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Abstract

Modern variational inference (VI) uses stochastic gradients to avoid intractable
expectations, enabling large-scale probabilistic inference in complex models.
VI posits a family of approximating distributions q and then finds the mem-
ber of that family that is closest to the exact posterior p. Traditionally, VI
algorithms minimize the “exclusive Kullback-Leibler (KL)” KL (q k p), often for
computational convenience. Recent research, however, has also focused on
the “inclusive KL” KL (p k q), which has good statistical properties that makes it
more appropriate for certain inference problems. This paper develops a simple
algorithm for reliably minimizing the inclusive KL using stochastic gradients
with vanishing bias. This method, which we call Markovian score climbing
(MSC), converges to a local optimum of the inclusive KL. It does not suffer
from the systematic errors inherent in existing methods, such as Reweighted
Wake-Sleep and Neural Adaptive Sequential Monte Carlo, which lead to bias in
their final estimates. We illustrate convergence on a toy model and demonstrate
the utility of MSC on Bayesian probit regression for classification as well as a
stochastic volatility model for financial data.

1 Introduction

Variational inference (VI) is an optimization-based approach for approximate posterior inference.
It posits a family of approximating distributions q and then finds the member of that family that
is closest to the exact posterior p. Traditionally, VI algorithms minimize the “exclusive Kullback-
Leibler (KL)” KL (q k p) [28, 6], which leads to a computationally convenient optimization. For
a restricted class of models, it leads to coordinate-ascent algorithms [20]. For a wider class, it
leads to efficient computation of unbiased gradients for stochastic optimization [51, 58, 52].
However, optimizing the exclusive KL results in an approximation that underestimates the pos-
terior uncertainty [42]. To address this limitation, VI researchers have considered alternative
divergences [35, 15]. One candidate is the “inclusive KL” KL (p k q) [22, 7, 19]. This diver-
gence more accurately captures posterior uncertainty, but results in a challenging optimization
problem.

In this paper, we develop Markovian score climbing (MSC), a simple algorithm for reliably
minimizing the inclusive KL. Consider a valid Markov chain Monte Carlo (MCMC) method [55],
a Markov chain whose stationary distribution is p. MSC iteratively samples the Markov chain
z[k], and then uses those samples to follow the score function of the variational approximation
r log q(z[k]) with a Robbins-Monro step-size schedule [54]. Importantly, we allow the MCMC
method to depend on the current variational approximation. This enables a gradual improvement
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of the MCMC as the VI converges. We illustrate this link between the methods by using conditional
importance sampling (CIS) or conditional sequential Monte Carlo (CSMC) [2].

Other VI methods have targeted the same objective, including reweighted wake-sleep (RWS)
[7] and neural adaptive sequential Monte Carlo (SMC) [22]. However, these methods involve
biased gradients of the inclusive KL, which leads to bias in their final estimates. In contrast, MSC
provides consistent gradients for essentially no added cost while providing better variational
approximations. MSC provably converges to an optimum of the inclusive KL.

In empirical studies, we demonstrate the convergence properties and advantages of MSC. First, we
illustrate the systematic errors of the biased methods and how MSC differs on a toy skew-normal
model. Then we compare MSC with expectation propagation (EP) and importance sampling
(IS)-based optimization [7, 19] on a Bayesian probit classification example with benchmark data.
Finally, we apply MSC and SMC-based optimization [22] to fit a stochastic volatility model on
exchange rate data.

Contributions. The contributions of this paper are (i) developing Markovian score climbing, a
simple algorithm that provably minimizes KL (p k q); (ii) studying systematic errors in existing
methods that lead to bias in their variational approximation; and (iii) empirical studies that
confirm convergence and illustrates the utility of MSC.

Related Work. Much recent effort in VI has focused on optimizing cost functions that are not the
exclusive KL divergence. For example Rényi divergences and � divergence are studied in [35, 15].
The most similar to our work are the methods in [7, 22, 19], using IS or SMC to optimize the
inclusive KL divergence. The RWS algorithm [7] uses IS both to optimize model parameters and
the variational approximation. Neural adaptive SMC [22] jointly learn an approximation to the
posterior and optimize the marginal likelihood of time series with gradients estimated by SMC.
In [19] connections between importance weighted autoencoders [9], adaptive IS and methods
like the RWS are drawn. These three works all rely on IS or SMC to estimate expectations with
respect to the posterior. This introduces a systematic bias in the gradients that leads to a solution
which is not a local optimum to the inclusive KL divergence. In [50] inference networks are
learnt for data simulated from the model rather than observed data.

Another line of work studies the combination of VI with Monte Carlo (MC) methods. Salimans
et al. [59] take inspiration from the MCMC literature to define their variational approximation.
The method in [26] uses the variational approximation to improve Hamiltonian MC. Variational
SMC [46, 34, 40] uses the SMC sample process itself to define an approximation to the posterior.
Follow up work [33, 44] improve on variational SMC in various ways by using twisting [23, 25, 39].
Another approach takes a MC estimator of the marginal likelihood and turn it into a posterior
approximation [16]. The method in [24] uses auxiliary variables to define a more flexible
approximation to the posterior, then subsequently at test time apply MCMC. These methods
all optimize a variational approximation based on MC methods to minimize the exclusive KL
divergence. On the contrary, the method proposed in this paper minimizes the inclusive KL
divergence. The method in [27] optimizes an initial approximation to the posterior in exclusive
KL, then refines this with a few iterations of MCMC to estimate gradients with respect to the
model parameters. Defining the variational approximation as an initial distribution to which a
few steps of MCMC is applied, and then optimize a new contrastive divergence is done in [56].
This divergence is different from the inclusive KL and MCMC is used as a part of the variational
approximation rather than gradient estimation. Another line of work studies combinations of
MC and VI using amortization [36, 61, 62].

Using MC together with stochastic optimization, for e.g. maximum likelihood estimation of latent
variable models, is studied in [21, 31, 1, 14]. In contrast the proposed method uses it for VI.
Viewing MSC as a way to learn a proposal distribution for IS means it is related to the class of
adaptive IS algorithms [8, 10, 17, 11]. We compare to IS/SMC-based optimization, as outlined
in the background, in the experimental studies which can be considered to be special cases of
adaptive IS/SMC.

Concurrent and independent work using MCMC to optimize the inclusive KL was studied in [48].
The difference with our work lies in the Markov kernels used, our focus on continuous latent
variables, and our study of the impact of large-scale exchangeable data.
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2 Background
Let p(z,x) be a probabilistic model for the latent (unobserved) variables z and data x. In Bayesian
inference the main concern is computing the posterior distribution p(z |x), the conditional
distribution of the latent variables given the observed data. The posterior is p(z |x) = p(z,x)/p(x).
The normalization constant is the marginal likelihood p(x), computed by integrating (or summing)
the joint model p(z,x) over all values of z. For most models of interest, however, exactly computing
the posterior is intractable, and we must resort to a numerical approximation.

2.1 Variational Inference with KL(p||q)
One approach to approximating the posterior is with VI. This turns the intractable problem of
computing the posterior into an optimization problem that can be solved numerically. The idea is
to first posit a variational family of approximating distributions q(z ; �), parametrized by �. Then
minimize a metric or divergence so that the variational approximation is close to the posterior,
q(z ; �)⇡ p(z |x).
The most common VI objective is to minimize the exclusive KL, KL (q k p). This objective is an
expectation with respect to the approximating distribution q that is convenient to optimize. But
this convenience comes at a cost—the q optimized to minimize KL (q k p) will underestimate the
variance of the posterior [15, 6, 60].

One way to mitigate this issue is to instead optimize the inclusive KL,

KL (p(z |x) k q(z ; �)) := Ep(z |x) [log p(z |x)� log q(z ; �)] . (1)

This objective, though more difficult to work with, does not lead to underdispersed approxima-
tions. For too simplistic q it might lead to approximations that stretch to cover p putting mass
even where p is small, thus leading to poor predictive distributions. However, in the context of
VI inclusive KL has motivated among others neural adaptive SMC [22], RWS [7], and EP [43].
This paper develops MSC, a new algorithm to minimize the inclusive KL divergence.

Minimizing eq. (1) is equivalent to minimizing the cross entropy LKL(�),
min
�

LKL(�) :=min
�
Ep(z |x) [� log q(z ; �)] . (2)

The gradient w.r.t. the variational parameters is

gKL(�) :=rLKL(�) = Ep(z |x) [�s(z ; �)] , (3)

where we define s(z ; �) to be the score function,

s(z ; �) :=r� log q(z ; �). (4)

Because the cross entropy is an expectation with respect to the (intractable) posterior, computing
its gradient pointwise is intractable. Recent algorithms for solving eq. (2) focus on stochastic

gradient descent [7, 22, 19].

2.2 Stochastic Gradient Descent with IS
We use stochastic gradient descent (SGD) in VI when the gradients of the objective are intractable.
The SGD updates

�k = �k�1 � "k bgKL(�k�1), (5)

converges to a local optimum of eq. (2) if the gradient estimate bgKL is unbiased, E [bgKL(�)] =
gKL(�), and the step sizes satisfy

P
k
"2

k
<1,
P

k
"k =1 [54, 32].

When the objective is the exclusive KL (q k p), we can use score-function gradient estimators
[51, 58, 52], reparameterization gradient estimators [53, 30], or combinations of the two [57, 45].
These methods provide unbiased stochastic gradients that can help find a local optimum of the
exclusive KL.

However, we consider minimizing the inclusive KL (p k q) eq. (1), for which gradient estimation
is difficult. It requires an expectation with respect to the posterior p. One strategy is to use IS
[55] to rewrite the gradient as an expectation with respect to q. Specifically, the gradient of the
inclusive KL is proportional to

r�LKL(�)/�Eq(z ;�)

ï
p(z,x)
q(z ; �)

s(z ; �)
ò

, (6)
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where the constant of proportionality 1/p(x) is independent of the variational parameters and will
not affect the solution of the corresponding fixed point equation. This gradient is unbiased, but
estimating it using standard MC methods can lead to high variance and poor convergence.

Another option [22, 7] is the self-normalized IS (or corresponding SMC) estimate

r�LKL(�)⇡ �
SX

s=1

wsP
S

r=1 wr

s(zs ; �), (7)

where ws = p(zs ,x)/q(zs ;�), zs ⇠ q(zs ; �), and s(z ; �) = r� log q(z ; �). However, eq. (7) is not
unbiased. The estimator suffers from systematic error and, consequently, the fitted variational
parameters are no longer optimal with respect to the original minimization problem in eq. (2).
(See [47, 49, 55] for details about IS and SMC methods) MSC addresses this shortcoming,
introducing an algorithm that provably converges to a solution of eq. (2). In the remainder of
the paper IS refers to self-normalized IS.

3 Markovian Score Climbing

The key idea in MSC is to use MCMC methods to estimate the intractable gradient. Under
suitable conditions on the algorithm, MSC is guaranteed to converge to a local optimum of
KL (p k q).

First, we discuss generic MCMC methods to estimate gradients in a SGD algorithm. Importantly,
the MCMC method can depend on the current VI approximation which provides a tight link
between MCMC and VI. Next we exemplify this connection by introducing CIS, an example Markov
kernel that is a simple modification of IS, where the VI approximation is used as a proposal. The
extra computational cost is negligible compared to the biased approaches discussed in section 2.2,
CIS only generates a single extra categorical random variable per iteration. The corresponding
extension to SMC, i.e. the CSMC kernel, is discussed in the supplement. Next, we discuss learning
model parameters. Then, we show that the resulting MSC algorithm is exact in the sense that it
converges asymptotically to a local optima of the inclusive KL divergence. Finally, we discuss
large-scale data.

3.1 Stochastic Gradient Descent using MCMC
When using gradient descent to optimize the inclusive KL we must compute an expectation of
the score function s(z ; �) eq. (4) with respect to the true posterior. To avoid this intractable
expectation we propose to use stochastic gradients estimated using samples generated from
a MCMC algorithm, with the posterior as its stationary distribution. The key step to ensure
convergence, without having to run an infinite inner loop of MCMC updates, is to not re-initialize
the Markov chain at each step k. Instead, the sample z[k� 1] used to estimate the gradient at
step k� 1 is passed to a Markov kernel z[k]⇠ M(· |z[k� 1]), with the posterior as its stationary
distribution, to get an updated z[k] that is then used to estimate the current gradient, i.e. the
score s(z[k] ; �). This leads to a Markovian stochastic approximation algorithm [21], where the
noise in the gradient estimate is Markovian. Because we are moving in an ascent direction of
the score function at each iteration and using MCMC, we refer to the method developed in this
paper as Markovian score climbing.

It is not a requirement that the Markov kernel M is independent of the variational parameters �.
In fact it is key for best performance of MSC that we use the variational approximation to define
the Markov chain. We summarize MSC in algorithm 1.

Next, we discuss CIS [2, 47], an example Markov kernel with adaptation that is a simple mod-
ifications of its namesake IS. The corresponding extension to SMC, the CSMC kernel [2, 47],
is discussed in the supplement. Using these Markov kernels to estimate gradients, rather than
IS and SMC [22, 7], lead to algorithms that are simple modifications of their non-conditional
counterparts but provably converge to a local optimum of the inclusive KL divergence.

3.2 Conditional Importance Sampling
CIS is an IS-based Markov kernel with p(z |x) as its stationary distribution [2, 47]. It modifies the
classical IS algorithm by retaining one of the samples from the previous iteration, the so-called
conditional sample. Each iteration consists of three steps: generate new samples from a proposal,
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Algorithm 1: Markovian Score Climbing
Input : Markov kernel M(z0 |z ; �) with stationary distribution p(z |x), variational family

q(z ; �), initial �0, initial z[0], step size sequence "k, and number of iterations K .
Output :�K ⇡ �?.

1 for k = 1, . . . , K do
2 Sample z[k]⇠ M(· |z[k� 1] ; �k�1)
3 Compute s(z[k] ; �k�1) =r� log q(z[k] ; �k�1)
4 Set �k = �k�1 + "ks(z[k] ; �k�1)
5 end

compute weights, and then update the conditional sample for the next iteration. We explain in
detail below.

First, set the first proposed sample to be equal to the conditional sample from the previous
iteration, i.e. z1 = z[k�1], and propose the remaining S�1 samples from a proposal distribution
zi ⇠ q(z ; �), i = 2, . . . , S. The proposal does not necessarily need to be equal to the variational
approximation, a common option is to use the model prior p(z). However, we will in the remainder
of this paper assume that the variational approximation q(z ; �) is used as the proposal. This
provides a link between the MCMC proposal and the current VI approximation. Then, compute
the importance weights for all S samples, including the conditional sample. The importance
weights for i = 1, . . . , S are w

i = p(zi ,x)/q(zi ;�), w̄
i = w

i/
P

S

j=1 w
j. Finally, generate an updated

conditional sample by picking one of the proposed values with probability proportional to its
(normalized) weight, i.e., z[k] = zJ , where J is a discrete random variable with probability
P(J = j) = w̄

j .

Iteratively repeating this procedure constructs a Markov chain with the posterior p(z |x) as its
stationary distribution [2, 47]. With this it is possible to attain an estimate of the (negative)
gradient w.r.t. the variational parameters of eq. (2):

s(z[k] ; �) =r� log q(z[k] ; �), (8)

where z[k] is the conditional sample retained at each iteration of the CIS algorithm. Another
option is to make use of all samples at each iteration, i.e. the Rao-Blackwellized estimate,
bgKL(�) =
P

S

i=1 w̄
i
s(zi ; �). We summarize one full iteration of the CIS in algorithm 2.

Algorithm 2: Conditional Importance Sampling
Input : Model p(z,x), proposal q(z ; �), conditional sample z[k� 1], and total number of

internal samples S.
Output : z[k]⇠ M(· |z[k� 1] ; �), updated conditional sample.

1 Set z1 = z[k� 1]
2 Sample zi ⇠ q(z ; �) for i = 2, . . . , S

3 Compute w
i = p(zi ,x)/q(zi ;�), w̄

i = w
i/
P

S

j=1 w
j for i = 1, . . . , S

4 Sample J with probability P(J = j)/ w̄
j

5 Set z[k] = zJ

3.3 Model Parameters
If the probabilistic model has unknown parameters ✓ one solution is to assign them a prior
distribution, include them in the latent variable z, and apply the method outlined above to
approximate the posterior. However, an alternative solution is to use the maximum likelihood
(ML) principle and optimize the marginal likelihood, p(x ; ✓ ), jointly with the approximate
posterior, q(z ; �). We propose to use Markovian score climbing based on the Fisher identity of
the gradient

gML(✓ ) =r✓ log p(x ; ✓ ) =r✓ log

Z
p(z,x ; ✓ )dz= Ep✓ (z |x) [r✓ log p(z,x ; ✓ )] . (9)
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With a Markov kernel M(z[k] |z[k� 1] ; ✓ ,�), with the posterior distribution p(z |x ; ✓ ) as its
stationary distribution, the approximate gradient is bgML(✓ ) =r✓ log p(z[k],x ; ✓ ).

The MSC algorithm for maximization of the log-marginal likelihood, with respect to ✓ , and
minimization of the inclusive KL divergence, with respect to �, is summarized in algorithm 3.
Using MSC only for ML estimation of ✓ , with a fixed Markov kenel M and without the VI steps
on lines 13 and 15, is equivalent to the MCMC ML method in [21].

Algorithm 3: Markovian Score Climbing with ML
Input : Markov kernel M(z0 |z ; ✓ ,�) with stationary distribution p(z |x ; ✓ ), variational

family q(z ; �), initial �0,z[0],✓0, step size sequences "k,✏k, and iterations K .
Output :�K ⇡ �?, ✓K ⇡ ✓?.

1 for k = 1, . . . , K do
2 Sample z[k]⇠ M(· |z[k� 1] ; ✓k�1,�k�1)
3 Compute s(z[k] ; �k�1) =r� log q(z[k] ; �k�1)
4 Compute bgML(✓k�1) =r✓ log p(z[k],x ; ✓k�1)
5 Set �k = �k�1 + "ks(z[k] ; �k�1)
6 Set ✓k = ✓k�1 + ✏kbgML(✓k�1)
7 end

3.4 The Convergence of MSC
One of the main benefits of MSC is that it is possible, under certain regularity conditions, to
ensure that the variational parameter estimate �K as provided by algorithm 1 converges to a
local optima of the inclusive KL divergence as the number of iterations K tend to infinity. We
formalize the convergence result in proposition 1. The result is an application of [21, Theorem
1] and based on [5, Theorem 3.17, page 304]. The proof is found in the Supplement.

Proposition 1. Assume that C1–C6, detailed in the supplement, hold. If �k for k � 1 defined

by algorithm 1 is a bounded sequence and almost surely visits a compact subset of the domain of

attraction of �? infinitely often, then

�k! �?, almost surely.

3.5 MSC on Large-Scale Data
If the dataset x = (x1, , . . . , xn) is large it might be impractical to evaluate the full likelihood
at each step and it would be preferable to consider only a subset of the data at each iteration.
Variational inference based on the exclusive KL, KL (q k p), is scalable in the sense that it works
by subsampling datasets both for exchangeable data, p(x) = Ep(z)

⇥Q
n

i=1 p(xi |z)
⇤
, as well as

for independent and identically distributed data (iid), p(x) =
Q

n

i=1 p(xi) =
Q

n

i=1Ep(zi) [p(xi | zi)]
where z = (z1, . . . , zn). For the exclusive KL divergence subsampling is straightforward; the
likelihood enters as a sum of the individual log-likelihood terms for all datapoints whether the
data is iid or exchangeable, and a simple unbiased estimate can be constructed by sampling one
(or a few) datapoints to evaluate at each iteration. However, for the inclusive KL divergence the
large-scale data implications for the two settings are less clear and we discuss each below.

Often in the literature [7, 9, 14, 48] applications assumes the data is generated iid and achieve
scalability through use of subsampling and amortization. In fact, MSC can potentially scale just
as well as other algorithms to large datasets when data is assumed iid xi ⇠ p(x), i = 1, . . . , n.
Instead of minimizing KL (p(z | x) k q(z ; �)) wrt � for each x = xi , we consider minimizing
KL
�
p(x)p(z|x) k p(x)q(z |�⌘(x))

�
wrt ⌘ where �⌘(x) is an inference network (amortization). If

q(z |�⌘(x)) is flexible enough the posterior p(z | x) is the optimal solution to this minimization
problem. Stochastic gradient descent can be performed by noting that

r⌘KL
�
p(x)p(z|x) k p(x)q(z |�⌘(x))

�
= 0+Ep(x)p(z|x)

⇥
�r⌘ log q(z|�⌘(x)

⇤

⇡ 1
n

nX

i=1

Ep(z|xi)
⇥
�r⌘ log q(z|�⌘(xi))

⇤
,
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where the approximation is directly amenable to data subsampling. We leave the formal study of
this approach for future work.

For exchangeable data the likelihood enters as a product and subsampling is difficult in general.
Standard MCMC kernels require evaluation of the complete likelihood at each iteration, which
means that the method proposed in this paper likewise must evaluate all the data points at each
iteration of algorithm 1. An option is to follow [35, 15] using subset average likelihoods. In
appendix A.1 we prove that this approach leads to systematic errors that are difficult to quantify.
It does not minimize the inclusive KL from p to q, rather it minimizes the KL divergence from a
perturbed posterior ep to q. A potential remedy to this issue, that we leave for future work, is to
consider approximate MCMC (with theoretical guarantees) reviewed in e.g. [4, 3].

4 Empirical Evaluation
We illustrate convergence on a toy model and demonstrate the utility of MSC on Bayesian probit
regression for classification as well as a stochastic volatility model for financial data. The studies
show that MSC (i) converges to the true solution whereas the biased methods do not; (ii) achieves
similar predictive performance as EP and IS on regression while being more robust to the choice
of sample size S; and (iii) learns superior or as good stochastic volatility models as SMC. Code is
available at github.com/blei-lab/markovian-score-climbing.

4.1 Skew Normal Distribution
We illustrate the impact of the biased gradients discussed in section 2.2 on a toy example.
Let p(z |x) be a scalar skew normal distribution with location, scale and shape parameters
(⇠,!,↵) = (0.5,2,5). We let the variational approximation be a family of normal distributions
q(z ; �) = N (z ; µ,�2). For this choice of posterior and approximating family it is possible to
compute the analytical solution for the inclusive KL divergence; it corresponds to matching the
moments of the variational approximation and the posterior distribution. In fig. 1 we show the
results of SGD when using the biased gradients from eq. (7), i.e. using self-normalized IS to
estimate the gradients, and MSC (this paper) as described in section 3. We set the number of
samples to S = 2. We can see how the biased gradient leads to systematic errors when estimating
the variational parameters, whereas MSC obtains the true solution. Increasing the number of
samples for the estimator in eq. (7) will lower the bias, and in the limit of infinite samples S it is
exact. However, for non-toy problems it is likely very difficult to know what is a sufficient number
of samples to get an "acceptable bias" in the VI solution. MSC, on the other hand, provides
consistent estimates of the variational parameters even with small number of samples. Note that

Figure 1: MSC converges to the true solution, while the biased IS approach does not. Example
of learnt variational parameters for IS- and MSC-based gradients of the inclusive KL, as well as
true parameters. Gaussian approximation to a skew normal distribution. Iterations in log-scale.

the biased IS-gradients results in an underestimation of the variance. One of the main motivations
for using inclusive KL as optimization objective is to avoid such underestimation of uncertainty.
This example shows that when the inclusive KL is optimized with biased gradients the solution
can no longer be trusted in this respect. The gradients for Rényi- and � divergences used in e.g.
[35, 15] suffer from a similar bias. The supplement provides a � divergence analogue to fig. 1.

4.2 Bayesian Probit Regression
Probit regression is commonly used for binary classification in machine learning and statistics.
The Bayesian probit regression model assigns a Gaussian prior to the parameters. The prior and
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(a) Heart µ?1 (b) Heart µ?3 (c) Heart µ?4

(d) Ionos µ?1 (e) Ionos µ?17 (f) Ionos µ?27

Figure 2: MSC is more robust to the number of samples S. The fitted mean parameter µ?, for
three representative dimensions of z, of MSC (this paper) and IS (cf. [7]) on the Ionos and Heart
datasets. The error bars corresponds to 100 random initializations.

likelihood are p(z) =N (z ; 0, I), P(yt = y |z,xt) = �(x>t z)y
�
1��(x>

t
z)
�1�y

, where y 2 {0,1}
and �(·) is the cumulative distribution function of the normal distribution. We apply the model
for prediction in several UCI datasets [18]. We let the variational approximation be a Gaussian
distribution q(z ; �) =N (z ; µ,⌃), where ⌃ is a diagonal covariance matrix. We compare MSC
(this paper) with the biased IS-based approach (cf. eq. (7) and [7]) and EP [43] that minimizes
the inclusive KL locally. For SGD methods we use adaptive step-sizes [29].

Table 1 illustrates the predictive performance of the fitted model on held-out test data. The
results where generated by splitting each dataset 100 times into 90% training and 10% test data,
then computing average prediction error and its standard deviation. MSC performs as well as
EP which is particularly well suited to this problem. However, EP requires more model-specific
derivations and can be difficult to implement when the moment matching subproblem can not
be solved in closed form. In these experiments the bias introduced by IS does not significantly
impact the predictive performance compared to MSC.

Dataset EP [43] IS [7] MSC (adaptive) MSC (prior)
Pima 0.227± 0.048 0.229± 0.047 0.227± 0.046 0.456± 0.093
Ionos 0.115± 0.053 0.115± 0.054 0.117± 0.053 0.182± 0.070
Heart 0.161± 0.066 0.163± 0.066 0.160± 0.063 0.342± 0.11

Table 1: Test error for Bayesian probit regression; lower is better. Estimated using EP [43], IS (cf.
[7]), and MSC (this paper) with proposal q(z ; �) (adaptive) or p(z) (prior) for 3 UCI datasets.
Predictive performance is comparable, but MSC is more robust and generically applicable.

We compare how the approximations based on MSC and IS are affected by the number of samples
S at each iteration. In fig. 2 we plot the mean value µ? based on 100 random initializations for
several values of S on the Heart and Ionos datasets. The MSC is more robust to the choice of S,
converging to similar mean values for all the choices of S in this example. For the Heart dataset,
IS clearly struggles with a bias for low values of the number of samples S.

4.3 Stochastic Volatility
The stochastic volatility model is commonly used in financial econometrics [12]. The model
is p(z0 ; ✓ ) = N

Ä
z0 ; 0, �2

1��2

ä
, p(zt |zt�1 ; ✓ ) = N

�
zt ; µ+�(zt�1 �µ),�2

�
, p(xt |zt ; ✓ ) =

N (xt ; 0,� exp(zt)), where the parameters are constrained as follows ✓ =
�
�2,�,µ,�
�
2

R+⇥(�1, 1)⇥R⇥R+. Both the posterior distribution and log-marginal likelihood are intractable so
we make use of algorithm 3 as outlined in section 3.3 with the CSMC kernel described in the supple-
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ment. The proposal distributions are q(z0 ; ✓ ,�0)/ p(z0 ; ✓ )e�
1
2⇤0z2

0+⌫0z0 , q(zt |zt�1 ; ✓ ,�t)/
p(zt |zt�1 ; ✓ ) e�

1
2⇤t z2

t
+⌫t zt , with variational parameters �t = (⌫t ,⇤t) 2 R ⇥ R+.
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Figure 3: Difference in log-marginal likeli-
hood values for parameters learnt by MSC
(this paper) and SMC [22]. The likelihood
obtained by MSC, on average, is superior to
or as good as that obtained by SMC.

We compare MSC with the SMC-based approach
[22] using adaptive step-size [29]. We study
monthly returns over 10 years (9/2007 to 8/2017)
for the exchange rate of 18 currencies with respect
to the US dollar. The data is obtained from the
Federal Reserve System. In fig. 3 we illustrate
the difference between the log-marginal likelihood
obtained by the two methods, log p(x ; ✓?MSC) �
log p(x ; ✓?SMC). We learn the model and variational
parameters using S = 10 particles for both meth-
ods, and estimate the log-marginal likelihood after
convergence using S = 10,000. The log-marginal
likelihood obtained by MSC is significantly better
than SMC for several of the datasets.

5 Conclusions
In VI, the properties of the approximation q, to the posterior p, depends on the choice of
divergence that is minimized. The most common choice is the exclusive KL divergence KL (q k p),
which is computationally convenient, but known to suffer from underestimation of the posterior
uncertainty. An alternative, which has been our focus here, is the inclusive KL divergence
KL (p k q). The benefit of using the inclusive KL is to obtain a more “robust” approximation that
does not underestimate the uncertainty. However, in this paper we have argued, and illustrated
numerically, that such underestimation of uncertainty can still be an issue, if the optimization
is based on biased gradient estimates, as is the case for previously proposed VI algorithms. As
a remedy, we introduced Markovian score climbing, a new way to reliably learn a variational
approximation that minimizes the inclusive KL. This results in a method that melds VI and
MCMC. We have illustrated its convergence properties on a simple toy example, and studied
its performance on Bayesian probit regression for classification as well as a stochastic volatility
model for financial data.

Broader Impact
MSC is a general purpose approximate statistical inference method. The main goal is to remove
systematic errors due to biased estimates of the gradient of the optimization objective function.
This can allow for more reliable and robust inferences based on the posterior approximation.
However, just like other standard inference methods it does not protect from any bias introduced
by applying it to specific models and data [13, 41].
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