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Abstract

The Dirichlet process prior allows flexible nonparametric mixture modeling. The number of mixture components
is not specified in advance and can grow as new data come in. However, the behavior of the model is sensitive to the
choice of the parameters, including an infinite-dimensional distributional parameterG0. Most previous applications
have either fixedG0 as a member of a parametric family or treatedG0 in a Bayesian fashion, using parametric prior
specifications. In contrast, we have developed an adaptive nonparametric method for constructing smooth estimates
of G0. We combine this method with a technique for estimatingα, the other Dirichlet process parameter, that is
inspired by an existing characterization of its maximum-likelihood estimator. Together, these estimation procedures
yield a flexible empirical Bayes treatment of Dirichlet process mixtures. Such a treatment is useful in situations where
smooth point estimates ofG0 are of intrinsic interest, or where the structure ofG0 cannot be conveniently modeled
with the usual parametric prior families. Analysis of simulated and real-world datasets illustrates the robustness of
this approach.

1 INTRODUCTION

Mixture modeling is an effective and widely practiced density estimation method, capable of representing the phe-
nomena that underlie many real-world datasets. However, a long-standing difficulty in mixture analysis is choosing
the number of mixture components. Model selection methods, such as cross-validation or methods based on Bayes
factors, treat the number of components as an unknown constant and set its value based on the observed data. Such
an approach can be too rigid, particularly if we wish to model the possibility that new observations come from as yet
unseen components.

The Dirichlet process (DP) mixture model, studied in Bayesian nonparametrics (Ferguson 1973, Blackwell and
MacQueen 1973, Berry and Christensen 1979, Escobar and West 1995, Liu 1996, MacEachern and Müller 1998, Neal
2000, Rasmussen 2000, Ishwaran and James 2002), allows for exactly this possibility. When a new data point arrives,
it either shares the component of some previously drawn value, or it uses a newly generated component realized from
a distributionG0. The frequency with which new components are generated is controlled by a parameterα > 0. The
DP mixture model has found widespread application in recent statistical research (Rasmussen and Ghahramani 2002,
Carota and Parmigiani 2002, Gelfand and Kottas 2002, Ishwaran and James 2002, Brown and Ibrahim 2003, Iorio
et al. 2004, M̈uller et al. 2004).

Analyses based on DP mixtures are sensitive to the choice of the Dirichlet process parametersG0 andα; the need to
treat these parameters carefully is discussed by Escobar and West (1995). In applications, some previous authors have
chosen a fixedG0, such as a normal with large variance relative to the data (Ishwaran and James 2002) or a Beta(a, b),
wherea andb are stipulated without further discussion (Liu 1996). Other authors have used a parametric family of
priors forG0, such as uniform-inverse Wishart (MacEachern and Müller 1998) or normal-inverse gamma (MacEachern
and Müller 1998, Rasmussen 2000), with fixed hyperprior distributions on the parameters of the prior family. The
hyperprior distributions are usually chosen by sensitivity analysis, or else they are chosen to be diffuse with respect to
the observed data.

Such approaches can succeed in circumstances where the trueG0 has a form that is well approximated by a simple
fixed choice or by some member of a typical parametric prior model. On the other hand, the parametric approach can
have adverse consequences when the trueG0 exhibits complicated structure. For example,G0 could be multimodal,
skewed, heavy-tailed, or all of these in combination. Furthermore, there is sometimes scientific interest in the structure
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of G0 itself, not just in inferences using a DP mixture based onG0. In such cases, parametric families can create
obstacles. For example, a Bayes point estimate inside a normal family forG0 will necessarily be symmetric and
unimodal.

In this work we present a procedure for smooth, adaptive estimation of an arbitrary continuousG0. This poses
some difficulties, becauseG0 is an infinite-dimensional distributional parameter whose realizations are never directly
observed. We address this problem using approximate posterior inference over flexible, model-free nonparametric
density estimators. We also employ an approximate maximum-likelihood estimator (MLE) forα, based closely on a
characterization of the MLE due to Liu (1996). When combined in parallel, these two estimation procedures yield a
nonparametric empirical Bayes approach to handling the parameters(G0, α) of the DP mixture model. As we will see
in Section 4, this approach is robust to a variety of choices for the trueG0, and works especially well when the trueα
and the number of observations are not too small.

There have been studies of related ideas. Berry and Christensen (1979) used an empirical Bayes approach in
the context of binomial DP mixtures. But they assume thatG0 andα are known, in order to focus on posterior point
estimates ofG, the realization of the Dirichlet process in the mixture model. By contrast, our method treatsG as a fully
random quantity to be marginalized for purposes of inference, and so incorporates more of the structured uncertainty
from the DP mixture. The same comment applies to Yu et al. (2004) and Ishwaran and James (2002), which both
describe methods for constructing point estimates ofG. Yu et al. (2004) also assume a fixedG0. Teh et al. (2004)
put a further Dirichlet process prior onG0, and so still face the issue of a hyperprior distributional parameterG00.
This is also true of Tomlinson and Escobar (1999), though these authors use a Dirichlet process mixture, rather than a
Dirichlet process, in order to obtain smooth realizations ofG0. In both cases, the focus is on specifying hierarchical
nonparametric models for grouped data. To our knowledge, smooth nonparametric point estimates ofG0 in the DP
mixture model have not been studied.

Note moreover that several authors (Escobar and West 1995, Rasmussen 2000, Ishwaran and James 2002) fix a
G0 from a parametric family, or choose fixed hyperprior distributions for a parametric family ofG0’s, based on the
observed data. When this strategy is not accompanied by sensitivity analysis, it is in effect a form of parametric
empirical Bayes in the DP mixture model, to which our method is a nonparametric counterpart.

2 DIRICHLET PROCESS MIXTURE MODELS

Recall that in thefinite mixture model, each data point is drawn from one ofk fixed, unknown distributions. For
example, the simplest Gaussian mixture assumes that each observation has been drawn from one ofk Gaussians,
parameterized byk different means.

To allow the number of mixture components to grow with the data, we move to thegeneralmixture model setting.
This is best understood as the hierarchical graphical model of Figure 1(A); the conditional hierarchical relationships
are summarized as follows:

Xn | θn ∼ p(· | θn) , n = 1, . . . , N , (1)

θn |G ∼ G(·) , n = 1, . . . , N . (2)

If the unknownG is a discrete distribution on a finite set of values, this setup reduces to the finite mixture model.
Of course, estimation and inference in the general mixture model must somehow account forG. Bayesian nonpara-

metric methods viewG as an (infinite-dimensional) parameter, requiring a prior distribution in the usual way. Since
G itself is a probability distribution on theθ parameter space, this prior is a distribution on probability distributions,
makingG (viewed as a random variable) arandom distribution. In other words, the fully Bayesian framework treats
the probability distributionG as a random quantity whose realizations are members ofG, the family of all probability
distributions on theθ parameter space.

One class of Bayesian nonparametric techniques uses a distribution on distributions called theDirichlet pro-
cess(Ferguson 1973). A Dirichlet process (DP) is parameterized by a scaling parameterα > 0 and a base measure
G0, which, like realizations ofG, is a probability distribution on theθ parameter space. Using this prior onG leads
to theDirichlet process mixture model (DP mixture)of Figure 1(B), corresponding to the following extension of the
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Figure 1: (A) The general mixture model and (B) the Dirichlet process mixture model, as graphical models. Panel (B)
adds to Panel (A) a nonparametric Dirichlet process prior onG, with parametersG0 andα.

hierarchical specification in Equations (1) and (2):

Xn | θn ∼ p(· | θn) , n = 1, . . . , N , (3)

θn |G ∼ G(·) , n = 1, . . . , N , (4)

G |G0, α ∼ DP (· |G0, α) . (5)

For example, a real-valued dataset may be modeled by a Gaussian DP mixture:θn is the mean parameter to the
Gaussian from whichXn was drawn, the Gaussian variance is fixed, andG0 is an arbitrary distribution on<.

Blackwell and MacQueen (1973) show that the joint distribution induced onθ1:N by the DP mixture model corre-
sponds to a generalized Pólya urn scheme. Thus, theθn’s are exchangeable and exhibit a so-called clustering effect:
givenθ1:(n−1), θn is either equal to one ofθ1:(n−1), or it is an independent draw fromG0:

p(θn | θ1:n−1) ∝ αG0(θn) +
n−1∑
i=1

δ(θi, θn) . (6)

This means theθ1:N are randomly partitioned into subsets, orclasses, within which all parameters take on the same
value. The distribution over partitions is given by the Pólya urn scheme. Lettingθ∗1:k denote thek distinct values in
θ1:(n−1), the next draw from the DP follows the urn distribution

θn | θ1:n−1 =
{

θ∗i with prob. ni

n−1+α

θ, θ ∼ G0 with prob. α
n−1+α ,

(7)

whereni is the number of times the valueθ∗i occurs inθ1:(n−1). We can uniquely specifyθ1:N using theθ∗1:k and class
assignmentsz1:N , such thatθn = θ∗zn

for all n.
From the clustering properties of the DP described above, the datax1:N can also be partitioned into classes, each

of whose members share the same distinct parameter valueθ∗i . Thus, as with a finite mixture model, the data are
drawn fromk unique distributionsp(· | θ∗i ). However, in a DP mixture, the numberk of such distributions is randomly
determined by the urn model. Furthermore, a new observationxN+1 might be drawn using a parameter value which
did not appear during the generation ofx1:N , i.e.,xN+1 might come from a new, previously unseen class.

Given datax1:N and parameters(G0, α), the DP mixture yields a posterior distribution onθ1:N , the parameters
associated with each data point. This posterior is analytically intractable, but Markov chain Monte Carlo (MCMC)
methods such as Gibbs sampling are used in practice to construct approximations (Neal 2000).

The parametersG0 andα play important roles in the distribution ofθ1:N . The probability thatθn differs from
all previously drawn parameter values is proportional toα; thus, larger values of this parameter lead to a higher
probability of many unique values ofθn (i.e., a largerk). More importantly, theθ∗i are iid draws fromG0, which is
also the distribution of the next unique parameter value. While estimatingα has been previously addressed in several
ways, a smooth nonparametric point estimate ofG0 has not been studied. Such a treatment is the primary focus of this
work.
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3 EMPIRICAL BAYES AND DIRICHLET PROCESS MIXTURES

The empirical Bayes (EB) method synthesizes inferential calculations common in Bayesian analysis with point esti-
mation of the frequentist type. The terminology and ideas originate with Robbins (1955) and have been developed
extensively in the statistical literature; a readable reference is Maritz and Lwin (1989). Typical applications treat
various specializations of the general mixture model given in Equations (1) and (2) and Figure 1(A).

In the classical EB approach to the general mixture model, we first construct a point estimateĜ of G (construed
for the moment as a fixed, unknown distribution rather than a random measure), using realizationsx1:N from the
model. For example, ifG is assumed to lie in a parametric class{G(· |λ) : λ ∈ <d}, we may obtain a point
estimateĜ(·) = G(· | λ̂) by computing the maximum-likelihood estimate (MLE)λ̂ under the marginal likelihood
`(λ) = p(x1:N |λ) =

∫
p(x1:N |θ1:N )G(θ1 |λ) . . . G(θN |λ)dθ1:N . Then, probabilistic quantities of interest, such as

the predictive densityp(xnew |x1:N ) or the marginal posteriorsp(θn |x1:N ), are computed after replacingG with Ĝ.
Subjecting the DP mixture model of Figure 1(B) to the EB method is conceptually straightforward. Though the

DP mixture hierarchy has one more level than the general mixture model of Figure 1(A), the empirical Bayes rationale
nonetheless continues to apply at the top. Point estimatesĜ0 andα̂ result from an appropriate procedure; then some
form of approximate inference proceeds withĜ0 andα̂ supplied in place ofG0 andα.

The empirical Bayes paradigm can make probabilistic inferences in the DP mixture more robust by avoiding
the need to pre-specify top-level parameters when there is little prior knowledge available. An alternative means of
achieving robustness in this situation is a fully Bayesian specification of vague priors forG0 andα. Since vague
priors on infinite-dimensional parameters likeG0 can be difficult to formulate, a choice is usually made to put prior
probability one on a parametric subfamily forG0. A hierarchy of hyperpriors can then be employed to increase
robustness, but the corresponding marginal prior forG0 will still put no mass on a large class of smooth distributions.
This is undesirable when we don’t have strong prior beliefs aboutG0 beyond smoothness. Furthermore, while a
misspecified prior forG0 may not greatly affect inferential quantities like the predictive density, its impact on a
posterior point estimate ofG0 can be considerable.

We now describe our nonparametric empirical Bayes procedure for the DP mixture model. The approach alternates
between an estimation phase and an inference phase. In the inference phase, fixed point estimates(Ĝ0, α̂) from the
previous estimation phase are used to sample from the posterior distributionp(θ1:N |x1:N ), with G marginalized out.
In general,Ĝ0 will not be conjugate to the mixture kernelp(x | θ), which creates additional difficulties in sampling.
To handle this, we use the nonconjugate Gibbs sampler called Algorithm 8 in (Neal 2000). The estimation phase uses
the newly sampled values ofθ1:N to construct updated point estimates(Ĝ0, α̂), as we now describe. Initialization of
our procedure is discussed in Section 4.1.

To motivate our estimate ofG0, consider how we might proceed if the trueθ∗1:k, which generated the observed
data, were revealed. Since these variables are independent and identically distributed according toG0, ideas from
frequentist nonparametric density estimation can be applied (Silverman 1986). Specifically, one could construct a
kernel density estimate (KDE) of the form̂G∗

0(·) = (1/k)
∑k

i=1 κh(θ∗i , ·). Here,κh(θ∗i , ·) is a smooth, positive,
integrable function, one copy centered at eachθ∗i , with dispersion controlled by thebandwidthparameterh. The KDE
spreads the concentrated mass of the empirical distribution onθ∗1:k smoothly over theθ domain.

The difficulty with this idea, of course, is that we do not observeθ∗1:k. However, the inference phase supplies a set
of B approximate realizations from the posterior distribution onθ∗1:k. Thus it is natural first to replace the KDÊG∗

0(·)
with its posterior mean, then substitute a Monte Carlo approximation thereto. Let the random variableK(θ1:N ) be
the true, unknown number ofθ∗i ’s, and letKb equal the number of constituents in thebth drawθb∗

1:Kb
from the Gibbs

sampler. Then we have

E(Ĝ∗
0(·) |X1:N ) = E

 1
K(θ1:N )

K(θ1:N )∑
i=1

κh(θ∗i , ·) |X1:N


≈ 1

B

B∑
b=1

(
1

Kb

Kb∑
i=1

κhb
(θb∗

i , ·)

)
=: Ĝ0(·) .
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In words, our estimatêG0 of G0 is obtained by constructingB KDEs, one for each of the Gibbs sampler drawsθb∗
1:Kb

,
then combining them in an average. In this definition, we need to select a kernelκh. There is optimality theory based
on asymptotics for this issue (Silverman 1986), but a Gaussian density function with varianceh is a convenient choice,
and that same theory suggests it comes with little loss in efficiency. We also need to choose an appropriate bandwidth
hb for each KDE in the average. Numerous methods exist to accomplish this automatically based on each draw’sθ∗i
values. For the work reported in this paper, we used the “direct plug-in” methodĥ2P of Sheather and Jones (1991),
which is known to have superior theoretical and empirical properties. However, when we repeated our analyses with
other bandwidth-selection protocols, including the simple formula given by (3.31) in (Silverman 1986), the results
remained qualitatively the same.

One may ask why the kernel density estimation method was not applied directly to the observed datax1:N at the
outset. One reason is that the DP mixture model imposes concrete probabilistic structure which may correspond to our
understanding of the stochastic mechanism underlying the data: in particular, there could be a rationale for repeatedly
using the same conditional data density to generate a subset of the observations, in which case the partition of the
dataset given by the class assignments has intrinsic content.

We turn now to our estimatêα. Point estimates ofα have been studied previously. In particular, Liu (1996) proves
that the marginal maximum likelihood estimate ofα in the DP mixture model must satisfy the stationarity condition

N∑
n=1

α

α + n− 1
= E(K(θ1:N ) |X1:N , α) , (8)

with K(θ1:N ) as defined above. Here the dependence of the posterior mean onα has been made explicit in the
notation. This condition does not have a closed-form solution inα; indeed, exact evaluation of the posterior mean in
(8) is generally not feasible. Liu notes that the posterior mean can be approximated using a Gibbs sampling estimate,
but instead he goes on to employ a sequential imputation method. Here we pursue the Gibbs sampling approximation,
given by

E(K(θ1:N ) |X1:N , α) ≈ 1
B

B∑
b=1

Kb , (9)

with Kb as previously defined. In the estimation phase, given the previous inference phase’s Gibbs draws, we solve
numerically the approximation to (8) based on (9). This yields our estimateα̂.

4 RESULTS

4.1 SIMULATIONS

We applied our nonparametric empirical Bayes procedure to simulated data from DP mixture models under several
settings of(G0, α). In all simulations, we drew 500 observations; the conditional data density is Gaussian with
meanθn and standard deviation fixed to0.1 · SD(G0). Because our interest in these simulations lies foremost with
estimatingG0 andα, we treat the class-conditional SD as known to the procedure. In order to include examples where
G0 has properties not easily modelled by the parametric priors of previous authors, we consider the following fourG0

distributions: (i) a standard normal; (ii) at3 distribution, which exhibits heavy tails; (iii) the distribution of− log Z,
Z ∼ χ2

1, which has strong positive skew; and (iv) an equal mixture of two well-separatedt5 distributions, having both
heavy tails and pronounced bimodality. We chooseα ∈ {1, 5, 10}, corresponding to a small, moderate, and large
typical number of classes in the data.

To obtain an initial estimatêG0 for our procedure, we fit a KDE to the observed data, resulting in a peaky,
multimodal distribution. In order to understand the initialization ofα̂, note that for a moderate observation countn,
the prior expected number of classes in the data (i.e., the number ofθ∗i ) is approximatelyα log n. Thus, a plausible
range of candidate initial values for̂α is from 1/ log n, corresponding to a single class, ton/ log n, corresponding to
one class per observation. We tried initializingα̂ at the bottom, middle, and top of this range; the final converged value
was nearly the same in all cases.
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Figure 2: Each column depicts the evolution ofĜ0 in a simulation using some trueG0 (top label) andα = 5. The
density plots in rows 1–3 show the trueG0 (dashed),̂G0 (solid), andĜ∗

0 (dotted), a KDE built from the trueθ∗i ’s. Grey
lines give the individual component KDE’s of̂G0, one constructed from each Gibbs sample ofθ∗1:k. Each plot in the
bottom row gives the progression of TVD(G0, Ĝ0), with TVD(G0, Ĝ

∗
0) as a grey reference line.
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Round 175

Figure 3: Flow plots of Gibbs sampler output at early rounds (left, middle) and after convergence (right) of the DP EB
procedure. At bottom, a rug plot of the observed data (black vertical ticks). Each grey circle is centered at a trueθ∗i ,
with radius proportional to the number of observations it generated. Each row of black circles gives the same depiction
for one draw ofθ1:N from the Gibbs sampler. From a simulation withα = 5 andG0 = N(0, 1).

Each column of Figure 2 plots the estimateĜ0 as a solid line after 0, 5, and 200 rounds of alternation between
the estimation phase and inference phase, with a trueα of 5. The trueG0 for a given simulation is named above the
column and plotted with dashes in the column’s top three panels. In addition, the KDEĜ∗

0 constructed from the true
θ∗i ’s in the simulation is given as a dashed line in those panels. We see that, as the rounds progress,Ĝ0 changes from
a rapidly fluctuating function to a smooth curve which closely approximatesĜ∗

0. Given thatĜ∗
0 is the ideal kernel

density estimate we would construct if theθ∗i ’s were revealed to us, this behavior is striking. The bottom row of
Figure 2 demonstrates this property more clearly, using the total variation distance (TVD) metric. The TVD between
two probability distributionsP andQ is defined assupA |P (A)−Q(A)|, with the supremum taken over measurable
setsA. Each panel plots with a solid line the TVD betweenĜ0 andG0 as the rounds progress, and gives the TVD
betweenĜ∗

0 andG0 as a horizontal dotted line for reference. As can be seen, after no more than 15 roundsĜ0 begins
to fluctuate around a density which is almost as good an estimate asĜ∗

0. The fluctuation arises due to sampling
variability in the Gibbs draws from the inference phase. This stabilization occurs despite the kurtosis ofG0 in column
2, its skewness in column 3, and its multimodality in column 4, all of which are captured byĜ0. The behavior of̂α is
very similar: after a small number of rounds,α̂ settles down to fluctuate around a value near the trueα.

Figure 3 shows how the Gibbs sampler in the inference phase also stabilizes as the rounds progress. Each panel
depicts multiple draws (after the diagnosed convergence of the sampler) from the posterior distribution onθ1:N , at
rounds 1 (left), 5 (middle), and 175 (right). Within a panel, each draw is represented as a row of black circles, with
rows arranged from earlier (bottom row) to later (top row) in the Gibbs run. Within a row, each circle corresponds to a
distinctθ∗i . The value ofθ∗i is indicated by the circle’s location on the x-axis, and the number of observations assigned
to θ∗i is proportional to the radius of the circle. The trueθ’s in this simulation are shown as the bottommost row of
grey circles, and the observed data appear as a rug plot underneath. Notice that the Gibbs samples from round 1 reflect
much uncertainty about the number and location of theθ∗1:k underlying the data. AŝG0 andα̂ improve in later rounds,
the posterior distribution becomes sharply peaked around the true values ofθ.

We also carried out a comparison between our nonparametric EB procedure and a simpler parametric approach
to adaptive point estimation ofG0, called the data-dependent Gaussian method. The latter takesĜ0 to be a fixed
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Table 4.1: Total Variation Distances (%) in Simulation

G0 α G0:DG G0:NP PD:DG PD:NP

1 41.63(5.54) 50.15(12.61) 2.93(0.47) 4.42(0.84)
N(0, 1) 5 46.94(1.72) 13.56( 1.29) 2.84(0.39) 3.15(0.42)

10 52.77(4.26) 13.24( 1.40) 3.63(0.26) 2.81(0.43)

1 33.59(5.20) 41.09( 8.71) 2.45(0.45) 3.35(0.48)
t3 5 58.17(6.68) 19.84( 3.41) 3.92(0.49) 2.85(0.30)

10 60.57(2.24) 17.91( 1.56) 4.43(0.14) 2.79(0.22)

1 47.67(2.73) 33.92(10.08) 2.37(0.38) 3.76(0.97)
− log Z, Z ∼ χ2

1 5 44.14(5.22) 18.75( 2.17) 3.39(0.29) 3.12(0.46)
10 59.02(3.08) 17.11( 1.54) 4.02(0.30) 2.55(0.12)

1 56.73(5.91) 53.23(10.87) 2.46(0.38) 2.91(0.34)
t5 mixture 5 64.21(2.10) 28.64( 1.88) 3.08(0.51) 3.30(0.58)

10 65.66(0.52) 20.20( 3.69) 4.07(0.11) 2.18(0.25)

Each entry contains a mean %TVD and its standard error (parenthesized) between a pair of densities (column label)
in one of 12 simulation scenarios (row label). The density pairs are (1)G0 vs. theĜ0 of the data-dependent Gaussian
method (G0:DG); (2)G0 vs. our nonparametriĉG0 (G0:NP); (3) the predictive density usingG0 vs. the one inferred
using the data-dependent Gaussian method (PD:DG); (4) the predictive density usingG0 vs. the one based on our
nonparametric EB procedure (PD:NP). Mean and SE are over 5 repetitions of each simulation.

Gaussian distribution, with mean set to the sample mean of the data and SD set to four times the sample SD. In
addition, rather than utilizing a point estimate ofα, we place a Gamma(2,2) prior on it. Both approaches then estimate
the predictive distribution usinĝG0 wheneverG0 is required. The data-dependent Gaussian method is similar to a
procedure described by Ishwaran and James (2002), in which the SD ofG0 is set to four times the sample SD and a
highly diffuse zero-mean normal prior is put onG0’s mean. This prior has the effect of centering the posterior mean
of G0 with respect to theθ∗i ’s, much like our method centersG0 on the data. These authors use a Gamma(2,2) prior
for α.

Table 4.1 shows the average percent TVD between the trueG0 and theĜ0 from the data-dependent Gaussian
method in column 3; column 4 gives the TVD betweenG0 and the nonparametriĉG0. Each row corresponds to one
particular combination of trueG0 andα from our simulations; the TVD average and its standard error (SE) are over
five independent replications of the relevant simulation. We see that the quality of theĜ0 estimate can depend strongly
on the choice of estimation procedure. Whenα = 1, the two approaches to constructingĜ0 perform comparably (after
accounting for simulation variability). However, at higher values ofα the nonparametriĉG0 improves substantially
on the parametriĉG0. The data-dependent Gaussian method also has difficulties because its prior puts more mass on
small values ofα, as is conventional in other treatments of the Dirichlet process mixture model.

Table 4.1 also reports the average percent TVD between the predictive density based onG0 and the one based on
either the data-dependent Gaussian method (column 5) or the nonparametric EB procedure (column 6). Notice that,
in all simulations, both procedures produce rather close approximations to the ideal predictive density estimate based
on G0—the predictive density is not too sensitive to the choice ofĜ0. At α = 1, the smallest value, the predictive
density resulting from the nonparametric EB procedure is worse than its counterpart based on the GaussianĜ0. This
can be understood by recalling that the expected number of distinctθi’s is aboutα log n ≈ 6 for α = 1 andn = 500.
Thus, even the KDÊG∗

0 built from the trueθ∗i ’s, which our nonparametric procedure approximates, is based on only
about six values. This is an example of a well-known phenomenon: nonparametric estimates on small samples are
often outperformed by simpler parametric estimates, even when the parametric model is misspecified. On the other
hand, atα = 5 the two procedures for̂G0 perform about the same (up to simulation variability), and atα = 10 the
nonparametric method is significantly better in every simulation, even when the Gaussian family for the parametric
Ĝ0 is correctly specified.
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Figure 4: Graphs of̂G0 (left-hand) and the estimated predictive density (right-hand) for the galaxy and stamp datasets.
Grey lines give the individual component curves, one from each Gibbs sample, which are averaged to produce the
relevant estimate.

9



4.2 REAL-WORLD DATA ANALYSIS

To study the behavior of our nonparametric empirical Bayes procedure on real data, we re-analyzed two well-known
datasets. Thegalaxiesdata (Roeder 1990) consist of velocity measurements for 82 galaxies from diverse sections of
the Corona Borealis region. Thestampdata (Wilson 1983) are the thicknesses of 485 Hidalgo postage stamps issued
in Mexico from 1872–1874. In both datasets, there are empirical reasons to expect subpopulation structure in the
observations. Ishwaran and James (2002) used DP mixture modeling as described in the discussion of Table 4.1 to
account for the uncertainty in the number of such subpopulations.

We ran 200 rounds of the DP EB procedure on each dataset, though stabilization ofĜ0 and α̂ occurred much
sooner. We used the same Gibbs sampler configuration as in Section 4.1. To address the unknown variance of the
conditional data density, we introduced a shared parameterσ2. Then, draws from the Gibbs sampler were used to
effect a straightforward Monte Carlo EM procedure (Wei and Tanner 1990) for its estimation. The MC-EM algorithm
operates in parallel with the nonparametric empirical Bayes algorithm for(G0, α).

Figure 4 presents the converged estimatesĜ0 as well as the predictive densitiesp(xnew |x1:N , α̂, Ĝ0) we obtained.
It is interesting that botĥG0’s differ noticeably from the Gaussian family used in Ishwaran and James (2002). The
galaxy data’sĜ0 exhibits a small mode in each tail in addition to a main central mode, raising the possibility of
additional higher-level clustering structure beyond that reflected in the sharing ofθ values by the observations. The
high-probability, slightly bimodal region in thêG0 of the stamp data suggests a more disperse relationship among the
θ∗i ’s than a normality assumption would imply. As we noted in Section 4.1, the differences between our predictive
densities and those of Ishwaran and James (2002) are small, though some of the modes in our predictive densities are
more pronounced.

5 DISCUSSION

We have treated the problem of Dirichlet process mixture modeling in the context of nonparametric estimation for the
distributional parameterG0. After motivating a nonparametric point estimateĜ0 based on a posterior mean kernel
density estimator, we studied the effectiveness of the resulting empirical Bayes procedure in a suite of simulations.
Analyses of two real-world datasets suggested previously undiscovered structure in the DP mixture setting. We em-
phasize that application of this nonparametric empirical Bayes method to real data required no specification of the
Dirichlet process parametersα andG0.
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355.

Brown, E. R. and Ibrahim, J. G. 2003. A Bayesian semiparametric joint hierarchical model for longitudinal and
survival data. Biometrics, 59:221–228.

Carota, C. and Parmigiani, G. 2002. Semiparametric regression for count data. Biometrika, 89:265–281.

Escobar, M. D. and West, M. 1995. Bayesian density estimation and inference using mixtures. Journal of the American
Statistical Association, 90:577–588.

Ferguson, T. S. 1973. A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1:209–230.

Gelfand, A. E. and Kottas, A. 2002. A computational approach for full nonparametric Bayesian inference under
Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 11:289–305.

Iorio, M. D., Müller, P., Rosner, G. L., and MacEachern, S. N. 2004. An ANOVA model for dependent random
measures. Journal of the American Statistical Association, 99:205–215.

10



Ishwaran, H. and James, L. F. 2002. Approximate Dirichlet process computing in finite normal mixtures: smoothing
and prior information. Journal of Computational and Graphical Statistics, 11:508–532.

Liu, J. S. 1996. Nonparametric hierarchical Bayes via sequential imputations. Annals of Statistics, 24:911–930.

MacEachern, S. N. and M̈uller, P. 1998. Estimating mixture of Dirichlet process models. Journal of Computational
and Graphical Statistics, 7:223–238.

Maritz, J. S. and Lwin, T. 1989. Empirical Bayes methods. Monographs on Statistics and Applied Probability.
Chapman & Hall, London.

Müller, P., Quintana, F., and Rosner, G. 2004. A method for combining inference across related nonparametric
Bayesian models. Journal of the Royal Statistical Society Series B, 66:735–749.

Neal, R. M. 2000. Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational
and Graphical Statistics, 9:249–265.

Rasmussen, C. E. 2000. The infinite Gaussian mixture model. In NIPS 12.

Rasmussen, C. E. and Ghahramani, Z. 2002. Infinite mixtures of Gaussian process experts. In NIPS 14.

Robbins, H. 1955. An empirical Bayes approach to statistics. In Proceedings of the Berkeley Symposium on Mathe-
matical Statistics and Probability, pages 131–148.

Roeder, K. 1990. Density estimation with confidence sets exemplified by superclusters and voids in the galaxies.
Journal of the American Statistical Association, 85:617–624.

Sheather, S. J. and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation.
Journal of the Royal Statistical Society Series B, 53:683–690.

Silverman, B. W. 1986. Density estimation for statistics and data analysis. Monographs on Statistics and Applied
Probability. Chapman & Hall, London.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. 2004. Hierarchical Dirichlet processes. Technical Report 653,
U.C. Berkeley, Dept. of Statistics.

Tomlinson, G. and Escobar, M. 1999. Analysis of Densities. Technical report, University of Toronto.

Wei, G. C. G. and Tanner, M. A. 1990. A Monte Carlo implementation of the EM algorithm and the poor man’s data
augmentation algorithms. Journal of the American Statistical Association, 85:699–704.

Wilson, I. G. 1983. Add a new dimension to your philately. The American Philatelist, 97:342–349.

Yu, K., Tresp, V., and Yu, S. 2004. A nonparametric hierarchical Bayesian framework for information filtering. In
SIGIR 27.

11



Affiliation of authors
Jon D. McAuliffe
Statistics Department, University of California
Berkeley, CA 94720

David M. Blei
Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213

Michael I. Jordan
Statistics Department and Computer Science Division, University of California
Berkeley, CA 94720

Acknowledgments
We would like to acknowledge support from the Intel Corporation, Microsoft Research, and the National Science
Foundation.

12


