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ABSTRACT
We develop correlated randommeasures, randommeasures where the atom weights can exhibit a flexible
pattern of dependence, and use them to develop powerful hierarchical Bayesian nonparametric models.
Hierarchical Bayesian nonparametricmodels are usually built fromcompletely randommeasures, a Poisson-
process-based construction in which the atom weights are independent. Completely random measures
imply strong independence assumptions in the corresponding hierarchical model, and these assumptions
are oftenmisplaced in real-world settings. Correlated randommeasures address this limitation. Theymodel
correlation within the measure by using a Gaussian process in concert with the Poisson process. With cor-
related randommeasures, for example, we can develop a latent feature model for which we can infer both
the properties of the latent features and their dependency pattern. We develop several other examples as
well.We study a correlated randommeasuremodel of pairwise count data.Wederive an efficient variational
inference algorithmand show improvedpredictiveperformanceon largedatasets of documents,webclicks,
and electronic health records. Supplementary materials for this article are available online.

1. Introduction

Hierarchical Bayesian nonparametric models (Teh and Jordan
2010) have emerged as a powerful approach to analyzing com-
plex data (Williamson et al. 2010; Fox et al. 2011; Zhou et al.
2012). These models assume there are a set of patterns, or
components, that underlie the observed data; each data point
exhibits each component with different nonnegative weight; the
number of components is unknown and new data can exhibit
still unseen components. Given observed data, the posterior dis-
tribution reveals the components (including how many there
are), reveals how each data point exhibits them, and allows for
this representation to grow as more data are seen. These kinds
of assumptions describe many of the most common hierarchi-
cal Bayesian nonparametric models, such as the hierarchical
Dirichlet process (Teh et al. 2006), the Gamma-poisson process
(Titsias 2008), the beta-Bernoulli process (Thibaux and Jordan
2007), and others.

For example, in Section 6 we analyze patient data from a
large hospital; each patient is described by the set of diagnostic
codes on her chart. Potentially, the full dataset reflects patterns
in diagnostic codes, each pattern a set of diagnoses that often
occurs together. Further, some patients will exhibit multiple
patterns—they simultaneously suffer from different clusters
of symptoms. With these data, a Bayesian nonparametric
model can uncover and characterize the underlying pattern and
describe each patient in terms of which patterns she exhibits.
Recent innovations in approximate posterior inference let us
analyze such data at large scale, uncovering useful characteriza-
tions of disease and injury for both exploration and prediction.
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In our study on medical data, we discover components that
summarize conditions such as congestive heart failure, diabetes,
and depression (Table 1).

But there is a limitation to the current state of the art in
Bayesian nonparametric models. To continue with the example,
each patient is represented as an infinite vector of nonnegative
weights, one per component. (There are a countably infinite
number of components.) Most hierarchical Bayesian nonpara-
metric models assume that these weights are uncorrelated—
that is, the presence of one component is unrelated to the
presence (or absence) of the others. But this assumption
is usually unfounded. For example, in the medical data we
find that type 2 diabetes is related to congestive heart failure
(Table 4).

In this article, we solve this problem. We develop correlated
random measures, a general-purpose construction for infus-
ing covariance into the distribution of weights of both random
measures and hierarchical Bayesian nonparametricmodels. Our
approach can capture that a large positive weight for one compo-
nent might covary with a large positive weight in another, a type
of pattern that is out of reach formost hierarchical Bayesian non-
parametric models. We demonstrate that bringing such correla-
tions into themodel both improves prediction and reveals richer
exploratory structures. Correlated random measures can be
used as a model for a collection of observed weighted point pro-
cesses and can be adapted to a wide variety of proven Bayesian
nonparametric settings, such as language modeling (Teh 2006),
time series analysis (Fox et al. 2011), dictionary learning (Zhou
et al. 2009), and nested models (Paisley et al. 2015).
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Table . The top  components on the Mayo Clinic data. We find that each factor
forms a medically meaningful grouping of diagnosis codes. For example, there are
allergy, pregnancy, and alcohol dependence components.

: Mammogram, Routine medical exam, Lumbago, Cervical Cancer Screening,
Hypothyroidism

: Hypertension, Hyperlipidemia, Coronary atherosclerosis, Prostate Cancer
Screening, Vaccine for influenza

: Acute pharyngitis, Cough, Myopia, Vaccine for influenza, Joint pain-shoulder
: Child Exam, Vaccine for flu, Otitis media, Upper respiratory infection,

pharyngitis
: Long-term anticoagulants, Atrial fibrillation, Hypertension, Congestive Heart

Failure, Chronic airway obstruction
: Normal pregnancy, Normal first pregnancy, Cervical cancer screening,

Delivery, Conditions antepartum
: Diabetes-, Hypertension, Hyperlipidemia, Uncontrolled Diabetes-,

Diabetes- with ophthalmic manifestations
: Depression, Dysthymia, Anxiety state, Generalized anxiety disorder, Major

depressive affective disorder
: Joint pain lower leg, Arthritis lower leg, Local arthritis lower leg,

Post-procedural status, Follow-up surgery
: Allergic rhinitis, Desensitization to allergens, Asthma, Chronic allergic

conjunctivitis, Chronic sinusitis
: Heart valve replacement, Prostate cancer, Lung and bronchus cancer,

Secondary bone cancer, Other lung disease
: Morbid obesity, Obesity, Obstructive sleep apnea, Sleep apnea, Intestinal

bypass status
: Acne, Convulsions, Abnormal involuntary movements, Cerebral palsy,

Long-term use meds
: Abnormality of gait, Personality change, Persistent mental disorders, Lack

of coordination, Debility
: Attention disorder w hyperactivity, Attention disorder w/o hyperactivity,

Adjustment disorder, Opposition defiant disorder, Conduct disturbance
: Diseases of nail, Corns and callosities, Dermatophytosis of nail, Ingrowing

nail, Other states following surgery of eye and adnexa
: Alcohol dependence, Tobacco use disorder, Alcohol abuse, Other alcohol

dependence-in remission, Other alcohol dependence-continuous
: Schizophrenia-Paranoid, Long-term use meds, Schizophrenia,

Schizophrenia-paranoid-chronic, Drug monitor
: Female breast cancer, Personal history of breast cancer, Lymph cancer,

Carcinoma in situ of breast, lymphedema
: Child health exam, Vaccination for disease, Vaccinations against

pneumonia, Need for prophylactic vaccination against viral hepatitis,
Procedure

Howdowe achieve this?Most Bayesian nonparametricmod-
els are built on completely random measures (Kingman 1967)
and the independence of the weights is an artifact of this con-
struction. To create correlated random measures, we infuse
a Gaussian process (Rasmussen and Williams 2005) into the
construction with a latent kernel between components. This
lets us relax the strict independence assumptions. The details
involve showing how to use theGaussian process in concert with
the Poisson process, and without sacrificing the technicalities
needed to define a proper random measure. As a result of the
general construction, we can build correlated variants of many
hierarchical Bayesian nonparametric models.

We will describe four correlated random measures. The first
is a correlated nonparametric version of Poisson factorization
(Canny 2004; Gopalan et al. 2014). This is a model of count
data, organized in a matrix, and it will be the model on which
we focus our study. We show how to derive an efficient varia-
tional inference algorithm to approximate the posterior and use
it to analyze both medical data and text data. We also describe
a correlated analog of the beta process (Hjort 1990) and two
correlated binary latent feature models, each expanding on the
hierarchical beta-Bernoulli process (Griffiths and Ghahramani
2006; Thibaux and Jordan 2007). We note that the discrete infi-
nite logistic normal model in Paisley, Wang, and Blei (2012) is a

normalized correlated randommeasure, a correlated adaptation
of the hierarchical Dirichlet process (Teh et al. 2006).

Related work. Correlated random measures (CorrRMs) can
capture general covariance between the measure of two sets,
while also being atomic and extendible to hierarchical mod-
els that share atoms. In the Bayesian nonparametric literature,
researchers have proposed several other randommeasures with
covariance. We survey this work.

Cox and Isham (1980) introduced the Cox process, a
Poisson random measure whose mean measure is also stochas-
tic. Cox processes can capture covariance if the stochastic mean
measure exhibits covariance. Unlike CorrRMs, however, Cox
processes do not allow for noninteger atom weights. Further-
more,most common examples of Cox processes, such as the log-
Gaussian Cox process (Møller, Syversveen, and Waagepetersen
1998), do not allow for atom sharing. We note that CorrRMs
share the doubly stochastic construction of the Cox process;
in Appendix A.1 we show that CorrRMs can be alternatively
viewed as a stochastic transformation of a Poisson process.

Determinantal point processes (Borodin 2009) are point pro-
cesses where the number of points is related to the determi-
nant of a kernel function. Determinantal point processes exhibit
“anti-clumping” (i.e., negative correlation) because atoms that
are close together will not appear together. In contrast, hierar-
chical correlated randommeasures do not rely on the atom val-
ues to determine their correlation, and can capture both negative
and positive correlation among their weights.

Doshi-Velez and Ghahramani (2009) presented a specific
correlated feature model by positing a higher level grouping
of features. In their model, observations exhibit correlation
through these groups. However, groups only contain features
and thus these features can only express positive correlation. In
the latent featuremodels based onCorrRMs, the latent locations
of two features can induce a negative correlation between their
co-occurrence.

Ammann and Thall (1978) studied infinitely divisible ran-
dommeasures that are not completely random. These measures
are referred to as having “aftereffects” in that every atom in the
random measure has more effect on the measure than just its
size. Correlated random measures are random measures with
aftereffects, but they are not necessarily infinitely divisible.

As we have mentioned, the discrete infinite logistic normal
(DILN; Paisley, Wang, and Blei 2012), a Bayesian nonparamet-
ric topic model, is a normalized instance of a correlated ran-
dommeasure. DILN first generates top level shared atoms from
a Dirichlet process, along with latent locations for each. It then
draws each document with a gamma process from those atoms
and a Gaussian process evaluated at their locations. Finally, it
convolves these processes and normalizes to form a probability
measure. We discuss DILN in detail in Section 4.3.

Finally, there has been a lot of research in Bayesian non-
parametrics about dependent random measures, originating
from the work by MacEachern (1999), broadly surveyed by
Foti and Williamson (2015), and used in applications such as
for dynamic ordinal data (DeYoreo and Kottas 2017), neuron
spikes (Gasthaus et al. 2009), and images (Sudderth and Jordan
2009). Dependent random measures select atoms for each
observation through a priori covariates, such as a timestamp
associated with the observation. Atoms are correlated, but only
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through these observed covariates. The main ideas behind
correlated random measures and dependent random measures
are different. Correlations in CorrRMs are not based on side
information, but rather are recovered through a random func-
tion associated with each observation. One dependent random
measure that is close in construction to correlated random
measures is the dependent Poisson process thinning measure
by Foti et al. (2013). This measure can be reinterpreted as a type
of correlated random measure; we discuss this connection with
technical details in Section 3. Another construction, compound
random measures (Griffin and Leisen 2017), builds dependent
random measures by using score functions to generate a set of
measures conditional on a shared Poisson process. Compound
random measures and the dependent Poisson process thinning
measure share with our approach the idea of separating out the
atom generation from the independence breaking portion.

2. Background: Completely RandomMeasures

In this section, we review random measures (Kingman 1967;
Cinlar 2011). We describe the Poisson random measure, com-
pletely random measures, and normalized random measures.
This sets the stage for our construction of the correlated random
measure in Section 3.

A random measureM is a stochastic process that is indexed
by a sigma algebra. Let (E, E ) be a measurable space, for exam-
ple, E is the real line and E are the Borel sets. A randommeasure
is a collection of random variablesM(A) ∈ [0,∞], one for each
set A ∈ E . The expectation of a random measure is called the
mean measure, which we denote ν(A) � E[M(A)].

One subclass of random measures is the class of completely
randommeasures (Kingman 1967). A completely randommea-
sure is a random measure M(·) such that for any disjoint finite
collection of setsA1,A2, . . . ,An, the corresponding realizations
of the measure on those sets M(A1),M(A2), . . . ,M(An) are
independent random variables. Completely random measures
encompass many of the constructions in Bayesian nonparamet-
ric statistics. Some examples include the Poisson process, the
beta process (Hjort 1990), the Bernoulli process (Thibaux and
Jordan 2007), and the gamma process (Ferguson 1973).

We begin by describing the simplest example of a completely
random measure, the Poisson random measure. The Poisson
random measure is constructed from a Poisson process. It is
characterized solely by its mean measure ν(·) : E → [0,∞],
which is an arbitrary measure on (E, E ). The complete char-
acterization of a Poisson random measure M(·) is that the
marginal distribution ofM(A) is a Poisson with rate ν(A).

We represent a Poisson randommeasurewith a set of atoms ai
in E and a sum of delta measures on those atoms (Cinlar 2011),

M(A) =
∞∑
i=1

δai (A).

The delta measure δai (A) equals one when ai ∈ A and zero oth-
erwise. Note there can be a countably infinite set of atoms, but
only if ν(E) = ∞. (This fact follows from the marginal distri-
butionM(E) ∼ Poisson(ν(E)) and that a Poisson random vari-
able with rate equal to ∞ is ∞ almost surely.) The distribution
of the atoms comes from the mean measure ν(·). For each finite

measurable set A, the atoms in A are distributed according to
ν(·)/ν(A).

We now expand the simple Poisson randommeasures to con-
struct more general completely random measures. Consider a
Poisson process on the cross product of E and the positive reals,
E × R+. It is represented by a set {(ai,wi)}∞i=1; each pair contains
an atom ai and corresponding weight wi ∈ R+. The completely
random measure is

M(A) =
∞∑
i=1

wiδai (A). (1)

This Poisson process is characterized by its mean measure,
called the Levy measure, which is defined on the corresponding
cross product of sigma algebras,

ν(·, ·) : E × B(R+) → [0,∞].

We note that completely randommeasures also have fixed com-
ponents, where the atoms are fixed in advance and the weights
are random. But we will not consider fixed components here.

We call the process homogenous when the Levymeasure fac-
torizes, ν(A,R) = H(A)ν̂(R); we call H the base measure. For
example, in a nonparametricmixture ofGaussians the basemea-
sure is a distribution on themixture locations (Escobar andWest
1995); in a nonparametric model of text, the base distribution is
a Dirichlet over distributions of words (Teh et al. 2006).

We confirm that M(·) in Equation (1) is a measure. First,
M(∅) = 0. Second, M(A) ≥ 0 for any A. Finally, M(·) satis-
fies countable additivity. Define A to be the union of disjoint
sets {A1,A2, . . .}. ThenM(A) = ∑

k M(Ak). This follows from
a simple argument,

∞∑
k=1

M(Ak) =
∞∑
k=1

∞∑
i=1

wiδai (Ak) =
∞∑
i=1

wi

∞∑
k=1

δai (Ak)

=
∞∑
i=1

wiδai (A) = M(A).

We used Tonelli’s theorem to interchange the summations.
One example of a completely randommeasure is the gamma

process (Ferguson 1973). It has Levy measure

ν(da, dw) � H(da)e−cw/wdw.

This is called the gamma process because if M ∼ Gamma−
Process(H, c) the random measure M(A) on any set A ∈ E is
gamma distributed M(A) ∼ Gamma(H(A), c), where H(A) is
the shape and c is the rate (Cinlar 2011). The gamma process
has an infinite number of atoms—its Levy measure integrates
to infinity—but the weights of the atoms are summable when
the base measure is finite (H(E) < ∞) because E[M(E)] =
H(E)

c . Finally, whenM(E) < ∞, we can normalize a completely
random measure to obtain a random probability measure. For
example, we construct the Dirichlet process (Ferguson 1973) by
normalizing the gamma process.

3. Correlated RandomMeasures

The main limitation of a completely random measure is
articulated in its definition—the random variables M(Ai) are
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independent. (Because they are normalized, randomprobability
measures exhibit some negative correlation between theM(Ai),
but cannot capture other types of relationships between the
probabilities.) This limitation comes to the fore particularly
when we see repeated draws of a random measure, such as in
hierarchical Bayesian nonparametric models (Teh and Jordan
2010). In these settings, we may want to capture and infer a
correlation structure among M(Ai) but cannot do so with the
existing methods (e.g., the hierarchical Dirichlet process). To
this end, we construct correlated random measures. Correlated
random measures build on completely random measures to
capture rich correlation structure between the measure at
disjoint sets, and this structure can be estimated from data.

We built completely random measures from a Poisson
process by extending the space from simple atoms (in the
Poisson process) to the space of atoms and weights (in a com-
pletely randommeasure).We build correlated randommeasures
fromcompletely randommeasures by extending the space again.
As for a completely randommeasure, there is a set of atoms and
uncorrelated weights. We now further supply each tuple with
a “location,” a vector in R

d , and extend the mean measure of
the Poisson process appropriately. A correlated randommeasure
is built from a Poisson process on the extended space of tuples
{(ai,wi, �i)}∞i=1.

In the completely random measure of Equation (1), the
uncorrelated weightswi give the measure at each atom. In a cor-
related randommeasure, there is an additional layer of variables
xi, called the transformed weights. These transformed weights
depend on both the uncorrelatedweightswi and a random func-
tion on the locations F(�i). In the random measure, they are
used in place of the uncorrelated weights,

M(A) =
∞∑
i=1

xiδai (A). (2)

It is through the random function F(·), which is drawn from
a Gaussian process (Rasmussen and Williams 2005), that the
weights exhibit correlation.

We first review the Gaussian process (GP) and then describe
how to construct the transformed weights. A Gaussian pro-
cess is a random function F(�i) from R

d → R. It is specified
by a positive-definite kernel function (This means that for a
finite collection of inputs, the kernel produces a positive definite
matrix.) K(�i, � j) and mean function μ(�i). The defining char-
acteristic of a GP is that each joint distribution of a collection of
values is distributed as a multivariate normal,

(F(�1), . . . , F(�n)) ∼ N (m, �),

wheremi = μ(�i) and �i j = K(�i, � j).
In a correlated randommeasure, we draw a random function

from a GP, evaluate it at the locations of the tuples �i, and use
these values to define the transformed weights. We specify the
transformation distributionof xi ∈ R

+ denotedT (xi | wi, F (�i)).
It depends on both the uncorrelated weightswi and the GP eval-
uated at �i. For example, one transformation distributionwewill
consider below is the gamma,

xi ∼ Gamma(wi, exp{−F(�i)}). (3)

But we will consider other transformation distributions as well.
What is important is that the xi are positive random variables,
one for each atom, that are correlated through their dependence
on the GP F .

We have now fully defined the distribution of the trans-
formed weights xi that are used in the correlated random mea-
sure of Equation (2).We emphasize that in a completely random
measure the weights are independent. The arguments thatM(·)
is a measure, however, only relied on its form, and not on the
independence of the weights (see Equation (2)).

In summary, we build a correlated randommeasure by spec-
ifying the following: the mean measure of a Poisson process on
atoms, weights, and locations ν(da, dw, d�); a kernel function
K(�i, � j) between latent locations and a mean function m(�i);
and the conditional transformation distribution T (· | wi, F (�i))

over positive values. With these elements, we draw a correlated
random measure as follows:

{(ai,wi, �i)}∞i=1 ∼ Poisson-Process(ν) (4)
F ∼ Gaussian-Process(m,K) (5)
xi ∼ T (· | wi, F (�i)). (6)

The random measureM(·) is in Equation (2).
Before turning to some concrete examples, we set up some

useful notation for correlated random measures. We denote the
infinite set of tuples from the Poisson process (Equation (4))
with

C � {(ai,wi, �i)}∞i=1.

Given these tuples, the process for generating a corre-
lated random measure first draws from a Gaussian process
(Equation (5)), then transforms the weights (Equation
(6)), and finally constructs the measure from an infi-
nite sum (Equation (2)). We shorthand this process with
M ∼ CorrRM(C,K, μ,T ). (As in the construction of com-
pletely random measures, correlated random measure can also
include fixed components, where the tuples are fixed, but the xi
are random.)

We note that correlated random measures generalize com-
pletely random measures. Specifically, we can construct a
completely random measure from a correlated random mea-
sure by setting the mean measure ν(dx, dw, d�) to match
the corresponding completely random measure mean measure
ν(dx, dw) (i.e., the location distribution does not matter) and
asserting that xi = wi with probability one.

With the full power of the correlated random measure, we
can construct correlated versions of common randommeasures
such as the gamma process, the beta process, and normalized
measures such as the Dirichlet process. We give two examples
below.

Example: Correlated Gamma process. We discussed the
gamma process as an example of a completely randommeasure.
We now extend the gamma process to a correlated gamma pro-
cess. First, we must extend the meanmeasure to produce atoms,
weights, and locations. We specify an additional distribution of
locations L(�)—we typically use a multivariate Gaussian—and
expand the mean measure of the gamma process to a product,

ν(da, dw, d�) = L(d�)H(da)e−cw/wdw.
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Second, for the transformation distribution, we choose the
gamma in Equation (3). Finally, we define the GP parame-
ters, the kernel K(�i, � j) = ��

i � j and a zero mean μ(�i) = 0.
With these components in place, we draw from Equation (4),
Equation (5), and Equation (6). This is one example of a corre-
lated random measure.

Example: Correlated Dirichlet process. We can normalize the
measure to construct a correlated random probability measure
from a correlated random measure. If M(·) is a correlated ran-
dom measure, then

G(A) = M(A)/M(E)

is a correlated random probability measure. As we discussed in
Section 2, the Dirichlet process is a normalized gamma pro-
cess (Ferguson 1973).Whenwenormalize the correlated gamma
process, we obtain a correlated Dirichlet process.

This construction requires thatM(E) < ∞. Proposition 2 in
Appendix A.2 describes conditions for well-defined normaliza-
tion (i.e.,M(E) < ∞) in correlated randommeasures. Roughly,
these conditions require finiteness of the expected value of
the transformed weights against the product of the transforma-
tion distribution and the Levy measure. This condition plays
a central role in constructing useful Bayesian nonparametric
models.

The correlation structure. Finally, we calculate the correlation
structure of a correlated random measure. Consider a measure,
M ∼ CorrRM(C,K,m,T ). To understand the nature of the cor-
relation, we compute cov(M(A),M(B)) for two sets A and B.

We express this covariance in terms of the covariance
between atom weights,

cov(M(A),M(B)) =
∞∑
i=1

∞∑
j=1

cov(Xi,Xj)δai (A)δa j (B).

In other words, the covariance between the measure of two sets
is the sum of the covariances between the transformed weights
of the atoms in the two sets. In a completely random mea-
sure, the atom covariance is zero except when ai = a j. Thus,
its covariance depends on the overlap between sets, and noth-
ing else. In a correlated randommeasure, however, there may be
nonzero covariance between the transformed weights.

For now we are holding the underlying Poisson process C
fixed, that is, the atoms, untransformed weights, and locations.
The covariance between transformed weights is

cov(Xi,Xj | C) = E[XiXj] − E[Xi]E[Xj]. (7)

These expectations are driven by two sources of randomness.
First there is a Gaussian process F , a random function evaluated
at the fixed locations. Second there is the transformation distri-
bution T . This is a distribution of an atom’s transformed weight,
conditional on its untransformed weight and the value of the
Gaussian process at its location (see Equation (6)).

Using iterated expectation, we write the conditional covari-
ance in Equation (7) in terms of the conditional mean of
the transformed weights, μi � E[Xi | F(�i),wi]. This is a func-
tion of the Gaussian process F . We rewrite the conditional
covariance,

cov(Xi,Xj | C) = E[μiμ j] − E[μi]E[μ j], (8)

where the expectations are taken with respect to the Gaussian
process. For the first term, the distribution is governed by the
distribution of the pair (F(�i), F (� j)), which is a bivariate nor-
mal. For the second term, the marginals are governed by F(�i)

and F(� j), which are univariate normal distributions.

4. Hierarchical Correlated RandomMeasures

A correlated random measure takes us from a set of tuples to
a random measure by way of a Gaussian process and a trans-
formation distribution. When used in a downstream model of
data, we can infer the latent correlation structure from repeated
realizations of measures from the same set of tuples. It is thus
natural to build hierarchical correlated random measures. Hier-
archical correlated random measures are the central use of this
new construction.

In a hierarchical correlated randommeasure, we first produce
a set of tuples {(ai,wi, �i)}∞i=1 from a Poisson process and then
reuse that set in multiple realizations of a correlated random
measure. In each realization, we fix the tuples (weights, atoms,
and locations) but draw from the Gaussian process anew; thus
we redraw the transformed weights for each realization.

As for the simple correlated random measure, we first spec-
ify themeanmeasure of the Poisson process ν(·), the kernel and
mean for theGaussian processK(·, ·), and the conditional trans-
formation distribution T (· | wi,G(�i)). We then draw n hierar-
chical correlated random measures as follows:

C ∼ Poisson-Process(ν)

Mj(A) ∼ CorrRM(C,m,K,T ).

This is a hierarchical Bayesian nonparametric model (Teh
and Jordan 2010). There are multiple random measures Mj.
Each shares the same set of atoms, locations, and weights, but
each is distinguished by its own set of transformed weights. (In
our empirical study of Section 6, we will also endow each with
its own mean function to the Gaussian process, mj(·). Here,
we omit this detail to keep the notation clean.) The correlation
structure of these transformed weights is shared across mea-
sures. We note that this construction generalizes the discrete
infinite logistic normal (Paisley, Wang, and Blei 2012), which is
an instance of a normalized correlated random measure.

We use this construction in a model of groups of observa-
tions y j, for which we must construct a likelihood conditional
on the correlatedRM.To construct a likelihood,many hierarchi-
cal Bayesian nonparametricmodels in the research literature use
the integral with respect to the randommeasure. (This is akin to
an unnormalized “expectation.”) Define Ma �

∫
aM(da), and

note that in a discrete random measure this integral is an infi-
nite sum,

Ma =
∑
i

xiai. (9)

The jth observations are drawn from a distribution parameter-
ized from this sum, y j ∼ p(· |Mja). For example, we will study
modelswhereMa is a collection of rates for independent Poisson
distributions.
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We present several examples of hierarchical correlated ran-
dom measures. First, we develop correlated nonparametric Pois-
son factorization (CNPF) for factorizing matrices of discrete
data. This is the example we focus on for posterior inference
(Section 5) and our empirical study (Section 6). We then illus-
trate the breadth of correlated randommeasures with two other
examples, both of which are latent feature models that build
correlations into the class of models introduced by Griffiths
and Ghahramani (2006). Finally, we discuss the discrete infi-
nite logistic normal (DILN) by Paisley, Wang, and Blei (2012).
We show that DILN is a type of normalized correlated random
measure.

4.1. Correlated Nonparametric Poisson Factorization

Bayesian nonparametric Poisson matrix factorization (Gopalan
et al. 2014) combines gamma processes (Ferguson 1973) with
Poisson likelihoods to factorize discrete data organized in a
matrix. The number of factors is unknown and is inferred as
a consequence of the Bayesian nonparametric nature of the
model.

For concreteness we will use the language of patients getting
diagnoses (e.g., patients going to the hospital and gettingmarked
for medical conditions). In these data, each cell of the matrix yu j
is the number of times patient u was marked for diagnosis j.
The goal is to factorize users into their latent “health statuses”
and factorize items into their latent “condition groups.” These
inferences then let us form predictions about which unseen
codes a patient might have. Though we focus our attention
here on patients getting diagnoses, we emphasize that discrete
matrices are widely found in modern data analysis problems.
In our empirical study, we will also examine matrices of docu-
ments (rows) organized intoword counts (columns) fromafixed
vocabulary and user (rows) clicks over a fixed collection of items
(columns).

We will use a hierarchical correlated random measure to
model these data, where each group is a patient and the group-
specific data are her vector of per-diagnosis counts. An atom ai is
a vector of positive weights for each diagnosis, drawn from inde-
pendent gamma distributions, H(a) = Gamma(α, β). When
the posterior of these atoms is estimated from diagnosis counts,
they will represent semantic groups of conditions such as “dia-
betes,” “heart disease,” or ‘cancer.” Table 1 displays some of the
atoms inferred from a set of patients from the Mayo Clinic.

In using a correlated random measure, the idea is that
patients’ expression for these conditions are represented by the
per-group weights xi. Intuitively, these exhibit correlation. A
patient who has “heart” conditions is more likely to also have
“vascular” conditions than “cancer.” (To be clear, these groupings
are the latent components of themodel. There are an unbounded
number of them, they are discovered in posterior inference, and
their labels are not known.) Using these correlations, and based
on her history, a correlated model should better predict which
diagnoses a patient will have.

We now set up the model. We set the mean measure for the
shared atoms to be

ν(da, dw, d�) � Gamma(da, α, β)

×Normal(d�, 0, Idσ 2
l )e−cw/wdw.

We define the GP mean function to be a per-patient con-
stant mu(�i) = μu, where μu ∼ N (0, σ 2

m). These per-patient
GPmeans account for datawhere some patients tend to be sicker
than others. We define the GP kernel function to be K(�i, � j) =
��
i � j.
Finally, we consider two different transformation dis-

tributions. The first transformation distributions is as in
Equation (3),

xi ∼ Gamma(wi, exp{−F(�i)}).
The second is

xi ∼ Gamma
(

wi,
1

log(1 + exp{F(�i)}
)

,

where log(1 + exp(·)) is known as the softplus function. With
these definitions, we can compute the conditional covariance
for xi and x j using Equation (8). Table 4 displays some of pos-
itive correlations between atoms found on patient diagnosis
counts. These correlations are captured by the locations, which
are shared across patients, associated with each atom. Atoms
with positive covariance in this model will have inferred loca-
tions that have a large inner product.

With these components in place, correlated nonparametric
Poisson factorization is

C ∼ Poisson-Process(ν)

μu ∼ N (0, σ 2
m
)

Mu ∼ CorrRM(C, μu,K,T )

yu ∼ p(· |Mua).

The distribution of yu is a collection of Poisson variables, one for
each diagnosis j, where

yu j ∼ Poisson

( ∞∑
i=1

xuiai j

)
. (10)

Recall that the atoms ai are each a vector of gamma vari-
ables, one per diagnosis, and so ai j is the value of atom i for
diagnosis j. For this model to be well defined each rate in Equa-
tion (10) must be finite. Using proposition 2 in Appendix A.2, it
is finite almost surely if σl < 1.

The sum that defines the rate of yui is an infinite sum
of patient weights and condition weights. Thus, this model
amounts to a factorization distribution for yui. Given observed
data, the posterior distribution of the atoms ai and transformed
patient weights xi gives a mechanism to form predictions. Note
that the atoms ai are shared across patients, but through xi each
patient exhibits them to different degree. We discuss how to
approximate this posterior distribution in Section 5.

4.2. Correlated Latent FeatureModels

Mixture models, such at the Dirichlet process mixture
(Antoniak 1974), are the most commonly used Bayesian
nonparametric model. In mixture models, each observation
exhibits only a single class. Many data, such as images of mul-
tiple objects, are better characterized as belonging to multiple
classes. Latent feature models posit that each observation is
associated with some number of latent classes, taken from a set
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of features shared by all observations. For each observation,
its likelihood depends on parameters attached to its active
features (e.g., a sum of those parameters). Examples of latent
feature models include factorial mixtures (Ghahramani 1995)
and factorial hidden Markov models (Ghahramani and Jordan
1996). (Latent feature models are closely connected to spike and
slab priors (Ishwaran and Rao 2005).)

Bayesian nonparametric latent feature models allow the
number of features to be unbounded. As an example, consider
analyzing a large dataset of images. Latent features could corre-
spond to image patches, such as recurring objects that appear in
the images. In advance, we might not know how many objects
will appear in the dataset. BNP latent feature models attempt to
solve this problem. BNP latent feature models have been used in
many domains such as image denoising (Zhou et al. 2011) and
link prediction in graphs (Miller, Griffiths, and Jordan 2009).

The most popular BNP latent feature model is the hierarchi-
cal beta-Bernoulli process (Thibaux and Jordan 2007). This pro-
cess was originally developed as the Indian Buffet process, which
marginalized out the beta process (Griffiths and Ghahramani
2006). Before developing the correlated version, we review the
beta-Bernoulli process.

The beta process is a completely randommeasure with atom
weights in the unit interval (0,1). Its Levy measure is

ν(da, dw) = H(da)αw−1(1 − w)α−1.

We use the beta process in concert with the Bernoulli process,
which is a completely randommeasure parameterized by a ran-
dom measure with weights in the unit interval, that is, a col-
lection of atoms and corresponding weights. A draw from a
Bernoulli process selects each atom with probability equal to its
weight. This forms a random measure on the underlying space,
where each weight is one or zero (i.e., where only a subset of
the atoms are activated). Returning to latent feature models, the
beta-Bernoulli process is

B ∼ Beta-Process(H, α)

Bn ∼ Bernoulli-Process(B)

yn ∼ p(· |Bn)

The beta process generates the feature atoms; the Bernoulli pro-
cesses chooses which features are active in each observation.

This model is built on completely random measures. Thus,
the appearances of features in each observation are independent
of one other. Correlated random measures relax this assump-
tion. Consider a latent feature model of household images with
image patch features. The completely random assumption here
implies that the appearance of a spoon is independent of the
appearance of a fork. Our construction can account for such
dependencies between the latent features. Belowwewill give two
examples of correlated nonparametric latent featuremodels, one
based on the beta process and the other based on the gamma
process.

One method to develop a correlated beta-Bernoulli process
is to define transformed weights at the Bernoulli process level.
We define the transformation distribution to be

xni ∼ Bernoulli(σ (σ−1(wi) + F(�i))),

where σ is the sigmoid function σ (x) = 1/(1 + exp{−x}).
Thus, the beta-Bernoulli correlated latent feature model is

C ∼ Poisson-Process(H(da)L(d�)αw−1(1 − w)α−1)

Mn ∼ CorrRM(C, μ,K,T ).

(We defer definingμ andK, as they will be application specific.)
We do not need to use the beta process to define a corre-

lated latent feature model; what is important is that the per-
observation weights are either one or zero. For example, if the
top level process is a gamma process, which produces positive
weights, then we can define the transformation distribution to
be

xni ∼ Bernoulli
(

wi exp(F(�i))

1 + wi exp( f (�i))

)
.

The resulting gamma-Bernoulli correlated latent feature model
is

C ∼ Poisson-Process(H(da)L(d�)e−cw/wdw)

Mn ∼ CorrRM(C, μ,K,T ).

The beta-Bernoulli process uses only a finite number of fea-
tures to generate a finite number of observations. In Appendix
A.3, we give some conditions under which the correlated latent
feature models do the same.

4.3. Discrete Infinite Logistic Normal

The correlated randommeasure construction that we developed
generalizes the discrete infinite logistic normal (DILN; Paisley,
Wang, and Blei 2012). DILN is an example of a normalized
hierarchical correlated randommeasure; its atom weights come
from a normalized gamma randommeasure, that is, a Dirichlet
process.

DILN was developed as a Bayesian nonparametric mixed-
membership model, or topic model, of documents. In DILN,
each document mixes a set of latent topics (distributions over
terms), where the per-document topic proportions can exhibit
arbitrary correlation structure. This is in contrast to a hierarchi-
cal Dirichlet process topic model (Teh et al. 2006), where the
topic proportions are nearly independent.

We will express DILN in terms of a correlated random mea-
sure. The observationswu j are categorical variables, that is, word
j in document u. Set the kernel K(�i, � j) = ��

i � j , and set α and
β to be positive hyperparameters. Set the transformation distri-
bution to be

xi ∼ Gamma(βwi, exp{−F(�i)}).
With our construction, DILN is

C ∼ Dirichlet-Process(α,H(da) × N (d�, 0, σ 2
l Id ))

Mu ∼ Normalized-CorrRM(C, 0,K,T )

zu j ∼ Mu

wu j ∼ zu j.

Note that the shared tuples come from a Dirichlet process, that
is, a normalized gamma process. When modeling documents,
the base distribution over atoms H(da) is a Dirichlet distribu-
tion over the vocabulary.
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This is a mixed-membership model—there is an additional
layer of hidden variables zu j, drawn from the random measure,
before drawing observationswu j. These hidden variables zui will
be atoms, that is, distributions over the vocabulary, from the
set of shared tuples and drawn with probability according to
the per-document transformed weights. Each observation wu j
is drawn from the distribution over terms given in its atom zu j.

Paisley, Wang, and Blei (2012) showed that the normaliza-
tion step is well defined when σl < 1. Viewing DILN through
the lens of correlated randommeasures makes clear what can be
changed. For example, the top level choice of the Dirichlet pro-
cess is not critical. It could be any random measure that places
finite total mass, such as a gamma process or a beta process.

4.4. Connection to Dependent RandomMeasures

Finally, we discuss the detailed connection between corre-
lated random measures and dependent random measures
(MacEachern 1999). Dependent random measures are a collec-
tion of measures indexed by covariates. A broad class of depen-
dent random measures can be created by thinning a Poisson
process (Foti et al. 2013). Given a draw from a Poisson process
(ai,wi, �i)

∞
i=1, where a are atoms, � are locations in the covariate

space, and w are weights, the thinned dependent random mea-
sure B for user u with covariate θu is

Bu(A) =
∞∑
i=1

xuiδai (A)

xui ∼ wiBernoulli(k(θu, �i)),

where k is a function from T × L → [0, 1]. This construction is
related to CorrRMs. Consider the correlated random measure

xui ∼ wiBernoulli(σ (F(�i)))

Mu(A) ∼ CorrRM
(
(ai,wi, �i)

∞
i=1 ,m,K,T

)
.

From this, we can see that Bu(A)
d=Mu(A) when σ (Fu(�i)) =

k(θu, �i). In other words, thinned dependent random measures
are equivalent to a type of correlated random measure where
the random function, Fu associated with each user is known and
given by the covariate.

We note that dependent randommeasures map from covari-
ates to measures. Thus they can be viewed as a type of measure-
valued regression. In parallel, correlated random measures
use latent covariates. In this sense, they can be viewed as
measure-valued factor analysis.

5. Variational Inference for Correlated Nonparametric
Poisson Factorization

Computing the posterior is the central computational prob-
lem in Bayesian nonparametric modeling. However, comput-
ing the posterior exactly is intractable. To approximate it, we
use variational inference (Jordan et al. 1999; Wainwright and
Jordan 2008), an alternative toMarkov chainMonte Carlo. Vari-
ational inference has been used to approximate the posterior
in many Bayesian nonparametric models (Kurihara, Welling,
and Teh 2007; Doshi-Velez et al. 2009; Paisley and Carin 2009;

Wang and Blei 2012) and has been of general interest in statis-
tics (Braun andMcAuliffe 2007; Faes, Ormerod, andWand 2011;
Ormerod andWand 2012). Here, we develop a variational algo-
rithm for correlated nonparametric Poissonmatrix factorization
(Section 4.1).

Variational inference turns approximate posterior computa-
tion into optimization. We set up a family of distributions over
the latent variables Q = {q(·)} and then find the member that
minimizes the KL divergence to the exact posterior. Minimizing
the KL divergence to the posterior is equivalent to maximizing
the evidence lower bound (ELBO),

q∗(·) = argmax
q∈Q

Eqλ(ξ )[log p(y, ξ ) − log q(ξ )], (11)

where ξ are the latent variables and y are the observations. In this
article, we work with the mean-field family, where the approxi-
mating distribution fully factorizes. Each latent variable is inde-
pendently governed by its own variational parameter.

To develop a variational method for CNPF, we give a
constructive definition of the gamma process and introduce
auxiliary variables for the Gaussian process. We then define the
corresponding mean-field family and show how to optimize the
corresponding ELBO.

Additional latent variables.Wefirst give a constructive defini-
tion of a homogenous gamma process. We scale the stick break-
ing construction of Sethuraman (1994) as used by Gopalan et al.
(2014); Zhou and Carin (2015). We define stick lengths vk from
a beta distribution and a scaling s from a gamma distribution.
The weights of the gamma process wk are from the following
process,

s ∼ Gamma(α, c)
vk ∼ Beta(1, α)

wk = s

(
vi

k−1∏
j=1

(1 − v j)

)
.

We treat the gamma shape α and rate c as latent variables (with
gamma priors).

We adapt the auxiliary variable representation of zero-mean
Gaussian processes with linear kernels (Paisley, Wang, and Blei
2012) tomore generalGaussian processes. SupposeGn is aGaus-
sian process with mean μn and a linear kernel. Let d be a stan-
dard Gaussian vector with same dimension as �k. We can write
the process as

G(�k)
d= ��

k d + μn(�k).

This lets us evaluate likelihoods without matrix inversion.
The mean-field family. With the latent variables for the

gamma and Gaussian processes in hand, we now define
the mean-field variational distribution. We use the following
approximating family for each latent variable

q(xku) = Gamma
(
αx
ku, β

x
ku
)

q(aki) = Gamma
(
αa
ki, β

a
ki
)

q(s)q(Vk)q(�k) = δŝδV̂k
δ
�̂k

q(du)q(μu) = δd̂u
δμ̂u

q(α)q(c) = δα̂δĉ,
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where δr represents a point mass at r. As in prior work on
variational inference for Bayesian nonparametrics, we use delta
distributions in the top level stick components, scaling, and
hyperparameters for analytic tractability (Liang et al. 2007; Pais-
ley,Wang, andBlei 2012;Gopalan et al. 2014). (This corresponds
to variational expectation-maximization, where the E step com-
putes variational expectations and the M step takes MAP
estimates of the latent variables with delta factors (Beal 2003).)

Bayesian nonparametric models contain an infinite number
of latent variables. Following Blei and Jordan (2005), we trun-
cate the variational approximation of the sticksVk and associated
tuples to T . In practice, it is straightforward to recognize if the
truncation level is too small because all of the components will
be populated in the fitted variational distribution. In our studies
T = 200 was sufficient (Section 6).

The goal of variational inference is to find the variational
parameters—the free parameters of q, such as �̂k—that maxi-
mize the evidence lower bound. In Appendix A.4, we describe
how to optimize the ELBO (Equation (11)) with stochastic vari-
ational inference (Hoffman et al. 2013). Codewill bemade avail-
able on GitHub.

We have derived a variational inference algorithm for one
example of a correlated randommeasure model. Deriving algo-
rithms for other examples follows a similar recipe. In gen-
eral, we can handle inference for covariance functions with
inducing variables (Titsias 2009) and subsampling (Hensman,
Fusi, and Lawrence 2013). Further, we can address models
with intractable expectations– - for example, those arising from
different transformation distributions or Levy measures—with
recent methods for generic and nonconjugate variational infer-
ence (Salimans and Knowles 2013; Wang and Blei 2013; Ran-
ganath, Gerrish, and Blei 2014).

6. Empirical Study

We study correlated nonparametric Poisson factorization
(CNPF) and compare to its uncorrelated counterpart on
a large text dataset and a large dataset of medical diagno-
sis codes. Quantitatively, we find that the correlated model
gives better predictive performance. We also find that it reveals
interesting visualizations of the posterior components and their
relationships.

6.1. Study Details

Before giving the results, we describe the baseline models, the
evaluation metric, and the hyperparameter settings.

Baselinemodels.As a baseline, we compare against the uncor-
related variant of Bayesian nonparametric Poisson factorization.
As we mentioned in Section 3, uncorrelated random measures
can be cast in the correlated randommeasure framework by set-
ting a transformation distribution that does not depend on the
Gaussian process.

Recall that xik is the weight for data point i on
component k. In the simplest Bayesian nonparametric Poisson
factorization model, the transformation distribution is

xik ∼ Gamma(wk, 1).

This is a two-layer hierarchical gamma process, and we
abbreviate thismodelHGP. The first layer contains shared atoms
and weights. The second layer is a gamma process for each data
point (e.g., patient or document), with base measure given by
the first layer’s measure.

The second uncorrelated model places further hierarchy on
the log of the scale parameter of the Gamma,

xik ∼ Gamma(wk, exp(−mi)).

Here mi ∼ Normal(a, b), which captures variants in the row
sums for each data point (i.e., how many total diagnoses for a
patient or howmany words for a document). We call this model
the scaled HGP.

Appendix A.5 gives inference details for both uncorrelated
models.

Evaluation metric. We compare models with held out per-
plexity, a standardmetric from information retrieval that relates
to held out predictive likelihood (Geisser 1975). We use the par-
tial observation scenario that is now common in topic modeling
(Wallach et al. 2009). The idea is to uncover components from
most of the data, and then evaluate how well those components
can help predict held out portions of new partially observed
data.

For each dataset, we hold out 1000 examples (i.e., rows of
the matrix). From the remaining examples, we run approximate
posterior inference, resulting in approximate posterior compo-
nents E[ak] that describe the data.With the 1000 held out exam-
ples, we then split each observation (i.e., columns) randomly
into two parts, 90% in one part (ytest) and 10% in the other (yobs).
We condition on the yobs (and that there is a testword) and calcu-
late the conditional perplexity on ytest. A bettermodel will assign
the true observations a higher probability and thus lower per-
plexity. Formally, perplexity is defined as

Perplexity = exp

(−∑y∈held out
∑

w∈ytest log p(w | yobs)
Nheld out words

)
.

Perplexity measures the average surprise of the test observa-
tions. The exponent is the average number of nats (base e bits)
needed to encode the test sample.

For the models we analyze, we compute this metric as fol-
lows. For each held out data point, we hold the components
fixed (i.e., Eq[ak]) and use the 10% of observed columns to form
a variational expectation of the per-data point weights Eq[xik].
In all models, we compute the held out probability of unob-
served columns by using the multinomial conditioning prop-
erty of Poisson. Conditional on there being a test observation,
it is assigned to a particular column (e.g., a word or a diag-
nostic code) with probability equal to that column’s normalized
Poisson rates. Formally,

p(yi = j) =
∑

k Eq[xik]Eq[ak j]∑
j
∑

k Eq[xik]Eq[ak j]
.

Wemeasure the probability of the ytest columns under this distri-
bution. This evaluates how well the discovered components can
form predictions in new and partially observed observations.

Hyperparameters. We set the hyperparameters on the base
distribution to have shape 0.01 and rate 10.0. We set the
truncation level T to be 200, and found that none of the studies
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Table . A summary of the predictive results on theNewYork Times, theMayoClinic,
and ArXiv clicks. The correlated models outperform both the uncorrelated models.
Adding per observation scalings improves predictions.

Data HGP Scaled HGP CNPF Softplus-CNPF

NYT    
Mayo Clinic    
ArXiv    

required more than this. We set the dimensionality of the latent
locations to be 25 and the prior variance to be 1

250 .We keep these
hyperparameters fixed for all data.

In the algorithm, we use Robbins Monro learning rates,
(50 + t )−.9 for the text data and (100 + t )−.9 for the medical
codes, and click data.

6.2. Results

We evaluate our posterior fits on text, medical diagnosis data,
and click data.

The New York Times.We study a large collection of text from
the New York Times. Rows are documents; columns are vocabu-
lary words; the cell yi j is the number of times term j appeared in
document i. After preprocessing, the data contains 100,000 doc-
uments over a vocabulary of 8000 words. Analyzing text data
with a Poisson factorization model is a type of topic modeling
(Blei 2012).

Table 2 summarizes the held-out perplexity. We find that
the correlated model outperforms both of the uncorrelated
models. Note that even in the uncorrelated model, adding a
per-document scale parameter improves predictions.

Table . The top  pairs of negatively correlated components inferred from the
NewYork Times. Each pair of components are highly unlikely to cooccur in an article.

israel, israeli, palestinian, jewish, peace
league, players, sports, baseball, team

room, bedroom, bath, taxes, market
news, book, magazine, editor, books

war, iraq, military, army, iraqi
space, kim, koch, moon, nasa

rock, music, band, jones, album
family, tax, board, paid, friend

water, plant, garden, plants, trees
union, soviet, moscow, russian, gorbachev

island, water, beach, river, sea
theater, broadway, play, show, production

building, housing, buildings, square, project
news, book, magazine, editor, books

bush, administration, clinton, officials, house
space, kim, koch, moon, nasa

room, bedroom, bath, taxes, market
indian, atlantic, casino, trump, las

century, small, wine, place, white
contract, los, angeles, league, chicago

Themodel also provides newways to explore and summarize
the data. Figure 1 is a graph of the positive correlation structure
in the posterior for the top 50 components, sorted by frequency;
Table 3 contains a list of the top 10 negative correlations. To
explore the data, we compute correlations between components

Figure . A graph of the latent component correlations found on the New York Times. This figure is best viewed on a computer with zoom. The sizes of the components are
related to their frequency. The correlation structure consists of several tightly connected groups with sparse links between them.
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Figure . The weights in each tuple on the New York Times ordered by magnitude. Around  components are used.

by using their latent locations through the covariance function
of the Gaussian process. For these fits, the covariance between
�i and � j is ��

i � j; the correlation between two components
is thus

ρkm = ��
k �m√

��
k �k ��

m�m

.

We find the correlation structures contain highly connected
groups, connected to each other by “glue,” individual compo-
nents that bridge larger groups. For example, the bottom left
connected group of “international politics” is glued together
with the top left group of “finance” through the “political par-
ties” component and the “law” component.

As we said above, we set the truncation level of the approx-
imate posterior to 200 components. Figure 2 plots the atom
weights of these 200 components, ordered by size. The posterior
uses about 75 components; the truncation level is appropriate.

Medical history from the Mayo Clinic.We study medical code
data from theMayo Clinic. This dataset contains of all the Inter-
national Classification of Diseases 9 (ICD-9) diagnosis codes
(also called billing codes) for a collection of patients over 3 years.
The diagnosis codes mark medical conditions, such as chronic
ischemic heart disease, pure hypercholesterolemia, and Type 2
diabetes. The entire collection contains 142,297 patients and
11,102 codes. Patients are rows in thematrix; codes are columns;
each cell marks how many times the patient was assigned to the
code.

Table 2 summarizes the held-out perplexity. Again, the cor-
related model does best. Further, as for text modeling, it is
important to allow a patient-specific scale parameter to capture
their relative health. Figure 3 plots the posterior sticks, ordered
by size. The approximate posterior uses about 50 components,
using the first 20 more heavily.

Table 1 contains the 20 most commonly used components.
The components correspond to medically meaningful groups
of conditions, such as obesity (12), type 2 diabetes (7), and
breast malignancy (19). The top positive correlations are in
Table 4. There are several meaningful correlations, such as
depression and alcohol dependency, and using anticoagulants
and hypertension/lipidemia. Note that the relationship between
schizophrenia and type 2 diabetes is an active area of research in
medicine (Suvisaari et al. 2008; Liu et al. 2013).

ArXiv click data. Finally, we examine user click data from the
ArXiv, an online repository of research articles. The ArXiv ini-
tially focused on physics articles but has now expanded to many
other domains, including statistics. This dataset contains the
number of times each user clicked on an article; it spans 50,000
users and 20,000 articles. Building models of such data is use-
ful, for example, to develop recommendation systems that find
interesting articles to ArXiv readers.

As for the other data, we hold out some of the clicks and try
to predict them. Table 2 summarizes the results. We find similar
results as on our other two datasets. The correlated models out-
perform the uncorrelatedmodels on predicting unseen clicks for
new users. We find that the standard CNPF model outperforms
the softplus CNPF on all of our datasets.

7. Discussion

We present correlated random measures. Correlated random
measures enable us to construct versions of Bayesian nonpara-
metric models that capture correlations between their com-
ponents. We construct several examples of such models, and
develop the inference algorithm in detail for one of them, corre-
lated nonparametric Poisson factorization. With this model, we
find that the correlated random measure improves predictions
and produces interesting interpretable results.

Figure . The weights in each tuple ordered bymagnitude. Around  of components are used. Though similar in size to the NYT dataset, fewer components are used. The
component usage has a steeper decline.



428 R. RANGANATH AND D. M. BLEI

Table . The top  correlations among the heavily used components in the Mayo
Clinic data.Wefindseveralmedicallymeaningful relationshipsbetween latent com-
ponents. For example, the relationships between obesity and type  diabetes is well
established.

– Long-term anticoagulants, Atrial fibrillation, Hypertension, Congestive Heart
Failure, Chronic airway obstruction

– Heart valve replacement, Prostate cancer, Lung and bronchus cancer,
Secondary bone cancer, Other lung disease

– Abnormality of gait, Personality change, Persistent mental disorders, Lack of
coordination, Debility

– Schizophrenia-Paranoid, Long-term use meds, Schizophrenia,
Schizophrenia-paranoid-chronic, Drug monitor

– Attention deficit disorder with hyperactivity, Attention deficit disorder
without hyperactivity, Adjustment
disorder with disturbance of emotions and conduct, Opposition defiant
disorder, Conduct disturbance

– Schizophrenia-Paranoid, Long-term use meds, Schizophrenia,
Schizophrenia-paranoid-chronic, Drug monitor

– Depression, Dysthymia, Anxiety state, Generalized anxiety disorder, Major
depressive affective disorder

– Alcohol dependence, Tobacco use disorder, Alcohol abuse, Other alcohol
dependence-in remission,
Other alcohol dependence-continuous

– Long-term anticoagulants, Atrial fibrillation, Hypertension, Congestive Heart
Failure, Chronic airway obstruction

– Diabetes-, Hypertension, Hyperlipidemia, Uncontrolled Diabetes-,
Diabetes- with ophthalmic manifestations

– Hypertension, Hyperlipidemia, Coronary atherosclerosis, Prostate Cancer
Screening, Vaccine for influenza

– Long-term anticoagulants, Atrial fibrillation, Hypertension, Congestive Heart
Failure, Chronic airway obstruction

– Heart valve replacement, Prostate cancer, Lung and bronchus cancer,
Secondary bone cancer, Other lung disease

– Female breast cancer, Personal history of breast cancer, Lymph cancer,
Carcinoma in situ of breast, Lymphedema

– Depression, Dysthymia, Anxiety state, Generalized anxiety disorder, Major
depressive affective disorder

– Schizophrenia-Paranoid, Long-term use meds, Schizophrenia,
Schizophrenia-paranoid-chronic, Drug monitor

– Diabetes-, Hypertension, Hyperlipidemia, Uncontrolled Diabetes-,
Diabetes- with ophthalmic manifestations

– Schizophrenia-Paranoid, Long-term use meds, Schizophrenia,
Schizophrenia-paranoid-chronic, Drug monitor

– Mammogram, Routine medical exam, Lumbago, Cervical Cancer Screening,
Hypothyroidism

– Female breast cancer, Personal history of breast cancer, Lymph cancer,
Carcinoma in situ of breast, Lymphedema

Random probability measures such as the Dirichlet process
are consistent for density estimation, so why might one pre-
fer a correlated random measure over a completely random
measure?We conjecture that correlated randommeasures make
more efficient use of the data. One promising avenue of future
research is to study the rates of correlated randommeasures ver-
sus completely random measures.

Correlated random measures model latent correlations
in the data, while dependent random measures model correla-
tions based on observed covariates. Combining these two ideas
to incorporate correlations both observed and latent yields a
broader class of random measures that can model many real
world phenomena. Another avenue of future research is to study
this construction both methodologically and practically.

We define correlated random measures by combining
Poisson and Gaussian processes. However, we note that other
processes can also be used for the source of tuples (ai,wi, �i)

and the random function. For example, the DILN model of
Section 4.3 uses a Dirichlet process to form its tuples; another
way to generate tuples would be through the Pitman–Yor pro-
cess (Pitman and Yor 1997; Teh et al. 2006).

Similarly, though we used a Gaussian process to define a
random function from latent locations to real values, there are
other possibilities. For example, we can replace the GP with the
student-T process (Shah, Wilson, and Ghahramani 2014). Or,
if we restrict the latent locations to be positive then we can use
them to subordinate, as an index to, another stochastic process,
such as Brownian motion. Also, we could use discrete random
functions to form feature groups. We leave these extensions for
possible future research.

Supplementary Materials
The supplement contains propositions detailing finiteness and Laplace
transforms of correlated random measures along with the derivation of a
variational inference algorithm for a posterior inference.
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