe the
technical approach in more detail below.) We found that OV ap-
proach outperforms the existing state of the art.

Example results on eBay. In we will study a large
collection of eBay auctions of sports collectibles. was
taken from these data.) [Figure 2B]illustrates the highest and second
highest bid in the test set, items that we did not observe when fitting
the model. There is large variability in the bids as well as in the
potential for profit in the different auctions.

Consider the three auctions in which are marked in
red. Auction A is the most important type of auction. The margin
between the highest and second highest bid is large, and so a good
predictor will set the reserve price close to the highest bid. There
is a smaller margin between the bids in auctions B and C. In these
auctions, setting the reserve price close to zero is a better option—
it still yields the second highest bid as revenue, while reducing the
risk of losing the auction by overshooting the highest bid.

IFigure 3| compares how different approaches for predicting the
reserve price cope with the challenge. Each point in the scatter
plot corresponds to an auction and is drawn at the predicted reserve
price for this auction and with height equal to the highest bid. The
grey scale indicates the profitability of each prediction, drawn in
terms of the percentage of highest possible revenue (highest bid).

For all points below the diagonal the prediction is larger than the
highest bid, resulting in 0 revenue. Points well above the diagonal
are either bright when they resulted in revenue well less than the
highest bid or dark. When they are dark, this is because the margin
is small. The auction winner pays the second bid even though the
predicted preserve price underestimates it.

The three panels compare three methods for setting the reserve
price from features: linear regression with the highest bids as the
response variables (left panel), DC [13|], the current state of the
art for setting reserve prices from features (middle panel), and OV
neural network, a method we develop in this paper (right panel).
The predictors were trained on a separate sample of 2,000 auctions.
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Figure 3: Comparison of three methods for predicting the reserve price from features: linear regression against the highest bid (left panel),
DC [13] (current state of the art, middle panel), and OV neural network (this paper, right panel.) Each point in the scatter plot corresponds to
an auction in the test set of 2000 data points from the eBay data set. For each prediction we compute the revenue using[Eq. I] The grey scale
corresponds to the fraction of the highest possible revenue each prediction generated (revenue divided by highest bid.) For each method we
also report the total revenue generated as percentage of the highest possible revenue.

The left panel is linear regression. It treats all auctions equally
and its loss function, the mean squared error, does not distinguish
between overestimating and underestimating the reserve price. New
predictions are as likely to lie below the highest bid as above the
highest bid, and this results in 0 revenue in approximately half of
the auctions. For this reason, the total revenue as a percentage of
the total highest possible revenue is 49%. E]

The middle panel is the DC method (17} [13]. It is much more
conservative than linear regression, hardly ever overestimating the
reserve, and thus produces significantly improved results over lin-
ear regression (58% of the highest possible revenue.) The right
panel is OV neural networks, one of the objective variable models
we present here. It is less conservative than DC, but only with auc-
tions that have small potential profit (i.e., a small highest bid). In
exchange for its bolder predictions, it outperforms both methods on
auctions with larger potential profit, and outperforms them overall.

We also note that the objective variables method scales better
than DC, its closest competitor among the previous methods. In
[Section 3] we analyze a much larger set of the eBay data, which the
DC algorithm is unable to process.

Technical summary. To solve this problem we develop a new
idea, the objective variable. Objective variables use probabilistic
models to reason about difficult prediction problems, such as one
that optimizes[Eq. 1] Specifically, objective variables enable us to
formulate probabilistic models for which MAP estimation directly
uncovers profitable decision-making strategies.

Our aim is to find a parameterized mechanism f(x;;w) to set the
reserve price from the auction features x;. In our study, we will con-
sider a linear predictor, kernelized regression, and a neural network.
We observe a historical data set of N auctions, where each contains
features x; and the auction’s two highest bids B; and ;. We would
like to learn a good mechanism by optimizing the parameter w to
maximize the total (retrospective) revenue Zﬁ\’: (R(f(xi3w), By, b;).

We solve this optimization problem by turning it into a maxi-
mum a posteriori (MAP) problem. For each auction we define new

'We compute this percentage by dividing the total revenue from all
predictions by the sum of the highest bids and multiplying by one
hundred. An oracle would generate the highest possible revenue by
anticipating the highest bids.

binary variables—these are the objective variables—that are condi-
tional on a reserve price. The probability of the objective variable
being on (i.e., equal to one) is related to the revenue obtained from
the reserve price; it is more likely on if the auction produces more
revenue. We then set up a model that first assumes each reserve
price is drawn from the parameterized mechanism f'(x;;w) and then
draws the corresponding objective variable. Note that this model is
defined conditioned on our data, the features and the bids. It is a
model of the objective variables.

With the model defined, we now imagine a “data set” where all
of the objective variables are on, and then fit the parameters w sub-
ject to these data. Because of how we defined the objective vari-
ables, the model will prefer more profitable settings of the parame-
ters. With this set up, fitting the parameters by MAP estimation is
equivalent to finding the parameters that maximize revenue.

The spirit of our approach is that the objective variables are likely
to be on when we make good decisions, that is, when we profit from
our setting of the reserve price. When we imagine that they are all
on, we are imagining that we made good decisions (in retrospect).
When we fit the parameters to these data, we are using MAP esti-
mation to find a mechanism that helps us make such decisions.

Related work. Second-price auctions with reserve are reviewed
in [10]. Ref. [14] empirically demonstrates the importance of op-
timizing reserve prices; Their study quantifies the positive impact
it had on Yahoo!’s revenue. However, most previous work on op-
timizing the reserve price are limited in that they do not consider
features of the auction [|14} |8]].

Our work builds on the ideas in Ref. [[13]]. This research shows
how to learn a linear mapping from auction features to reserve
prices, and demonstrates that we can increase profit when we in-
corporate features into the reserve-price setting mechanism. We
take a probabilistic perspective on this problem, and show how to
incorporate nonlinear predictors. We show in that our
algorithms scale better and perform better than these approaches.

In our method we construct a graphical model to solve the rev-
enue maximization problem. One part of the model corresponds to
the reserve price setting mechanism, while the objective variables
who ensure that the predicted reserve prices maximize revenue can
be seen as a separate part of the model. The inherent modularity of



graphical models allows us to easily substitute the reserve price set-
ting mechanism with different alternatives. In this work, we study
linear regression, kernelized regression, and neural networks [6].
The objective variable framework relates closely to recent ideas
from reinforcement learning [[19,|18]]. Reinforcement learning seeks
an action policy that maximizes expected future reward. Refs. 19,
18]] introduce a binary reward variable (similar to an objective vari-
able) and use maximum likelihood estimation to find such a policy.
Our work solves a different problem with similar ideas. Further, re-
inforcement learning tends to focus on simple discrete policies; we
use objective variables for continuously parameterized predictors.

Organization of this paper. = We first develop the OV ap-
proach for linear predictors and show how to use the expectation-
maximization algorithm [9] to solve the corresponding MAP prob-
lem. We then generalize our method to nonlinear predictors, such
as kernel regression and neural networks. Finally, on both simu-
lated data and real-world data from eBay, we show that the OV ap-
proach outperforms existing methods for setting the reserve price.
It is both more profitable and more easily scales to large data sets.

2. OBJECTIVE VARIABLES FOR SECOND-
PRICE AUCTIONS WITH RESERVE

We describe the problem setting and the objective function. Our
data come from previous auctions. For each auction, we observe
features x;, the highest bid B;, and the second bid b;. The features
represent various characteristics of the auction, such as the date,
time of day, or properties of the item. For example, one of the auc-
tions in the eBay sport collectibles data set might be for a Sandy
Koufax baseball card; its features include the date of the auction
and various aspects of the item, such as its condition and the aver-
age price of such cards on the open market.

When we execute an auction we set a reserve price before seeing
the bids; this determines the revenue we receive after the bids are
in. The revenue function (Eq. I)), which is indexed by the bids,
determines how much money we make as a function of the chosen
reserve price. We illustrate this function for 4 auctions from eBay
in[Figure 2a] Our goal is to use the historical data to learn how to
profitably set the reserve price from auction features, that is, before
we see the bids.

For now we will use a linear function to map auction features to
a good reserve price. Given the feature vector x; we set the reserve
price with f(x;;w) = w'x;. (Inwe consider nonlinear
alternatives.) We fit the coefficients w from data, seeking w that
maximizes the regularized revenue

N
w* =argmax Y R(f(xiw),Bj,b;) — (A/2)w " w. (2)
i=1
We chose L, regularization with parameter A; other regularizers are
possible.

Before we discuss how we solve this optimization, we make two
points. First, previous reserve prices are not included in the data.
Rather, our data tell us about the relationship between features and
bids. All the information about how much we might profit from the
auction is in the revenue function; the way previous sellers set the
reserve prices is not relevant.

Second, our goal is not the same as learning a mapping from
features to the highest bid. As we described in the introduction,
not all auctions are made equal. Consider the difference between
the top left auction in and the bottom left auction. On
top left the highest and second bid are far apart, B = $43.03 and
b = $17.5; on bottom left they are almost identical, B = $39.83
and b = $39.17. The margin between bids in the first auction is

b=21.53, B=34.23
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Figure 4: The effect of smoothing on the revenue function of an
auction from the eBay data set. The smaller o, the closer the
smoothed revenue approximates the actual revenue function.

much larger than for the second, so there is more room to profit by
correctly setting the reserve price. We account for this by directly
maximizing revenue, rather than by only predicting the highest bid.

2.1 The Smoothed Revenue

The optimization problem in [Eq. 2]is difficult to solve because
R() is discontinuous (and thus non-convex). Previous work [13]
addresses this problem by iteratively fitting differences of convex
(DC) surrogate functions and solving the resulting DC-program [[17].
Here we define an objective function related to the revenue, but that
smooths out the troublesome discontinuity. We will optimize this
objective with expectation-maximization.

We first place a Gaussian distribution on the reserve price cen-
tered around the linear mapping, y; ~ .4 (f(xi;w), 5%). We define
the smoothed regularized revenue as

N
Z(w) =Y logEy, [exp{R(yi,Bi,bi)}] = (A/2)w'w.  (3)
i=1
Figure 4] shows the first term of for one of the auctions in
our data set. This figure illustrates how the smoothed revenue be-
comes closer to the original revenue function as 6> decreases. This
approach was inspired by probit regression, where a Gaussian ex-
pectation is introduced to smooth the discontinuous 0-1 loss [2}|12].
The smoothed revenue is a well-defined and continuous objective
function. In principle, we could use its gradient to fit the parame-
ters of the predictor. However, we will take a different approach.
We first recast the problem as a regularized likelihood under a la-
tent variable model, and then using the expectation-maximization
(EM) algorithm [9] to maximize that likelihood. This strategy en-
joys closed-form computation in both the E and M steps, and fa-
cilitates replacing linear regression with more powerful nonlinear
predictors.

2.2 Objective variables

To reformulate the optimization problem, we introduce the idea
of the objective variable. An objective variable is part of a proba-
bilistic model for which maximum-a-posteriori (MAP) estimation
of w recovers the parameter that maximize the smoothed revenue
inE 3

Objective variables are binary variables z; for each auction, each
conditioned on the reserve price y;, the highest bid B;, and second
bid b;. We can interpret these variables to indicate “Is the auction
host satisfied with the outcome?” Concretely, the likelihood of sat-



isfaction is related to how profitable the auction was relative to the
maximum profit, p(z; = 1|y;,B;,b;) = ©(y;, Bi, b;) where

7(yi,Bi,b;) = exp{—(B; — R(yi,Bi,bi))} . “4)

The revenue function R(-) is in The revenue is bounded by
Bj; thus the probability is in (0, 1].

What we will do is set up a probability model around the objec-
tive variables, assume that they are all “observed” to be equal to
one (i.e., we are satisfied with all of our auction outcomes), and
then fit the parameter w to maximize the posterior conditioned on
this “hallucinated data.”

Concretely, the model is

w o~ A (0,471 (5)
yi|w,xi~JV(f'(xi;w),62) ie{l,...,N} (6)
Zi ‘y[,B[,bi ~ Bel’nOllHi(TL'(yl',B,',bi)) (7)

where f(x;;w) = x w is a linear map. shows the graphi-

cal model.

Now consider a data set z where all of the objective variables z;
are equal to one. Conditional on this data, the log posterior of w
marginalizes out the latent reserve prices y;,

N
Ing(W|Z7X7B7b) = Z (lOgE[eXp{R(yi7Bi7bi)H _Bi)
i=1
+logp(w|A)—C, ®

where C is the normalizer.

This is the smoothed revenue of [Eq. 3| plus a constant involving
the top bids B; in[Eq. 4] constant components of the prior on w, and
the normalizer. Thus, we can optimize the smoothed revenue by
taking MAP estimates of w.

Intuitively, we have defined variables corresponding to the auc-
tion host’s satisfaction. With historical data of auction attributes
and bids, we imagine that the host was satisfied with every auction.
When we fit w, we ask for the reserve-price-setting mechanism that
leads to such an outcome.

2.3 MAP estimation with EM

The EM algorithm is a technique for maximum likelihood esti-
mation in the face of hidden variables [9]. (When there are regu-
larizers, it is a technique for MAP estimation.) In the E-step, we
compute the posterior distribution of the hidden variables given the
current model settings; in the M-step, we maximize the expected
complete regularized log likelihood, where the expectation is taken
with respect to the previously computed posterior.

In the OV model, the latent variables are the reserve prices y; the
observations are the objective variables z; and the model parame-
ters are the coefficients w. We compute the posterior expectation
of the latent reserve prices in the E-step and fit the model param-
eters in the M-step. This is a coordinate ascent algorithm on the
expected complete regularized log likelihood of the model and the
data. Each E-step tightens the bound on the likelihood and the new
bound is then optimized in the M-step.

E-step. At iteration ¢, the E-step computes the conditional dis-
tribution of the latent reserve prices y; given the objective variables
z; = 1 and the parameters w(=1) of the previous iteration. It is

p(yilzi = 1,w7Y)
o<p(zi = 1y p(yilw =) ©)

L (1)
scexp {—(Bi — R(yi, Bi,bi)} ¢ (WVM) . 310)

o

where ¢ (-) is the pdf of the standard normal distribution.
The normalizing constant for this expression is in the appendix

in [Eq. I3} we compute it by integrating [Eq. 9] over the real line.
Once the distribution is normalized we can compute the posterior

expectation E [yi |zi, wlt *1)] by using the moment generating func-
tion. For the derivations and the resulting updates see [Eq. 1§]in
A dix Al

M-step. The M-step maximizes the complete joint log-likelihood
with respect to the model parameters w. When we use a linear pre-
dictor to set the reserve prices, i.e. f(xj;w) = xiTw, the M-step has
a closed form update, which amounts to ridge regression against re-

sponse variables |E [yi |zi, w<’*1)] (Eq. 18) computed in the E-step.
The update is

~1
w(t):(/uju%xTx) %XTE[yIZ,W“’”] (n

th entry

where E [y |z, wlt _])} denotes the vector with
E [yi |z, wlt *1)} and x is a matrix of all feature vectors x;.

Objective variables, EM, and mitigating risk. We visually
examine the interplay between the E-step and the M-step in

For fixed w* = w(=1) the three terms of the posterior dis-

tribution of the latent variables in [Eq. 9] are drawn in the picture
for four example auctions: The posterior distribution of the latent
variables (red) is proportional to the likelihood term (green) times
the prior (blue.) In the E-step, we need to compute the expectation
of the distribution proportional to the red curve.

In the bottom right panel, the current reserve price prediction (the
peak of the blue Gaussian bump) is slightly smaller than the highest
bid (the peak of the green likelihood). We can see that the mean of
the red curve lies somewhere in between. Hence, in the next M-step
the prediction task for this particular auction consists of predicting
a slightly larger reserve price than is currently predicted.

In contrast, consider the top right panel. Here, the current re-
serve price prediction is almost aligned with the highest bid. To the
right of the highest bid, the likelihood is very small (p(zp = 1Y >
B;) = e B2.) As a consequence, almost the entire mass of the red
curve proportional to the posterior lies to the left of the highest bid.
Its mean (the expected reserve price) will be smaller than the cur-
rent reserve price prediction. Even though the current prediction
achieves almost perfect revenue, in the E-step the expected reserve
price is pulled away from the highest bid. This reduces the risk of
overestimating.

After the expectations are updated for all auctions — this can hap-
pen in parallel — we run another M-step which is a linear regression
against the expectations we just computed.

In summary, given a predictor and its predictions from the pre-
vious M-step, the E-step pulls the response variables for the next
M-step either closer to the highest bid or away from it if the risk of
overbidding becomes too large. The shapes of the individual priors
and likelihood terms control the auction specific trade-off between
pulling into one direction or into the other.

Algorithm details and computational complexity. To ini-
tialize, we set the expected reserve prices to be the highest bids
E[yi|zi] = B; and run an M-step. This deterministic initialization
puts the initial predictions in a range we expect them to be, i.e.,
around the highest bids.

The algorithm then alternates between updating the weights us-
ing (M-step) and computing posterior expectations of the
latent reserve prices (E-step). It terminates when the change in



=
a

O

e—0O

Xi (Bi,bi) N

By = 43.03, b, = 17.50 By = 34.23, by = 21.53

0.8 |- 4 08} 1
0.6 |- 4 06} 1
0.4 - 4 04 1
0.2 4 02F \ B
0.0 0.0

B3 = 39.83, b3 = 39.13 By = 45.28, by = 41.00

Probability

1.0 1.0
0.8 |- 4 08} 1

0.6 |- 4 06 B

0.4} 4 04l R
0.2 /\ 4 o2t R
0.0 . ! 0.0 I

3 3

0 35 40 45 50 0 35 40 45 50

Probability

[= priorp(Vilw) — Tikelihood p(z = 1Y) _— product p(zi[Y)p(¥Viluw")|

(a) The objective variable model (OV model). The objective variable (b) For fixed w the posterior of the latent reserve price (red) is pro-

is shaded with diagonal lines to distinguish that its value is not ob-

served but rather set to our desired value.

portional to the prior (blue) times the likelihood of the objective
(green). MAP estimation uncovers profitable modes of the poste-
rior.

Figure 5: The OV approach transforms the revenue maximization task into a MAP estimation task. The model and the hallucinated data are
designed such that the modes of the model’s posterior are the local maxima of the smoothed revenue in

Algorithm 1 OV Regression

initialize E[Y}.y] = B1.y
initialize t = 1
repeat

update w(?) using

forie {1,...,N} do

update E[Y;] using[Eq. 18

end for

increment ¢

compute R) revenue of predictor w(® on the validation set
using[Eq. 1]
until R —RI™V| <1075
return predictor w(®) and its revenue R on the test set

revenue on a validation set is below a threshold. (We use 1075.)
contains pseudocode.

The E-step is linear in the number of auctions N. It is easily
parallelized because the expected reserve prices are conditionally
independent given the predictor. The M-step update has asymptotic
complexity O(d>N) where d is the number of features.

2.4 Nonlinear Objective Variable Models

One of the advantages of our EM algorithm is that we can change
the parameterized prediction technique f(x;; w) from which we map
auction features to the mean of the reserve price. So far we have
only considered linear predictors; here we show how we can adapt
the algorithm to nonlinear predictors. As we will see in
these nonlinear predictors outperform the linear predictors.

In our framework, much of the model in and corre-
sponding algorithm remains the same even when considering non-
linear predictors. The distribution of the objective variables is un-
changed (Eq. 4) as well as the E-step update in the EM algorithm
(Eq. T8). All of the changes are in the M-step.

Kernel regression.  Kernel regression [1] maps the features
x; into a higher dimensional space through a feature map y(-);
the mechanism for setting the reserve price becomes f(x;;w) =
w(x;)Tw. In kernel regression we work with the N x N Gram ma-

trix K of inner products, where K;; = y(x;)7 y(x;). In this work
we use a polynomial kernel of degree D, and thus compute the
Gram matrix without evaluating the feature map y/(-) explicitly,
K=(x"x+1)7P.

Rather than learning the weights directly, kernel methods operate
in the dual space o € RV, If K; is the i column of the Gram matrix,
then the mean of the reserve price is

flaiw) = wx) w=K] a. (12)

The corresponding M-step in the algorithm becomes

-1
al) = (%K—HJN) éE[yu,a(f*l)]. (13)

See [7] for the technical details around kernel regression.

We will demonstrate in[Section J|that replacing linear regression
with kernel regression can lead to better reserve price predictions.
Next, we consider neural networks as an alternative method for in-
fusing nonlinearity into the model.

Neural networks. We also explore an objective variable model
that uses a neural network [6]] to set the mean reserve prices. We use
a network with one hidden layer of H units and activation function
tanh(-). The parameters of the neural net are the weights of the first
layer and the second layer: w = {w{!) € R¥*9 1,(2) ¢ R1*H} The
mean of the reserve price is

Fxizw) = w? (tanh(wx;)). (14)

The M-step is no longer analytic; Instead, the network is trained
using stochastic gradient methods. See [Appendix BJfor implemen-
tation details. We found the OV method with neural networks per-
formed better than both linear regression and kernel regression.

3. EMPIRICAL STUDY

We study our algorithms with two simulated data sets and a large
collection of real-world auction data from eBay. In each study, we
fit a model on a subset of the data (using a validation set to set
hyperparameters) and then test how profitable we would be if we
used the fitted model to set reserve prices in a held out set. Our
objective variable methods outperform the existing state of the art.



Table 1: The performance of the EM algorithms from (OV regression, OV kernel regression with degree 2 and 4, OV neural
networks) against the current state of the art (DC [[13]] and NoF [8]]). We report results in terms of percentage of maximum possible revenue
(computed by an oracle that knows the highest bid in advance). For each data set, we report mean and standard error aggregated from ten
independent splits into training, validation, and test data. Our methods outperform the existing methods on all data.

OV Reg OV Kern (2) | OV Kern (4) OV NN DC13] NoF [8]]

Linear Sim. 81.4+02 ] 81.2£02 7824106 [722E£1.57] 80.3£03 ] 49.9+0.1
Nonlinear Sim. || 50.3£03 [ 66.2£0.4 70106 | 63.7£29 [ 59.4£20 | 49.9+£0.2
eBay (s) 61.0£0.7 | 63.7£3.0 63.4+28 [744EL11 [ 595£1.1[55.8+£0.3
eBay (L) 62.4+0.2 - - 84.0+0.2 - 56.0+0.1

Data sets and replications. We evaluated our method on both
simulated data and real-world data.

o Linear simulated data. Our simplest simulated data contains d =
5 auction features. We draw features x; ~ N(0,1) € RY for 2,000
auctions; we draw a ground truth weight vector w ~ .47(0,1) €
R? and an intercept o ~ .4(0,1); we draw the highest bids for
each auction from the regression B; ~ A4 (w x; +o,0.1) and set
the second bids b; = B;/2. (Data for which B; is negative are
discarded and re-drawn.) We split into Ny,in = 1000, Nyalig =
500, and Niegt = 500.

e Nonlinear simulated data. These data contain features x;, true
coefficients w, and intercept o generated as for the linear data.
We generate highest bids by taking the absolute value of those
generated by the regression and second highest bids by halving
them, as above. Taking the absolute value introduces a nonlinear
relationship between features and bids.

e Data from eBay.

Our real-world data is auctions of sports collectibles from eBay.
It has been collected by the owners of sporstcollectors.net and
contains historical auction data from eBay of sport collectibles
and memorabilid]

Second price auctions with reserve, as we study them in this pa-
per are widely used for online auctions of advertisement space,
but unfortunately there is no publicly available data set of ad-
vertisement auctions with features. In contrast to the auction
mechanism we study here, the actual auction mechanism used
on eBay is not incentive compatible and the bids are not sealed.
Consequently, to keep sale prices low, experienced bidders re-
frain from bidding the true amount they are willing to pay until
seconds before the bidding closes|[/16].

Additionally, eBay does not publish the highest bid which is nec-
essary to construct the revenue function [Eq. 1] and for training
the objective variable models and their competitors. We used
the derived data set provided hereﬂ which has been synthetically
augmented with highest and second highest bids by the authors
of [13] so it can be used as a proxy for a real-world data set of
sealed bid second price auctions with reserve.

The data set is focused on products which have been autographed
by athletes playing baseball, basketball, football and hockey. It
contains products from a wide variety of categories such as ath-
letic gear, trading cards and ticket stubs and the athletes span
from very famous players such as Michael Jordan (the basketball
player), to virtually unknown players playing in local leagues.
As a result there is high variability in the popularity of an auc-
tion and the prices the products actually sold for. The mean

Zhttp://jaygrossman.com/post/2013/06/10/Predicting-eBay-
Auction-Sales-with-Machine-Learning.aspx

3http://cims.nyu.edu/~munoz/data/index.html

and standard deviation of the highest and second highest bid
are mean(B) = 52.23, std(B) = 71.01, mean(b) = 29.31, and
std(b) = 42.08 respectively. [Figure 2b] contains a scatter plot of
the highest bid vs. the second highest bid for this data set. There
are d = 78 features ranging over information from eBay such as
seller rating and indicators whether the listing is associated with
a picture or not, to context from other sources about the product.
There is for example an indicator weather the player who signed
the item is in his sport’s hall of fame. All covariates are centered
and rescaled to have mean zero and standard deviation one.

We analyze two data sets from eBay, one small and one large.
On the small data set, the total number of auctions is 6,000, split
into Nirain = Nyalid = Niest = 2,000. On the large data set, the
total number is 70,000, split into Ny,in = 50,000, and Nyyjig =
NtCSt = 107000

In our study, we fit each method on the training data, use the
validation set to decide on hyperparameters, and then evaluate the
fitted predictor on the test set, i.e., compute how much revenue
we make when we use it to set reserve prices. For each data set,
we replicate each study ten times, each time randomly creating the
training set, test set, and validation set. The total test revenue is
reported as percentage of the sum of the highest bids in the test set.
These results are then averaged over the 10 replications.

Algorithms.  We describe the objective variable algorithms
from all of which we implemented in Theano [} 4],
as well as the two previous methods we compare against.

e OV Regression. OV regression learns a linear predictor w for re-
serve prices using the algorithm in[Section 2.3] We find a good
setting for the smoothing parameter ¢ and regularization param-
eter A using grid search.

e OV Kernel Regression. OV kernel regression uses a polynomial
kernel to predict the mean of the reserve price; we study polyno-
mial kernels of degree 2 and 4.

e OV Neural Networks. OV neural networks fits a neural net for
predicting the reserve prices. As we discuss in the
M-step uses gradient optimization; we use stochastic gradient
ascent with a constant learning rate and early stopping [15]]. Fur-
ther, we use a warm-start approach, where the next M-step is ini-
tialized with the results of the previous M-step. We set the num-
ber of hidden units to H =5 for the simulated data and H = 100
for the eBay data. We use grid search to set the smoothing pa-
rameter o, the regularization parameters, the learning rate, the
batch size, and the number of passes over the data for each M-
step.

o Difference of Convex Functions (DC) [|I3]. The DC algorithm
finds a linear predictor of reserve price with an iterative proce-
dure based on DC-programming [17]. Grid search is used on
the regularization parameter as well as the margin to select the
surrogates for the auction loss.
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Figure 6: Additional comparisons to of methods for predicting the reserve price from features: OV regression (left panel), OV
kernel regression with d = 2 (middle panel), and OV kernel regression with d = 4 (right panel). Each point in the scatter plot corresponds
to an auction in the test set of 2000 data points from the eBay data set. The grey scale corresponds to the fraction of the highest possible
revenue each prediction generated (revenue divided by highest bid.) For each method, the total revenue generated as percentage of the highest
possible revenue for this particular data split is reported in the title of the panel.

OV Regression (58%) OV K2 (64%) OV K4 (65%) OV Neural Network (73%) DC (58%)
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Figure 7: Auction outcomes on the small eBay test set from and@summarized in histograms of the highest bids. The histogram
bins are color coded by the outcome of the corresponding auction. Bins in white color account for the highest bids of auctions where the
prediction was larger than the highest bid. For these auctions, the resulting revenue is 0. The black bins represent the highest bids of auctions
where the predicted reserve price was below the second bid and resulted in the second bid as revenue. The grey bins correspond to auctions
where the prediction fell into the margin between the highest and second highest bid. Here, the predicted reserve price is earned as revenue.

o No Features (NoF) [§]. This is the state of the art approach to set The predictions on test auctions from the small eBay data of all
the reserve prices when we do not consider the auction’s features. feature based reserve price prediction methods we study in this pa-
The algorithm iterates over the highest bids in the training set and per are visualized in and[f]
evaluates the profitability of setting all reserve prices to this value The histograms in complement these scatter plots. All
on the training set. Ref. [[13]] gives a more efficient algorithm five panels are histograms of the highest bids. The average of the
based on sorting. highest bids is around $50 but most of the mass of the histogram is

on auctions with smaller highest bids. The auctions corresponding
to these bids are split into three cases which are color coded to
distinguish the outcomes of the auctions.

Results. gives the results of our study. The metric is The predictions of DC are very conservative and result in few
the percentage of the highest possible revenue, where an oracle an- overpredictions. The reserve price predictions of OV regression re-
ticipates the bids and sets the reserve price to the highest bid. It sult in similar overall performance but their distribution is different.
is computed by summing the revenues generated from each predic- While DC makes barely any predictions over $50, the predictions
tion, dividing by the sum of the highest bids. of OV regression are larger. OV regression generates less profit

A trivial strategy (not reported) sets all reserve prices to zero, and than DC in most individual auctions but compensates for this effect
earns the second highest bid on each auction. The algorithm using by doing much better in auctions with a large profit margin.
no features [8] does slightly better than this but not as well as the The mediocre performance of DC and OV regression on this data
algorithms using features. OV regression [this paper] and DC [13] set indicates that there might not be a strong linear relationship
both fit linear mappings and exhibit similar performance. However, between the auction features and a profitable setting of the reserve
the DC algorithm does not scale to the large eBay data set. prices. The nonlinear methods outperform DC and OV regression

The nonlinear OV algorithms (OV kernel regression and OV neu- on this data.
ral networks) outperform the linear models on the nonlinear simu- The two OV kernel methods produce similar predictions. Com-

lated data and the real-world data. pared to the other methods, they are very bold and many of their
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Figure 8: Reserve price predictions of OV neural networks on unseen test auctions from the large eBay data set. As inand@eaoh
prediction is color coded by the fraction of highest possible revenue it produces. The left panel shows a scatter plot of the second bid against
the highest bid. The panel in the middle shows a scatter plot of the predicted reserve price against the highest bid and the panel on the right
shows a scatter plot of the final revenue against the highest bid. In the central panel, the points below the diagonal correspond to auctions
where the predicted reserve price is larger than the highest bid. They result in O revenue and are mapped to the y-axis in the revenue plot
in the right panel. The predictions above the diagonal in the central panel are either smaller than the second bid and get pulled closer to
the diagonal in their visualization in the right panel or they lie in the margin between the highest and second highest bid. In this case, their
location is preserved in the center and the right panel meaning that the auction host got the exactly their reserve price prediction as revenue.

predictions are large. This leads to high revenue in some auctions
and O profit in many others. Yet, the total revenue generated is
greater than for the linear predictors.

OV neural networks produces the best results. It places many
predictions into the profitable margin between second highest bid
and highest bid while keeping the number of overpredictions lower
than the kernel methods. Hence, it is a viable solution to maximiz-
ing profit in real-world second price auctions with reserve.

It has been observed in many application domains that neural
networks thrive under the presence of more training data. We see
this in our study as well; the results of OV neural networks on the
eBay data sets improve when the model is trained with more data.

[Figure 8|explores the reserve price predictions of OV neural net-
works on unseen test data from the large eBay data set. When we
compare the central panel (a scatter plot of the predicted reserve
price against the highest bid) to the predictions in the right panel
of we can see that the predictor trained on the larger data
set is making larger predictions for auctions with large potential
revenue (highest bid above 300.) By using more training data the
model is able to uncovered additional structure in the relationship
between the eBay auction features and the potential for profit as
encoded by the objective variables.

4. SUMMARY AND DISCUSSION

We develop the objective variable approach for combining prob-
abilistic modeling with optimal decision making. We use this method
to solve the problem of how to set the reserve price in second-price
auctions with reserve. This auction paradigm is widely used to
sell online advertisement space. Our algorithms scales better and
outperforms the current state of the art on both simulated and real-
world data.
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APPENDIX
A. UPDATE EQUATIONS FOR EM

The normahzmg constant C; of [Eq. 9] can be computed by inte-
grating [E over the real line. Let u; = f(x;; wlt= 1)). Uptoa

constant factor of B the normalizing constant C, then equals

C,-eB":/ el ¢( u’ )dy; +/ &g _‘ui)

o
+/B_ ¢(7) (15
oMMy o1 - a(P )
+oe~'+%2[cp(B’_(‘g“’z))fq:(b"_(‘;"“’2))].
(16)

Computing the expectation of the latent reserve price E[y;] en-
tails evaluating the moment generating function M;(s) = E[e%],
where expectation is taken w.r.t. the posterior p(y;|z; = 1,w(~1).
Taking the derivative with respect to s and setting s = O then yields
the desired expectation.

E[y] :dﬁgfs) . (17)
O () O g Mt
g ot E o2 (‘ﬁ“’z))
-2 (e T oA,
fgfeulwf;[(,,(&fu?o%) ( (u(;+6))]
+ g1 - ”")]+%j¢( = as)

B. IMPLEMENTATION OF OV NEURAL NET-

WORKS

Here we give the implementation details for training OV neural
networks. The E-step is identical to OV regression and is given in
Eq. 138

In the M-step, we train a neural network with H hidden layers
and activation function tanh(-) to predict the expectations com-
puted in the previous E-step from auction features. This is done
using stochastic gradient descent.

Initialization. The weights of the input layer are initialized by
drawing each entry from

6 6
Uniform| — \/}%, \/1%} (19)

where d is the number of features, while the weights of the hidden
layer are drawn element wise from

6 6
Uniform [ — \/1\1[7“ \/TL—H] . (20)

See [11]] for mathematical considerations of this initialization scheme.

Learning rate. We use a constant learning rate. It is determined
using grid search over the values [1072,1073,1074].

Regularization. The weights of the network are both L1 and
L2 regularized. Both regularization parameters are given the same
value (to reduce the complexity of the grid search). We determine
a value in [1073,107*,107>] using cross validation on a validation
set.

Early Stopping. To avoid overfitting to the training set we use
early stopping. Every 50 epochs the prediction accuracy is eval-
vated on the validation set. When the validation accuracy stops
improving, the algorithm stops.



	Introduction
	Objective Variables for Second-Price Auctions with Reserve
	The Smoothed Revenue
	Objective variables
	MAP estimation with EM
	Nonlinear Objective Variable Models

	Empirical Study
	Summary and Discussion
	References
	Update Equations for EM
	Implementation of OV Neural Networks

