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Abstract
Black box variational inference allows re-
searchers to easily prototype and evaluate an ar-
ray of models. Recent advances allow such al-
gorithms to scale to high dimensions. How-
ever, a central question remains: How to specify
an expressive variational distribution that main-
tains efficient computation? To address this, we
develop hierarchical variational models (HVMs).
HVMs augment a variational approximation with
a prior on its parameters, which allows it to cap-
ture complex structure for both discrete and con-
tinuous latent variables. The algorithm we de-
velop is black box, can be used for any HVM,
and has the same computational efficiency as
the original approximation. We study HVMs on
a variety of deep discrete latent variable mod-
els. HVMs generalize other expressive variational
distributions and maintains higher fidelity to the
posterior.

1. Introduction
Black box variational inference (BBVI) is important to re-
alizing the potential of modern applied Bayesian statistics.
The promise of BBVI is that an investigator can specify any
probabilistic model of hidden and observed variables, and
then efficiently approximate its posterior without additional
effort (Ranganath et al., 2014).

BBVI is a form of variational inference (Jordan et al., 1999).
It sets up a parameterized family of distributions over the
latent variables and then optimizes the parameters to be
close to the posterior. Most applications of variational in-
ference use the mean-field family. Each variable is inde-
pendent and governed by its own parameters.
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Though it enables efficient inference, the mean-field family
is limited by its strong factorization. It cannot capture pos-
terior dependencies between latent variables, dependencies
which both improve the fidelity of the approximation and
are sometimes of intrinsic interest.

To this end, we develop hierarchical variational models
(HVMs), a class of families that goes beyond the mean-
field and, indeed, beyond directly parameterized variational
families in general. The main idea behind our method is to
treat the variational family as a model of the latent variables
and then to expand this model hierarchically. Just as hi-
erarchical Bayesian models induce dependencies between
data, hierarchical variational models induce dependencies
between latent variables.

We develop an algorithm for fitting HVMs in the context
of black box inference. Our algorithm is as general and
computationally efficient as BBVI with the mean-field fam-
ily, but it finds better approximations to the posterior. We
demonstrate HVMs with a study of approximate posteri-
ors for several variants of deep exponential families (Ran-
ganath et al., 2015); HVMs generally outperform mean-field
variational inference.

Technical summary. Consider a posterior distribution
p(z |x), a distribution on d latent variables z1, . . . , zd con-
ditioned on a set of observations x. The mean-field family
is a factorized distribution of the latent variables,

qMF(z;λ) =
∏d

i=1 q(zi;λi). (1)

We fit its parameters λ to find a variational distribution that
is close to the exact posterior.

By positing Eq. 1 as a model of the latent variables, we
can expand it by placing a prior on its parameters. The
result is a hierarchical variational model, a two-level dis-
tribution that first draws variational parameters from a prior
q(λ;θ) and then draws latent variables from the corre-
sponding likelihood (Eq. 1). HVMs induce a family that
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marginalizes out the mean-field parameters,

qHVM(z;θ) =

∫
q(λ;θ)

∏
i

q(zi |λi) dλ. (2)

This expanded family can capture both posterior depen-
dencies between the latent variables and more complex
marginal distributions, thus better inferring the posterior.
(We note that during inference the variational “posterior”
q(λ | z,θ) will also play a role; it is the conditional distri-
bution of the variational parameters given a realization of
the hidden variables.)

Fitting an HVM involves optimizing the variational hyper-
parameters θ, and our algorithms for solving this problem
maintain the computational efficiency of BBVI. Note the
prior is a choice. As one example, we use mixture mod-
els as a prior of the mean-field parameters. As another, we
use normalizing flows (Rezende and Mohamed, 2015), ex-
panding their scope to a broad class of non-differentiable
models.

2. Hierarchical Variational Models
Recall, p(z |x) is the posterior. Variational inference
frames posterior inference as optimization: posit a fam-
ily of distributions q(z;λ), parameterized by λ, and min-
imize the KL divergence to the posterior distribution (Jor-
dan et al., 1999; Wainwright and Jordan, 2008).

Classically, variational inference uses the mean-field fam-
ily. In the mean-field family, each latent variable is as-
sumed independent and governed by its own variational pa-
rameter (Eq. 1). This leads to a computationally efficient
optimization problem that can be solved (up to a local opti-
mum) with coordinate descent (Bishop, 2006; Ghahramani
and Beal, 2001) or gradient-based methods (Hoffman et al.,
2013; Ranganath et al., 2014).

Though effective, the mean-field factorization compro-
mises the expressiveness of the variational family: it aban-
dons any dependence structure in the posterior, and it can-
not in general capture all marginal information. One of
the challenges of variational inference is to construct richer
approximating families—thus yielding high fidelity poste-
rior approximations—and while still being computation-
ally tractable. We develop a framework for such fami-
lies.

2.1. Hierarchical variational models

Our central idea is to draw an analogy between probability
models of data and variational distributions of latent vari-
ables. A probability model outlines a family of distribu-
tions over data, and how large that family is depends on the
model’s complexity. One common approach to expanding
the complexity, especially in Bayesian statistics, is to ex-
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Figure 1. Graphical model representation. (a) In mean-field mod-
els, the latent variables are strictly independent. (b) In hierarchi-
cal variational models, the latent variables are governed by a prior
distribution on their parameters, which induces arbitrarily com-
plex structure.

pand a model hierarchically, i.e., by placing a prior on the
parameters of the likelihood. Expanding a model hierarchi-
cally has distinct advantages: it induces new dependencies
between the data, either through shrinkage or an explicitly
correlated prior (Efron, 2012), and it enables us to reuse
algorithms for the simpler model within algorithms for the
richer model (Gelman and Hill, 2007).

We use the same idea to expand the complexity of the
mean-field variational family and to construct hierarchical
variational models (HVMs). First, we view the mean-field
family of Eq. 1 as a simple model of the latent variables.
Next, we expand it hierarchically. We introduce a “varia-
tional prior” q(λ;θ) with “variational hyperparameters” θ
and place it on the mean-field model (a type of “variational
likelihood”). Marginalizing out the prior gives qHVM(z;θ),
the hierarchical family of distributions over the latent vari-
ables in Eq. 2. This family enjoys the advantages of hier-
archical modeling in the context of variational inference:
it induces dependence among the latent variables and al-
lows us to reuse simpler computation when fitting the more
complex family.

Figure 1 illustrates the difference between the mean-field
family and an HVM. Mean-field inference fits the varia-
tional parameters {λ1, . . . ,λd} so that the factorized dis-
tribution is close to the exact posterior; this tries to match
the posterior marginal for each variable. Using the same
principle, HVM inference fits the variational hyperparame-
ters so qHVM(z;θ) is close to the exact posterior. This goes
beyond matching marginals because of the shrinkage ef-
fects among the variables.

Figure 2 is a simple example. The variational family posits
each zi as a scalar from an exponential family. The varia-
tional parameters λi are the corresponding natural parame-
ters, which are unconstrained. Now place a Gaussian prior
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(a) Normal(λ;θ) (b)
∏2

i=1 Gamma(zi |λi)

Figure 2. (a) q(λ;θ): The (reparameterized) natural parameters
assume a multivariate prior, with different areas indicated by red
and blue. (b)

∏2
i=1 q(zi |λi): The latent variables are drawn

from a mean-field family, colorized according to its drawn pa-
rameters’ color.

on the mean-field parameters, with a full covariance matrix.
The resulting HVM is a two-level distribution: first draw the
complete set of variational parameters {λ1, . . . ,λd} from
a Gaussian (Figure 2a); then draw each zi from its corre-
sponding natural parameter (Figure 2b). The covariance
on the variational parameters induces dependence among
the zi’s, and the marginal of each zi is an integrated like-
lihood; thus this HVM is more flexible than the mean-field
family.

In general, if the HVM can capture the same marginals then
qHVM(z;θ) is more expressive than the mean-field family.1

As in the example, the HVM induces dependence among
variables and also expands the family of possible marginals
that it can capture. In Section 3 we see that, even with
this more expressive family, we can develop a black box
algorithm for HVMs. It exploits the mean-field structure
of the variational likelihood and enjoys the corresponding
computational advantages. First, we discuss how to specify
an HVM.

2.2. Specifying an HVM

We can construct an HVM by placing a prior on any existing
variational approximation. An HVM has two components:
the variational likelihood q(z | λ) and the prior q(λ;θ).
The likelihood comes from a variational family that ad-
mits gradients; here we focus on the mean-field family.
As for the prior, the distribution of {λ1, . . . ,λd} should
not have the same factorization structure as the variational
likelihood—otherwise it will not induce dependence be-
tween latent variables. We outline several examples of vari-
ational priors.

1Using an HVM to “regularize” the variational family, i.e., to
induce dependence but limit the marginals, is an interesting av-
enue for future work. In the appendix, we relate HVMs to empiri-
cal Bayes and methods in reinforcement learning.

Variational prior: Mixture of Gaussians. One option
for a variational prior is to assume the mean-field parame-
ters λ are drawn from a mixture of Gaussians. Let K be
the number of components, π be a probability vector, µk,
and Σk be the parameters of a d-dimensional multivariate
Gaussian. The variational prior is

q(λ;θ) =

K∑
i=1

πkN(µk,Σk).

The parameters θ contain the probability vector π as well
as the component means µk and variances Σk. The mix-
ture locations µk capture relationships between different
latent variables. For example, a two-component mixture
with two latent variables (and a mean field variational like-
lihood) can capture that the latent variables are either very
positive or very negative.

Mixtures can approximate arbitrary distributions (given
enough components), and have been considered as vari-
ational families (Jaakkola and Jordan, 1998; Lawrence,
2000; Gershman and Blei, 2012; Salimans et al., 2013). In
the traditional setup, however, the mixtures form the varia-
tional appproximation on the latent variables directly. Here
we use it on the variational parameters; this lets us use a
mixture of Gaussians in many models, including those with
discrete latent variables.

Variational prior: Normalizing flows. Mixtures offer
flexible variational priors. However, in the algorithms we
derive, the number of model likelihood evaluations scales
with the number of mixture components; this is problem-
atic in high dimensions. Further, in high dimensions the
number of mixtures components can be impractical. We
seek a prior whose computational complexity does not
scale with its modeling flexibility. This motivates normal-
izing flows.

Normalizing flows are variational approximations for prob-
ability models with differentiable densities (Rezende and
Mohamed, 2015). Normalizing flows build a parameterized
probability distribution by transforming a simple random
variable λ0 through a sequence of invertible differentiable
functions f1 to fK . Each function transforms its input, so
the distribution of the output is a complex warping of the
original random variable λ0.

We can use normalizing flows as a variational prior. Let
λk = fk ◦ ... ◦ f1(λ0); then the flow’s density is

q(λ; θ) = q(λ0)

K∏
k=1

∣∣∣∣det

(
∂fk
∂λk

)∣∣∣∣−1 .
With the normalizing flow prior, the latent variables be-
come dependent because their variational parameters are
deterministic functions of the same random variable. The
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HVM expands the use of normalizing flows to non-
differentiable latent variables, such as those with discrete,
ordinal, and discontinuous support. In Section 4.2, we use
normalizing flows to better approximate posteriors of dis-
crete latent variables.

Other Variational Models. Many modeling tools can be
brought to bear on building hierarchical variational mod-
els. For example, copulas explicitly introduce dependence
among d random variables by using joint distributions on
d-dimensional hypercubes (Nelsen, 2006). HVMs can use
copulas as priors on either point mass or general mean-
field likelihoods. As another example, we can replace
the mixture model prior with a factorial mixture (Ghahra-
mani, 1995). This leads to a richer posterior approxima-
tion.

2.3. Related work

There has been much work on learning posterior depen-
dences. Saul and Jordan (1996); Ghahramani (1997)
develop structured variational approximations: they fac-
torize the variational family across subsets of variables,
maintaining certain dependencies in the model. Unlike
HVMs, however, structured approximations require model-
specific considerations and can scale poorly when used
with black box methods. For example, Mnih and Gre-
gor (2014) develop a structured approximation for sigmoid
belief networks—their approach is restricted to stochastic
feed forward networks, and the variance of the stochastic
gradients increases with the number of layers. In general,
these families complement the construction of HVMs, and
can be applied as a variational likelihood.

Within the context of more generic inference, Titsias and
Lázaro-Gredilla (2014); Rezende and Mohamed (2015);
Kucukelbir et al. (2016) propose rich approximating fam-
ilies in differentiable probability models. These methods
work well in practice; however, they are restricted to prob-
ability models with densities differentiable with respect to
their latent variables. For undirected models Agakov and
Barber (2004) introduced the auxiliary bound for varia-
tional inference we derive. Salimans et al. (2015) derive
the same bound, but limit their attention to differentiable
probability models and auxiliary distributions defined by
Markov transition kernels. Maaløe et al. (2016) study aux-
iliary distributions for semi-supervised learning with deep
generative models. Tran et al. (2015) propose copulas
as a way of learning dependencies in factorized approx-
imations. Copulas can be efficiently extended to HVMs,
whereas the full rank approach taken in Tran et al. (2015)
requires computation quadratic in the number of latent vari-
ables. Giordano et al. (2015) use linear response theory
to recover covariances from mean-field estimates. Their
approach requires recovering the correct first order mo-

ments by mean-field inference and only provides estimates
of smooth functions.

These generic methods can also be building blocks for
HVMs, employed as variational priors for arbitrary mean-
field factors. As in our example with a normalizing flow
prior, this extends their scope to perform inference in dis-
crete models (and, more generally, non-differentiable mod-
els). In other work, we use Gaussian processes (Tran et al.,
2016b).

3. Optimizing HVMs
We derive a black box variational inference algorithm for a
large class of probability models and using any hierarchical
variational model as the posterior approximation. Our al-
gorithm enables efficient inference by preserving both the
computational complexity and variance properties of the
stochastic gradients of the variational likelihood.

Hierarchical ELBO. We optimize over the parameters
θ of the variational prior to find the optimal distribution
within the class of hierarchical variational models. Using
the HVM, the ELBO is

L(θ) = EqHVM(z;θ)[log p(x, z)− log qHVM(z;θ)]. (3)

The expectation of the first term is tractable as long as we
can sample from q and it has proper support. The expec-
tation of the second term is the entropy. It contains an in-
tegral (Eq. 2) with respect to the variational prior, which is
analytically intractable in general.

We construct a bound on the entropy. We introduce a dis-
tribution, r(λ | z;φ) with parameters φ and apply the vari-
ational principle;

−EqHVM
[log qHVM(z)] (4)

≥ −Eq(z,λ)[log q(λ) + log q(z |λ)− log r(λ | z;φ)].

As in variational inference, the bound in Eq. 4 is ex-
act when r(λ | z;φ) matches the variational posterior
q(λ | z;θ). From this perspective, we can view r as a recur-
sive variational approximation. It is a model for the poste-
rior q of the mean-field parameters λ given a realization of
the latent variables z.

The bound is derived by introducing a term KL(q‖r). Due
to the asymmetry of KL-divergence, we can also substitute
r into the first rather than the second argument of the KL
divergence; this produces an alternative bound to Eq. 4. We
can also extend the bound to multi-level hierarchical varia-
tional models, where now we model the posterior distribu-
tion q of the higher levels using higher levels in r. More
details are available in the appendix.

Substituting the entropy bound (Eq. 4) into the ELBO
(Eq. 3) gives a tractable lower bound. The hierarchical
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ELBO is

L̃(θ,φ) = Eq(z,λ;θ)

[
log p(x, z) + log r(λ | z;φ)

−
d∑

i=1

log q(zi |λi)− log q(λ;θ)
]
.

(5)

The hierarchical ELBO is tractable, as all of the terms are
tractable. We jointly fit q and r by maximizing Eq. 5 with
respect to θ and φ. Alternatively, the joint maximization
can be interpreted as variational EM on an expanded prob-
ability model, r(λ | z;φ)p(z |x). In this light, φ are model
parameters and θ are variational parameters. Optimizing θ
improves the posterior approximation; optimizing φ tight-
ens the bound on the KL divergence by improving the re-
cursive variational approximation.

We can also analyze Eq. 5 by rewriting it in terms of the
mean-field ELBO,

L̃(θ,φ) = Eq[LMF(λ)] + Eq[log r(λ | z;φ)− log q(λ;θ)].

where LMF = Eq(z |λ)[log p(x, z) − log q(z |λ)]. This
shows that Eq. 5 is a sum of two terms: a Bayesian model
average of the ELBO of the variational likelihood, with
weights given by the variational prior q(λ;θ); and a cor-
rection term that is a function of both the auxiliary distribu-
tion r and the variational prior. Since mixtures (i.e., convex
combinations) cannot be sharper than their components, r
must not be independent of z in order for this bound to be
better than the original bound.

Stochastic Gradient of the ELBO. Before we describe
how to optimize the hierarchical ELBO, we describe two
types of stochastic gradients of the ELBO.

The score function estimator for the ELBO gradient applies
to both discrete and continuous latent variable models. Let
V be the score function, V = ∇λ log q(z |λ). The gradient
of the ELBO is

∇score
λ L = Eq(z |λ)[V (log p(x, z)− log q(z |λ))]. (6)

See Ranganath et al. (2014) for a derivation. We can con-
struct noisy gradients from Eq. 6 by a Monte Carlo estimate
of the expectation. In general, the score function estima-
tor exhibits high variance.2 Roughly, the variance of the
estimator scales with the number of factors in the learn-
ing signal (Ranganath et al., 2014; Mnih and Gregor, 2014;
Rezende et al., 2014).

In mean-field models, the gradient of the ELBO with respect
to λi can be separated. Letting Vi be the local score Vi =

2This is not surprising given that the score function estimator
makes very few restrictions on the class of models, and requires
access only to zero-order information given by the learning signal
log p− log q.

∇λ log q(zi |λi), it is

∇λiLMF = Eq(zi;λi)[Vi(log pi(x, z)− log q(zi;λi))],
(7)

where log pi(x, z) are the components in the joint distribu-
tion that contain zi. This update is not only local but it also
drastically reduces the variance of Eq. 6. It makes stochas-
tic optimization practical.

With differentiable latent variables, the estimator can take
advantage of model gradients. One such estimator uses
reparameterization: the ELBO is written in terms of a ran-
dom variable ε, whose distribution s(ε) is free of the varia-
tional parameters, and such that z can be written as a deter-
ministic function z = z(ε;λ). Reparameterization allows
gradients of variational parameters to move inside the ex-
pectation,

∇rep
λ L = Es(ε)[(∇z log p(x, z)−∇z log q(z))∇λz(ε;λ)].

The reparameterization gradient constructs noisy gradients
from this expression via Monte Carlo. Empirically, the
reparameterization gradient exhibits lower variance than
the score function gradient (Titsias, 2015). In the appendix,
we show an analytic equality of the two gradients, which
explains the observed difference in variances.

Stochastic Gradient of the Hierarchical ELBO. To op-
timize Eq. 5, we need to compute the stochastic gradient
with respect to the variational hyperparameters θ and aux-
iliary parameters φ. As long as we specify the variational
prior q(λ;θ) to be differentiable, we can apply the repa-
rameterization gradient for the random variational parame-
ters λ. Let ε be drawn from a distribution s(ε) such as the
standard normal. Let λ be written as a function of ε and
θ denoted λ(ε;θ). The gradient of the hierarchical ELBO
with respect to θ is

∇θL̃(θ,φ) = Es(ε)[∇θλ(ε)∇λLMF(λ)]

+ Es(ε)[∇θλ(ε)∇λ[log r(λ | z;φ)− log q(λ;θ)]]

+ Es(ε)[∇θλ(ε)Eq(z |λ)[V log r(λ | z;φ)]]. (8)

The first term is the gradient of the original variational ap-
proximation scaled by the chain rule from the reparameter-
ization. Thus, hierarchical variational models inherit prop-
erties from the original variational approximation such as
the variance reduced gradient (Eq. 7) from the mean-field
factorization. The second and third terms try to match r and
q. The second term is strictly based on reparameterization,
thus it exhibits low variance.

The third term potentially involves a high variance gradient
due to the appearance of all the latent variables in its gradi-
ent. Since the distribution q(z |λ(ε;θ)) factorizes (by def-
inition) we can apply the same variance reduction for r as
for the mean-field model. We examine this below.
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Local Learning with r. The practicality of HVMs hinges
on the variance of the stochastic gradients during optimiza-
tion. Specifically, any additional variance introduced by r
should be minimal. Let ri be the terms log r(λ | zi) con-
taining zi. Then the last term in Eq. 8 can be rewritten
as

Es(ε)[∇θλ(ε;θ)Eq(z |λ)[V log r(λ | z;φ)]]

= Es(ε)

[
∇θλ(ε;θ)Eq(z |λ)

[
d∑

i=1

Vi log ri(λ | z;φ)

]]
.

We derive this expression (along with Eq. 8) in the ap-
pendix. When ri does not depend on many variables,
this gradient combines the computational efficiency of the
mean-field with reparameterization, enabling fast inference
for discrete and continuous latent variable models. This
gradient also gives us the criteria for building an r that
admits efficient stochastic gradients: r should be differen-
tiable with respect to λ, flexible enough to model the vari-
ational posterior q(λ | z), and factorize with respect to its
dependence on each zi.

One way to satisfy these criteria is by defining r to be a de-
terministic transformation of a factorized distribution. That
is, let λ be the deterministic transform of λ0, and

r(λ0 | z) =

d∏
i=1

r(λ0i | zi). (9)

Similar to normalizing flows, the deterministic transforma-
tion from λ0 to λ can be a sequence of invertible, differ-
entiable functions g1 to gk. However unlike normalizing
flows, we let the inverse functions g−1 have a known para-
metric form. We call this the inverse flow. Under this trans-
formation, the log density of r is

log r(λ | z) = log r(λ0 | z) +

K∑
k=1

log

(∣∣∣∣det(
∂g−1k

∂λk
)

∣∣∣∣) .
The distribution r is parameterized by a deterministic trans-
formation of a factorized distribution. We can quickly com-
pute the sequence of intermediary λ by applying the known
inverse functions—this enables us to quickly evaluate the
log density of inverse flows at arbitrary points. This con-
trasts normalizing flows, where evaluating the log density
of a value (not generated by the flow) requires inversions
for each transformation.

This r meets our criteria. It is differentiable, flexible, and
isolates each individual latent variable in a single term. It
maintains the locality of the mean-field inference and is
therefore crucial to the stochastic optimization.

Optimizing the Hierarchical ELBO with respect to φ.
We derived how to optimize with respect to θ. Optimiz-
ing with respect to the auxiliary parameters φ is simple.

Algorithm 1: Black box inference with an HVM

Input : Model log p(x, z),
Variational model q(z |λ)q(λ;θ)

Output: Variational Parameters: θ
Initialize φ and λ randomly.
while not converged do

Compute unbiased estimate of∇θL̃. (Eq. 8)
Compute unbiased estimate of∇φL̃. (Eq. 10)
Update φ and λ using stochastic gradient ascent.

end

The expectation in the hierarchical ELBO (Eq. 5) does not
depend on φ; therefore we can simply pass the gradient
operator inside,

∇φL̃ = Eq(z,λ)[∇φ log r(λ | z,φ)]. (10)

Algorithm. Algorithm 1 outlines the inference proce-
dure, where we evaluate noisy estimates of both gradients
using samples from the joint q(z,λ). In general, we can
compute these gradients via automatic differentiation sys-
tems such as those available in Stan and Theano (Stan De-
velopment Team, 2015; Bergstra et al., 2010). This re-
moves the need for model-specific computations (note that
no assumption has been made on log p(x, z) other than the
ability to calculate it).

Table 1 outlines variational methods and their complexity
requirements. HVMs, with a normalizing flow prior, have
complexity linear in the number of latent variables, and the
complexity is proportional to the length of the flow used to
represent q and the inverse flow r.

Hierarchical variational models with multiple layers can
contain both discrete and differentiable latent variables.
Higher level differentiable variables follow directly from
our derivation above. (See the appendix.)

Inference Networks. Classically, variational inference
on models with latent variables associated with a data point
requires optimizing over variational parameters whose
number grows with the size of data. This process can be
computationally prohibitive, especially at test time. In-
ference networks (Dayan, 2000; Stuhlmüller et al., 2013;
Kingma and Welling, 2014; Rezende et al., 2014) amortize
the cost of estimating these local variational parameters by
tying them together through a neural network. Specifically,
the data-point specific variational parameters are outputs of
a neural network with the data point as input. The parame-
ters of the neural network then become the variational pa-
rameters; this reduces the cost of estimating the parameters
of all the data points to estimating parameters of the infer-
ence network. Inference networks can be applied to HVMs
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Black box methods Computation Storage Dependency Class of models

BBVI (Ranganath et al., 2014) O(d) O(d) 7 discrete/continuous
DSVI (Titsias and Lázaro-Gredilla, 2014) O(d2) O(d2) 3 continuous-diff.
COPULA VI (Tran et al., 2015) O(d2) O(d2) 3 discrete/continuous
MIXTURE (Jaakkola and Jordan, 1998) O(Kd) O(Kd) 3 discrete/continuous
NF (Rezende and Mohamed, 2015) O(Kd) O(Kd) 3 continuous-diff.
HVM w/ NF prior O(Kd) O(Kd) 3 discrete/continuous

Table 1. A summary of black box inference methods, which can support either continuous-differentiable distributions or both discrete
and continuous. d is the number of latent variables; for MIXTURE, K is the number of mixture components; for NF procedures, K is the
number of transformations.

by making both the parameters of the variational model and
recursive posterior approximation functions of their condi-
tioning sets.

4. Empirical Study
We introduced a new class of variational families and de-
veloped efficient black box algorithms for their computa-
tion. We consider a simulated study on a two-dimensional
discrete posterior; we also evaluate our proposed varia-
tional models on deep exponential families (Ranganath
et al., 2015), a class of deep generative models which
achieve state-of-the-art results on text analysis. In total,
we train 2 variational models for the simulated study and
12 models over two datasets.3

4.1. Correlated Discrete Latent Variables

Consider a model whose posterior distribution is a pair of
discrete latent variables defined on the countable support
{0, 1, 2, . . . , } × {0, 1, 2, . . . , }; Figure 3 depicts its prob-
ability mass in each dimension. The latent variables are
correlated and form a complex multimodal structure. A
mean-field Poisson approximation has difficulty capturing
this distribution; it focuses entirely on the center mass. This
contrasts hierarchical variational models, where we place a
mixture prior on the Poisson distributions’ rate parameters
(reparameterized to share the same support). This HVM fits
the various modes of the correlated Poisson latent variable
model and exhibits a “smoother” surface due to its multi-
modality.

4.2. Deep Exponential Families

Deep exponential families (DEFs) (Ranganath et al., 2015)
build a set of probability models from exponential fami-
lies (Brown, 1986), whose latent structure mimic the archi-
tectures used in deep neural networks.

3 An implementation of HVMs is available in Edward (Tran
et al., 2016a), a Python library for probabilistic modeling.

Figure 3. (a) The true posterior, which has correlated latent vari-
ables with countably infinite discrete support. (b) Mean-field
Poisson approximation. (c) Hierarchical variational model with
a mixture of Gaussians prior. Using this prior, the HVM exhibits
high fidelity to the posterior as it capture multimodality on dis-
crete surfaces.

Model. Exponential families are parameterized by a set
of natural parameters. We denote a draw from an un-
specified exponential family with natural parameter η as
EXPFAM(η). The natural parameter in deep exponential
families are constructed from an inner product of the pre-
vious layer with weights, passed through a link function
g(·).

Let L be the total number of layers, z` be a vector of latent
variables for layer ` (with z`,k as an element), and W`,k be
shared weights across observations. DEFs use weights with
priors, W`,k ∼ EXPFAMW (ξ), and a prior at the top layer,
zL,k ∼ EXPFAML(η). The generative process cascades:
for each element k in layer ` = L− 1, . . . , 1,

z`,k ∼ EXPFAM`(g`(W
>
`,kz`+1))

x ∼ Poisson(W0z1).

We model count data with a Poisson likelihood on x. We
focus on DEFs with discrete latent variables.

The canonical example of a discrete DEF is the sigmoid
belief network (SBN) (Neal, 1990). The SBN is a Bernoulli
DEF, with z`,k ∈ {0, 1}. The other family of models we
consider is the Poisson DEF, with

p(z`,k | zl+1,Wl,k) ∼ Poisson(log(1 + exp(z>l+1Wl,k))),

for each element k in the layer `. In the SBN, each observa-
tion either turns a feature on or off. In a Poisson DEF, each
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Model HVM Mean-Field

Poisson 100 3386 3387
100-30 3396 3896
100-30-15 3346 3962

Bernoulli 100 3060 3084
100-30 3394 3339
100-30-15 3420 3575

Table 2. New York Times. Held-out perplexity (lower is better).
Hierarchical variational models outperform mean-field in five
models. Mean-field (Ranganath et al., 2015) fails at multi-level
Poissons; HVMs make it possible to study multi-level Poissons.

Model HVM Mean-Field

Poisson 100 3327 3392
100-30 2977 3320
100-30-15 3007 3332

Bernoulli 100 3165 3166
100-30 3135 3195
100-30-15 3050 3185

Table 3. Science. Held-out perplexity (lower is better). HVM out-
performs mean-field on all six models. Hierarchical variational
models identify that multi-level Poisson models are best, while
mean-field does not.

observation counts each feature a positive integer number
of times. This means Poisson DEFs are a multi-feature gen-
eralization of SBNs.

Variational Models. We consider the variational approx-
imation that adds dependence to the z′s. We parameterize
each variational prior q(λzi

) with a normalizing flow of
length 2, and use the inverse flow of length 10 for r(λzi

).
We use planar transformations (Rezende and Mohamed,
2015). In a pilot study, we found little improvement with
longer flow lengths. We compare to the mean-field approx-
imation from Ranganath et al. (2015) which achieves state
of the art results on text.

Data and Evaluation. We consider two text corpora of
news and scientific articles— The New York Times (NYT)
and Science. Both have 11K documents. NYT consists of
8K terms and Science consists of 5.9K terms. We train six
models for each data set.

We examine held out perplexity following the same criteria
as Ranganath et al. (2015). This is a document complete
evaluation metric (Wallach et al., 2009) where the words
are tested independently. As our evaluation uses data not
included in posterior inference, it is possible for the mean-
field family to outperform HVMs.

Results. HVMs achieve better performance over six mod-
els and two datasets, with a mean improvement in perplex-
ity of 180 points. (Mean-field works better on only the
two layer Bernoulli model on NYT.) From a data model-
ing viewpoint, we find that for The New York Times there
is little advantage to multi-layer models, while on Science
multi-layer models outperform their single layer counter-
parts. Overall, hierarchical variational models are less sen-
sitive to inference in multi-layer models, as evidenced by
the generally lower performance of mean-field with multi-
ple layers. HVMs make it feasible to work with multi-level
Poisson models. This is particularly important on Science,
where hierarchical variational models identifies that multi-
level Poisson models are best.

5. Discussion
We present hierarchical variational models, a rich class of
posterior approximations constructed by placing priors on
existing variational families. These priors encapsulate dif-
ferent modeling assumptions of the posterior and we ex-
plore several choices. We develop a black box algorithm
can fit any HVM. There are several avenues for future work:
studying alternative entropy bounds; analyzing HVMs in the
empirical Bayes framework; and using other data modeling
tools to build new variational models.
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A. Appendix
Relationship to empirical Bayes and RL. The augmen-
tation with a variational prior has strong ties to empiri-
cal Bayesian methods, which use data to estimate hyper-
parameters of a prior distribution (Robbins, 1964; Efron
and Morris, 1973). In general, empirical Bayes considers
the fully Bayesian treatment of a hyperprior on the origi-
nal prior—here, the variational prior on the original mean-
field—and proceeds to integrate it out. As this is analyti-
cally intractable, much work has been on parametric esti-
mation, which seek point estimates rather than the whole
distribution encoded by the hyperprior. We avoid this at
the level of the hyperprior (variational prior) via the hier-
archical ELBO; however, our procedure can be viewed in
this framework at one higher level. That is, we seek a point
estimate of the "variational hyperprior" which governs the
parameters on the variational prior.

A similar methodology also arises in the policy search lit-
erature (Rückstieß et al., 2008; Sehnke et al., 2008). Pol-
icy search methods aim to maximize the expected reward
for a sequential decision-making task, by positing a dis-
tribution over trajectories and proceeding to learn its pa-
rameters. This distribution is known as the policy, and an
upper-level policy considers a distribution over the original
policy. This encourages exploration in the latent variable
space and can be seen as a form of annealing.

Tractable bound on the entropy. Deriving an analytic
expression for the entropy of qHVM is generally intractable
due to the integral in the definition of qHVM. However, it is
tractable when we know the distribution q(λ | z). This can
be seen by noting from standard Bayes’ rule that

q(z)q(λ | z) = q(λ)q(z |λ), (11)

and that the right hand side is specified by the construc-
tion of the hierarchical variational model. Note also that
q(λ | z) can be interpreted as the posterior distribution of
the original variational parameters λ given the model, thus
we will denote it as qPOST(λ | z).

In general, computing qPOST(λ | z) from the specification of
the hierarchical variational model is as hard as the integral
needed to compute the entropy. Instead, we approximate
qPOST with an auxiliary distribution r(λ | z;φ) parameter-
ized by φ. This yields a bound on the entropy in terms of
the analytically known distributions r(λ | z), q(z |λ), and
q(λ).

First note that the KL-divergence between two distributions
is greater than zero, and is precisely zero only when the
two distributions are equal. This means the entropy can be

bounded as follows:

−EqHVM
[log qHVM(z)]

= −EqHVM
[log qHVM(z)− KL(qPOST(λ | z)||qPOST(λ | z))]

≥ −EqHVM
[log qHVM(z) + KL(qPOST(λ | z)||r(λ | z;φ))]]

= −EqHVM
[EqPOST

[log qHVM(z) + log qPOST(λ | z)

− log r(λ | z;φ)]]

= −Eq(z,λ)[log qHVM(z) + log qPOST(λ | z)− log r(λ | z;φ)].

Then by Eq. 11, the bound simplifies to

−EqHVM
[log qHVM(z)]

≥ −Eq(z,λ)[log q(λ) + log q(z |λ)− log r(λ | z;φ)].

A similar bound in derived by Salimans et al. (2015) di-
rectly for log p(x).

In the above derivation, the approximation r to the varia-
tional posterior qPOST(λ | z) is placed as the second argu-
ment of a KL-divergence term. Replacing the first argu-
ment instead yields a different tractable upper bound as
well.

−EqHVM
[log q(z)]

= EqHVM
[− log q(z) + KL(qPOST(λ | z)||qPOST(λ | z))]

≤ EqHVM
[− log q(z) + KL(r(λ | z;φ)||qPOST(λ | z))]]

= EqHVM
[Er[− log q(z)− log qPOST(λ | z) + log r(λ | z;φ)]]

= EqHVM
[Er[− log q(z)− log

q(z |λ)q(λ)

q(z)
+ log r(λ | z;φ)]]

= EqHVM
[Er[− log q(λ)− log q(z |λ) + log r(λ | z;φ)]].

The bound is also tractable when r and qHVM can be sam-
pled and all distributions are analytic. The derivation of
these two bounds parallels the development of expectation
propagation (Minka, 2001) and variational Bayes (Jordan,
1999) which are based on alternative forms of the KL-
divergence4. Exploring the role and relative merits of both
bounds we derive in the context of variational models will
be an important direction in the study of variational models
with latent variables.

The entropy bound is tighter than the trivial conditional en-
tropy bound of H[qHVM] ≥ H[q |λ] (Cover and Thomas,
2012). This bound is attained when specifying the recur-
sive approximation to be the prior; i.e., it is the special case
when r(λ | z;φ) = q(λ;θ).

Gradient Derivation. We derive the gradient of the hier-
archical ELBO using its mean-field representation:

L̃(θ,φ) = Eq[L(λ)] + Eq[(log r(λ | z;φ)− log q(λ;θ))].

4Note that the first bound, which corresponds to the objec-
tive in expectation propagation (EP), directly minimizes KL(q‖r)
whereas EP only minimizes this locally.
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Using the reparameterization λ(ε;θ), where ε ∼ s, this
is

L̃(θ,φ) = Es(ε)[L(λ(ε;θ))]

+ Es(ε)[Eq(z |λ)[(log r(λ(ε;θ) | z;φ)]− log q(λ(ε;θ);θ))].

We now differentiate the three additive terms with respect
to θ. As in the main text, we suppress θ in the definition of
λ when clear and define the score function

V = ∇λ log q(z |λ).

By the chain rule the derivative of the first term is

∇θEs(ε)[L(λ(ε;θ))] = Es(ε)[∇θλ(ε)∇λL(λ)].

We now differentiate the second term:

∇θEs(ε)[Eq(z |λ)[log r(λ(ε;θ) | z;φ]]

= ∇θEs(ε)

[∫
q(z |λ) log r(λ(ε;θ) | z;φ) dz

]
= Es(ε)

[
∇θ

[∫
q(z |λ) log r(λ(ε;θ) | z;φ) dz

]]
= Es(ε)

[
∇θλ(ε)∇λ

[∫
q(z |λ) log r(λ(ε;θ) | z;φ) dz

]]
.

Applying the product rule to the inner derivative
gives

∇λ

[∫
q(z |λ) log r(λ(ε;θ) | z;φ) dz

]
=

∫
∇λq(z |λ) log r(λ(ε;θ) | z;φ) dz

+

∫
q(z |λ)∇λ log r(λ(ε;θ) | z;φ) dz

=

∫
∇λ log q(z |λ)q(z |λ) log r(λ(ε;θ) | z;φ) dz

+

∫
q(z |λ)∇λ log r(λ(ε;θ) | z;φ) dz

= Eq(z |λ)[V log r(λ(ε;θ) | z;φ)]

+ Eq(z |λ)[∇λ log r(λ(ε;θ) | z;φ)].

Substituting this back into the previous expression gives the
gradient of the second term

Es(ε)[∇θλ(ε)Eq(z |λ)[V log r(λ(ε;θ) | z;φ)]]

+ Es(ε)[∇θλ(ε)Eq(z |λ)[∇λ log r(λ(ε;θ) | z;φ)]]

The third term also follows by the chain rule

∇θEs(ε)[log q(λ(ε;θ);θ)]

= Es(ε)[∇θλ(ε)∇λ log q(λ;θ) +∇θ log q(λ;θ)]

= Es(ε)[∇θλ(ε)∇λ log q(λ;θ)]

where the last equality follows by

Es(ε)[∇θ log q(λ;θ)] = Eq(λ;θ)[∇θ log q(λ;θ)] = 0.

Combining these together gives the total expression for the
gradient

∇θL̃(θ,φ) = Es(ε)[∇θλ(ε)∇λLMF(λ)]

+ Es(ε)[∇θλ(ε)∇λ[log r(λ | z;φ)− log q(λ;θ)]]

+ Es(ε)[∇θλ(ε)Eq(z |λ)[V log r(λ | z;φ)]].

Introducing ri to the gradient. One term of the gradi-
ent involves the product of the score function with all of
r,

Es(ε)[∇θλ(ε)Eq(z |λ)[V log r(λ | z;φ)]].

Localizing (Rao-Blackwellizing) the inner expectation as
in Ranganath et al. (2014); Mnih and Gregor (2014) can
drastically reduce the variance. Recall that

q(z |λ) =

d∏
i=1

q(zi |λi).

Next, we define Vi to be the score functions of the factor.
That is

Vi = ∇λ log q(zi |λi).

This is a vector with nonzero entries corresponding to
λi. Substituting the factorization into the gradient term
yields

Es(ε)

[
∇θλ(ε)

d∑
i=1

Eq(z |λ)[Vi log r(λ | z;φ)]

]
. (12)

Now we define ri to be the terms in log r containing zi and
r−i to be the remaining terms. Then the inner expectation
in the gradient term is

d∑
i=1

Eq(z |λ)[Vi(log ri(λ | z;φ) + log r−i(λ | z;φ))]

=

d∑
i=1

Eq(zi |λ)[ViEq(z−i |λ)[log ri(λ | z;φ) + log r−i(λ | z;φ)]],

=

d∑
i=1

Eq(z |λ)[Vi log ri(λ | z;φ)],

where the last equality follows from the expectation of the
score function of a distribution is zero. Substituting this
back into Eq. 12 yields the desired result

Es(ε)[∇θλ(ε;θ)Eq(z |λ)[V log r(λ | z;φ)]]

= Es(ε)

[
∇θλ(ε;θ)Eq(z |λ)

[
d∑

i=1

Vi log ri(λ | z;φ)

]]
.
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Equality of Two Gradients. We now provide a direct
connection between the score gradient and the reparame-
terization gradient. We carry this out in one-dimension for
clarity, but the same principle holds in higher dimensions.
Let Q be the cumulative distribution function (CDF) of q
and let z = T (z0;λ) be reparameterizable in terms of a
uniform random variable z0 (inverse-CDF sampling). We
focus on the one dimensional case for simplicity. Recall
integration by parts computes a definite integral as∫
supp(z)

w(z) dv(z)

= |w(z)v(z)|supp(z) −
∫
supp(z)

v(z) dw(z),

where the | · | notation indicates evaluation of a portion of
the integral. In the subsequent derivation, we let w(z) =
log p(x, z)− log q(z), and let dv(z) = ∇λ log q(z)q(z) =
∇λq(z).

Recall that we assume that we can CDF-transform z and
that the transformation is differentiable. That is, when u
is a standard uniform random variable, z = Q−1(u,λ).
Then

∇score
λ L = Eq(z |λ)[∇λ log q(z |λ)(log p(x, z)− log q(z |λ))]

=

∫
supp(z)

∇λq(z |λ)(log p(x, z)− log q(z |λ))] dz

=

∣∣∣∣[∫
z

∇λq(z |λ) dz

]
(log p(x, z)− log q(z |λ))

∣∣∣∣
supp(z)

−
∫ [∫

z

∇λq(z |λ) dz

]
∇z[log p(x, z)− log q(z |λ)] dz

= |∇λQ(z |λ)(log p(x, z)− log q(z |λ))|supp(z)

−
∫
∇λ [Q(z |λ)]∇z[log p(x, z)− log q(z |λ)] dz

= |∇λQ(z |λ)(log p(x, z)− log q(z |λ))|supp(z)

+

∫
q(z |λ)∇λ [z]∇z[log p(x, z)− log q(z |λ)] dz

= |∇λQ(z |λ)(log p(x, z)− log q(z |λ))|supp(z)
+∇rep

λ L,

where the second to last equality follows by the derivative
of the CDF function (Hoffman and Blei, 2015). By looking
at the Monte Carlo expression of both sides, we can see the
reduction in variance that the reparameterization gradient
has over the score gradient comes from the analytic com-
putation of the gradient of the definite integral (which has
value 0).

Hyperparameters and Convergence. We study one,
two, and three layer DEFs with 100, 30, and 15 units re-
spectively and set prior hyperparameters following Ran-

ganath et al. (2015). For HVMs, we use Nesterov’s acceler-
ated gradient with momentum parameter of 0.9, combined
with RMSProp with a scaling factor of 10−3, to maximize
the lower bound. For the mean-field family, we use the
learning rate hyperparameters from the original authors’.
The HVMs converge faster on Poisson models relative to
Bernoulli models. The one layer Poisson model was the
fastest to infer.

Multi-level q(λ;θ) and Optimizing with Discrete Vari-
ables in the Variational Prior. As mentioned in the main
text Hierarchical variational models with multiple layers
can contain both discrete and differentiable latent variables.
Higher level differentiable variables follow directly from
our derivation above. Discrete variables in the prior pose a
difficulty due to high variance, as the learning signal con-
tains the entire model. Local expectation gradients (Tit-
sias, 2015) provide an efficient gradient estimator for vari-
ational approximations over discrete variables with small
support—done by analytically marginalizing over each dis-
crete variable individually. This approach can be combined
with the gradient in Equation 8 of the main text to form an
efficient gradient estimator.

In the setting where the prior has discrete variables, opti-
mization requires a little more work. First we note that in a
non-degenerate mean-field setup that the λ’s are differen-
tiable parameters of probability distributions. This means
they will always, conditional on the discrete variables, be
differentiable in the variational prior. This means that we
can both compute the gradients for these parameters using
the technique from above and that the discrete variables ex-
ist at a higher level of the hierarchical variational model;
these discrete variables can be added to r conditional on
everything else. The gradients of discrete variables can be
computed using the score gradient, but Monte Carlo esti-
mates of this will have high variance due to no simplifi-
cation of the learning signal (like in the mean-field). We
can step around this issue by using local expectation gra-
dients (Titsias, 2015) which marginalize out one variable
at a time to get low variance stochastic gradients. This is
generally tractable when the discrete variables have small
support such as the binary variables in the factorial mix-
ture


