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Abstract

Many modern data analysis problems involve inferences from streaming data. How-
ever, streaming data is not easily amenable to the standard probabilistic modeling
approaches, which require conditioning on finite data. We develop population
variational Bayes, a new approach for using Bayesian modeling to analyze streams
of data. It approximates a new type of distribution, the population posterior, which
combines the notion of a population distribution of the data with Bayesian in-
ference in a probabilistic model. We develop the population posterior for latent
Dirichlet allocation and Dirichlet process mixtures. We study our method with
several large-scale data sets.

1 Introduction

Probabilistic modeling has emerged as a powerful tool for data analysis. It is an intuitive language
for describing assumptions about data and provides efficient algorithms for analyzing real data under
those assumptions. The main idea comes from Bayesian statistics. We encode our assumptions about
the data in a structured probability model of hidden and observed variables; we condition on a data
set to reveal the posterior distribution of the hidden variables; and we use the resulting posterior as
needed, for example to form predictions through the posterior predictive distribution or to explore the
data through the posterior expectations of the hidden variables.

Many modern data analysis problems involve inferences from streaming data. Examples include
exploring the content of massive social media streams (e.g., Twitter, Facebook), analyzing live video
streams, estimating the preferences of users on an online platform for recommending new items, and
predicting human mobility patterns for anticipatory computing. Such problems, however, cannot
easily take advantage of the standard approach to probabilistic modeling, which requires that we
condition on a finite data set.

This might be surprising to some readers; after all, one of the tenets of the Bayesian paradigm is that
we can update our posterior when given new information. (“Yesterday’s posterior is today’s prior.”)
But there are two problems with using Bayesian updating on data streams. The first problem is that
Bayesian inference computes posterior uncertainty under the assumption that the model is correct.
In theory this is sensible, but only in the impossible scenario where the data truly came from the
proposed model. In practice, all models provide approximations to the data-generating distribution,
and when the model is incorrect, the uncertainty that maximizes predictive likelihood may be larger or
smaller than the Bayesian posterior variance. This problem is exacerbated in potentially never-ending
streams; after seeing only a few data points, uncertainty is high, but eventually the model becomes
overconfident.

The second problem is that the data stream might change over time. This is an issue because,
frequently, our goal in applying probabilistic models to streams is not to characterize how they
change, but rather to accommodate it. That is, we would like for our current estimate of the latent
variables to be accurate to the current state of the stream and to adapt to how the stream might slowly



change. (This is in contrast, for example, to time series modeling.) Traditional Bayesian updating
cannot handle this. Either we explicitly model the time series, and pay a heavy inferential cost, or we
tacitly assume that the data are exchangeable, i.e., that the underlying distribution does not change.

In this paper we develop new ideas for analyzing data streams with probabilistic models. Our
approach combines the frequentist notion of the population distribution with probabilistic models and
Bayesian inference.

Main idea: The population posterior. Consider a latent variable model of & data points. (This
is unconventional notation; we will describe why we use it below.) Following [14], we define the
model to have two kinds of hidden variables: global hidden variables  contain latent structure that
potentially governs any data point; local hidden variables z; contain latent structure that only governs
the ith data point. Such models are defined by the joint,
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where X = x1.¢ and z = z.¢. Traditional Bayesian statistics conditions on a fixed data set x to obtain
the posterior distribution of the hidden variables p(f3,z|x). As we discussed, this framework cannot
accommodate data streams. We need a different way to use the model.

We define a new distribution, the population posterior, which enables us to consider Bayesian
modeling of streams. Suppose we observe o data points independently from the underlying population
distribution, X ~ F. This induces a posterior p(f8,z|X), which is a function of the random data.
The population posterior is the expected value of this distribution,
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Notice that this distribution is not a function of observed data; it is a function of the population
distribution F and the data size a. The data size is a hyperparameter that can be set; it effectively
controls the variance of the population posterior. How to best set it depends on how close the model
is to the true data distribution.

We have defined a new problem. Given an endless stream of data points coming from F and a value
for a, our goal is to approximate the corresponding population posterior. In this paper, we will
approximate it through an algorithm based on variational inference and stochastic optimization. As
we will show, our algorithm justifies applying a variant of stochastic variational inference [14] to
a data stream. We used our method to analyze several data streams with two modern probabilistic
models, latent Dirichlet allocation [5] and Dirichlet process mixtures [11]. With held-out likelihood
as a measure of model fitness, we found our method to give better models of the data than approaches
based on full Bayesian inference [14] or Bayesian updating [8].

Related work. Researchers have proposed several methods for inference on streams of data.
Refs. [1, 9, 27] propose extending Markov chain Monte Carlo methods for streaming data. However,
sampling-based approaches do not scale to massive datasets; the variational approximation enables
more scalable inference. In variational inference, Ref. [15] propose online variational inference by
exponentially forgetting the variational parameters associated with old data. Stochastic variational
inference (SVI) [14] also decay parameters derived from old data, but interprets this in the context of
stochastic optimization. Neither of these methods applies to streaming data; both implicitly rely on
the data being of known size (even when subsampling data to obtain noisy gradients).

To apply the variational approximation to streaming data, Ref. [8] and Ref. [12] both propose
Bayesian updating of the approximating family; Ref. [22] adapts this framework to nonparametric
mixture models. Here we take a different approach, changing the variational objective to incorporate
a population distribution and then following stochastic gradients of this new objective. In Section 3
we show that this generally performs better than Bayesian updating.

Independently, Ref. [23] applied SVI to streaming data by accumulating new data points into a
growing window and then uniformly sampling from this window to update the variational parameters.
Our method justifies that approach. Further, they propose updating parameters along a trust region,
instead of following (natural) gradients, as a way of mitigating local optima. This innovation can be
incorporated into our method.



2 Variational Inference for the Population Posterior

We develop population variational Bayes, a method for approximating the population posterior in
Eq. 2. Our method is based on variational inference and stochastic optimization.

The F-ELBO. The idea behind variational inference is to approximate difficult-to-compute distribu-
tions through optimization [16, 25]. We introduce an approximating family of distributions over the
latent variables ¢(f,z) and try to find the member of ¢(-) that minimizes the Kullback-Leibler (KL)
divergence to the target distribution.

Population variational Bayes (VB) uses variational inference to approximate the population posterior
in Eq. 2. It aims to minimize the KL divergence from an approximating family,

q"(B,z) = argminKL(q(B,2)||Er, [p(B,2|X)]). 3)

As for the population posterior, this objective is a function of the population distribution of ¢ data
points F. Notice the difference to classical VB. In classical VB, we optimize the KL divergence
between ¢(+) and a posterior, KL(g(,z)||p(B,z| X); its objective is a function of a fixed data set x.
In contrast, the objective in Eq. 3 is a function of the population distribution Fy.

We will use the mean-field variational family, where each latent variable is independent and governed
by a free parameter,
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The free variational parameters are the global parameters A and local parameters ¢;. Though we
focus on the mean-field family, extensions could consider structured families [13, 20], where there is
dependence between variables.

In classical VB, where we approximate the usual posterior, we cannot compute the KL. Thus, we
optimize a proxy objective called the ELBO (evidence lower bound) that is equal to the negative KL
up to an additive constant. Maximizing the ELBO is equivalent to minimizing the KL divergence to
the posterior.

In population VB we also optimize a proxy objective, the F-ELBO. The F-ELBO is an expectation of
the ELBO under the population distribution of the data,
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The F-ELBO is a lower bound on the population evidence log Eg, [p(X)] and a lower bound on the
negative KL to the population posterior. (See Appendix A.) The inner expectation is over the latent
variables 8 and Z, and is a function of the variational distribution ¢(-). The outer expectation is over
the o random data points X, and is a function of the population distribution Fy(-). The F-ELBO is
thus a function of both the variational distribution and the population distribution.

As we mentioned, classical VB maximizes the (classical) ELBO, which is equivalent to minimizing
the KL. The F-ELBO, in contrast, is only a bound on the negative KL to the population posterior.
Thus maximizing the F-ELBO is suggestive but is not guaranteed to minimize the KL. That said, our
studies show that this is a good quantity to optimize, and in Appendix A we show that the F-ELBO
does minimize Er, [KL(¢(z||p(z, B|X))], the population KL.

Conditionally conjugate models. In the next section we will develop a stochastic optimization
algorithm to maximize Eq. 5. First, we describe the class of models that we will work with.

Following [14] we focus on conditionally conjugate models. A conditionally conjugate model is one
where each complete conditional—the conditional distribution of a latent variable given all the other
latent variables and the observations—is in the exponential family. This class includes many models
in modern machine learning, such as mixture models, topic models, many Bayesian nonparametric
models, and some hierarchical regression models. Using conditionally conjugate models simplifies
many calculations in variational inference.



Under the joint in Eq. 1, we can write a conditionally conjugate model with two exponential families:
p(zi,xi | B) = h(zi,xi)exp {B " t(zi,x;)) —a(B)} (6)
p(BI8) =h(B)exp{ 1(B)—a({)}. (7

We overload notation for base measures A(-), sufficient statistics #(-), and log normalizers a(-). Note
that ¢ is the hyperparameter and that #(8) = [B, —a(B)] [3].

In conditionally conjugate models each complete conditional is in an exponential family, and we
use these families as the factors in the variational distribution in Eq. 4. Thus A indexes the same
family as p(f | z,x) and ¢; indexes the same family as p(z; | x;, 8). For example, in latent Dirichlet
allocation [5], the complete conditional of the topics is a Dirichlet; the complete conditional of
the per-document topic mixture is a Dirichlet; and the complete conditional of the per-word topic
assignment is a categorical. (See [14] for details.)

Population variational Bayes. We have described the ingredients of our problem. We are given a
conditionally conjugate model, described in Eqs. 6 and 7, a parameterized variational family in Eq. 4,
and a stream of data from an unknown population distribution F. Our goal is to optimize the F-ELBO
in Eq. 5 with respect to the variational parameters.

The F-ELBO is a function of the population distribution, which is an unknown quantity. To overcome
this hurdle, we will use the stream of data from F to form noisy gradients of the F-ELBO; we then
update the variational parameters with stochastic optimization (a technique to find a local optimum
by following noisy unbiased gradients [7]).

Before describing the algorithm, however, we acknowledge one technical detail. Mirroring [14], we
optimize an F-ELBO that is only a function of the global variational parameters. The one-parameter
population VI objective is %7, (A1) = maxy ZF, (A, ¢). This implicitly optimizes the local parameter
as a function of the global parameter and allows us to convert the potentially infinite-dimensional
optimization problem in Eq. 5 to a finite one. The resulting objective is identical to Eq. 5, but with ¢
replaced by ¢(A). (Details are in Appendix B).

The next step is to form a noisy gradient of the F-ELBO so that we can use stochastic optimization
to maximize it. Stochastic optimization maximizes an objective by following noisy and unbiased
gradients [7, 19]. We will write the gradient of the F-ELBO as an expectation with respect to Fy, and
then use Monte Carlo estimates to form noisy gradients.

We compute the gradient of the F-ELBO by bringing the gradient operator inside the expectations of
Eq. 5.! This results in a population expectation of the classical VB gradient with « data points.

We take the natural gradient [2], which has a simple form in completely conjugate models [14].
Specifically, the natural gradient of the F-ELBO is

VoL (AFy) = —A+Ep, (8)
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We approximate this expression using Monte Carlo to compute noisy, unbiased natural gradients at A.
To form the Monte Carlo estimate, we collect o data points from F'; for each we compute the optimal
local parameters ¢;(A), which is a function of the sampled data point and variational parameters; we
then compute the quantity inside the brackets in Eq. 8. Averaging these results gives the Monte Carlo
estimate of the natural gradient. We follow the noisy natural gradient and repeat.

The algorithm is summarized in Algorithm 1. Because Eq. 8 is a Monte Carlo estimate, we are free to
draw B data points from Fy, (where B << ) and rescale the sufficient statistics by a/B. This makes
the natural gradient estimate noisier, but faster to calculate. As highlighted in [14], this strategy is
more computationally efficient because early iterations of the algorithm have inaccurate values of A.
It is wasteful to pass through a lot of data before making updates to A.

Discussion. Thus far, we have defined the population posterior and showed how to approximate
it with population variational inference. Our derivation justifies using an algorithm like stochastic
variational inference (SVI) [14] on a stream of data. It is nearly identical to SVI, but includes an
additional parameter: the number of data points in the population posterior ¢.

!For most models of interest, this is justified by the dominated convergence theorem.



Algorithm 1 Population Variational Bayes

Randomly initialize global variational parameter A0

Set iteration ¢ <— 0

repeat
Draw data minibatch x;.p ~ Fy
Optimize local variational parameters ¢; (1)), ... ¢p(A1")
Calculate natural gradient V, .Z(A1); Fy,) [see Eq. 8]
Update global variational parameter with learning rate p(*)

A0+ — 3 (1) +p(’>%%$(l(’);Fa)

Update iteration count # <t 41

until forever

Note we can recover the original SVI algorithm as an instance of population VI, thus reinterpreting it
as minimizing the KL divergence to the population posterior. We recover SVI by setting o equal to
the number of data points in the data set and replacing the stream of data F with F, the empirical
distribution of the observations. The “stream” in this case comes from sampling with replacement
from Fy, which results in precisely the original SVI algorithm.?

We focused on the conditionally conjugate family for convenience, i.e., the simple gradient in Eq. 8.
We emphasize, however, that by using recent tools for nonconjugate inference [17, 18, 24], we
can adapt the new ideas described above—the population posterior and the F-ELBO—outside of
conditionally conjugate models.

Finally, we analyze the population posterior distribution under the assumption the only way
the stream affects the model is through the data. Formally, this means the unobserved vari-
ables in the model and the stream Fy are independent given the data X. The population pos-
terior without the local latent variables z (which can be marginalized out) is Ep, [p(B | X)].
Expanding the expectation gives [p(B |X)p(X | Fy)dX, showing that the population poste-
rior distribution can be written as p(f | Fy). This can be depicted as a graphical model:

-0
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This means first, that the population posterior is well defined even when the model does not specify
the marginal distribution of the data and, second, rather than the classical Bayesian setting where the
posterior is conditioned on a finite fixed dataset, the population posterior is a distributional posterior
conditioned on the stream Fy,.

3 Empirical Evaluation

We study the performance of population variational Bayes (population VB) against SVI and streaming
variational Bayes (SVB) [8]. With large real-world data we study two models, latent Dirichlet
allocation [5] and Bayesian nonparametric mixture models, comparing the held-out predictive
performance of the algorithms. All three methods share the same local variational update, which
is the dominating computational cost. We study the data coming in a true ordered stream, and in a
permuted stream (to better match the assumptions of SVI). Across data and models, population VB
usually outperforms the existing approaches.

Models. We study two models. The first is latent Dirichlet allocation (LDA) [S]. LDA is a
mixed-membership model of text collections and is frequently used to find its latent topics. LDA
assumes that there are K topics f; ~ Dir(n), each of which is a multinomial distribution over a fixed
vocabulary. Documents are drawn by first choosing a distribution over topics 6, ~ Dir(a) and then

2This derivation of SVI is an application of Efron’s plug-in principle [10] applied to inference of the
population posterior. The plug-in principle says that we can replace the population F with the empirical
distribution of the data ¥ to make population inferences. In our empirical study, however, we found that
population VI often outperforms stochastic VI. Treating the data in a true stream, and setting the number of data
points different to the true number, can improve predictive accuracy.
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Figure 1: Held out predictive log likelihood for LDA on large-scale streamed text corpora. Population-
VB outperforms existing methods for two out of the three settings. We use the best settings of «.

drawing each word by choosing a topic assignment z,4, ~ Mult(6,) and finally choosing a word from
the corresponding topic wg, ~ B, . The joint distribution is

o N
p(B,6,z,win,v) = p(BIn) [T p(6aly) [ 1p(zail0a)p(wail B, 2a0)- ©)

d=1 i=1
Fixing hyperparameters, the inference problem is to estimate the conditional distribution of the topics
given a large collection of documents.

The second model is a Dirichlet process (DP) mixture [11]. Loosely, DP mixtures are mixture models
with a potentially infinite number of components; thus choosing the number of components is part
of the posterior inference problem. When using variational inference for DP mixtures [4], we take
advantage of the stick breaking representation to construct a truncated variational approximation [21].
The variables are mixture proportions 7 ~ Stick(7), mixture components f3; ~ H(y) (for infinite k),
mixture assignments z; ~ Mult(7), and observations x; ~ G(f;,). The joint is

o
p(B,m,z,xIn,y) = p(xIn)p(BIV) [ ] p(zil7) p(xil B, x:). (10)
i=1
The likelihood and prior on the components are general to the observations at hand. In our study
of real-valued data we use normal priors and normal likelihoods; in our study of text data we use
Dirichlet priors and multinomial likelihoods.

For both models we vary «, usually fixed to the number of data points in traditional analysis.

Datasets. With LDA we analyze three large-scale streamed corpora: 1.7M articles from the New
York Times spanning 10 years, 130K Science articles written over 100 years, and 7.4M tweets
collected from Twitter on Feb 2nd, 2014. We processed them all in a similar way, choosing a
vocabulary based on the most frequent words in the corpus (with stop words removed): 8,000 for the
New York Times, 5,855 for Science, and 13,996 for Twitter. On Twitter, each tweet is a document,
and we removed duplicate tweets and tweets that did not contain at least 2 words in the vocabulary.
For each data stream, all algorithms took a few hours to process all the examples we collected.

With DP mixtures, we analyze human location behavior data. These data allow us to build periodic
models of human population mobility, with applications to disaster response and urban planning.
Such models account for periodicity by including the hour of the week as one of the dimensions of the
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Figure 3: We show the sensitivity of population-VB to hyperparameter o (based on final log
likelihoods in the time-ordered stream) and find that the best setting of o often differs from the true
number of data points (which may not be known in any case in practice).

data to be modeled. The Ivory Coast location data contains 18M discrete cell tower locations for SO0K
users recorded over 6 months [6]. The Microsoft Geolife dataset contains 35K latitude-longitude
GPS locations for 182 users over 5 years. For both data sets, our observations reflect down-sampling
the data to ensure that each individual is seen no more than once every 15 minutes.



Results. We compare population VB with SVI [14] and SVB [8] for LDA [8] and DP mixtures [22].
SVB updates the variational approximation of the global parameter using density filtering with
exponential families. The complexity of the approximation remains fixed as the expected sufficient
statistics from minibatches observed in a stream are combined with those of the current approximation.
(Here we give the final results. We include details of how we set and fit hyperparameters below.)

We measure model fitness by evaluating the average predictive log likelihood on held-out data. This
involves splitting held-out observations (that were not involved in the posterior approximation of 3)
into two equal halves, inferring the local component distribution based on the first half, and testing
with the second half [14, 26]. For DP-mixtures, we condition on the observed hour of the week and
predict the geographic location of the held-out data point.

In standard offline studies, the held-out set is randomly selected from the data. With streams, however,
we test on the next 10K documents (for New York Times, Science), S00K tweets (for Twitter), or 25K
locations (on Geo data). This is a valid held-out set because the data ahead of the current position in
the stream have not yet been seen by the inference algorithms.

Figure 1 shows the performance for LDA. We looked at two types of streams: one in which the data
appear in order and the other in which they have been permuted (i.e., an exchangeable stream). The
time permuted stream reveals performance when each data minibatch is safely assumed to be an
i.i.d. sample from F; this results in smoother improvements to predictive likelihood. On our data, we
found that population VB outperformed SVI and SVB on two of the data sets and outperformed SVI
on all of the data. SVB performed better than population VB on Twitter.

Figure 2 shows a similar study for DP mixtures. We analyzed the human mobility data and the
New York Times. (Ref. [22] also analyzed the New York Times.) On these data population VB
outperformed SVB and SVI in all settings.’

Hyperparameters Unlike traditional Bayesian methods, the data set size « is a hyperparameter to
population VB. It helps control the posterior variance of the population posterior. Figure 3 reports
sensitivity to ¢ for all studies (for the time-ordered stream). These plots indicate that the optimal
setting of o is often different from the true number of data points; the best performing population
posterior variance is not necessarily the one implied by the data. The other hyperparameters to our
experiments are reported in Appendix C.

4 Conclusions and Future Work

We introduced the population posterior, a distribution over latent variables that combines traditional
Bayesian inference with the frequentist idea of the population distribution. With this idea, we derived
population variational Bayes, an efficient algorithm for probabilistic inference on streams. On two
complex Bayesian models and several large data sets, we found that population variational Bayes
usually performs better than existing approaches to streaming inference.

In this paper, we made no assumptions about the structure of the population distribution. Making
assumptions, such as the ability to obtain streams conditional on queries, can lead to variants of
our algorithm that learn which data points to see next during inference. Finally, understanding the
theoretical properties of the population posterior is also an avenue of interest.
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3Though our purpose is to compare algorithms, we make one note about a specific data set. The predictive
accuracy for the Ivory Coast data set plummets after 14M data points. This is because of the data collection
policy. For privacy reasons the data set provides the cell tower locations of a randomly selected cohort of 50K
users every 2 weeks [6]. The new cohort at 14M data points behaves differently to previous cohorts in a way that
affects predictive performance. However, both algorithms steadily improve after this shock.
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