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Abstract

The neural patterns recorded during a neuroscientific experiment reflect complex interactions between many brain regions,
each comprising millions of neurons. However, the measurements themselves are typically abstracted from that underlying
structure. For example, functional magnetic resonance imaging (fMRI) datasets comprise a time series of three-dimensional
images, where each voxel in an image (roughly) reflects the activity of the brain structure(s)–located at the corresponding
point in space–at the time the image was collected. FMRI data often exhibit strong spatial correlations, whereby nearby
voxels behave similarly over time as the underlying brain structure modulates its activity. Here we develop topographic
factor analysis (TFA), a technique that exploits spatial correlations in fMRI data to recover the underlying structure that the
images reflect. Specifically, TFA casts each brain image as a weighted sum of spatial functions. The parameters of those
spatial functions, which may be learned by applying TFA to an fMRI dataset, reveal the locations and sizes of the brain
structures activated while the data were collected, as well as the interactions between those structures.
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Introduction

Functional Magnetic Resonance Imaging (fMRI) has revolu-

tionized the field of cognitive neuroscience by allowing researchers

to take high resolution three-dimensional snapshots of a person’s

brain activity approximately once per second throughout an

experiment (Figure 1A). Each voxel (the three-dimensional analog

of a pixel in a digital photograph) in a collected brain image

reflects, roughly, the degree to which the corresponding location in

the person’s brain was activated at the time the image was

acquired. Each fMRI image comprises tens of thousands of voxels,

and hundreds of images may be collected over the course of a

single experimental testing session. Researchers rely on these

images to gain insights into the brain structures activated during

an experiment, the computations those brain structures carry out,

and the interactions between the brain structures.

Here we present Topographic Factor Analysis (TFA), a

technique for automatically discovering the brain regions that

vary their activation during an experiment (Figure 1B) and

inferring the network of interactions between those regions

(Figure 1C). TFA casts each brain image as a weighted sum of

spatial functions–parameterized mathematical functions that may be

evaluated at arbitrary points in space. The set of spatial functions,

which we call the set of latent sources, is fixed for a given dataset.

The model can then explain each image by activating each source

to the appropriate degree. This idea was originally proposed by

[1].

The inference problem takes a set of brain images as input and

uncovers the most probable source parameters (i.e., their locations

and sizes), source weights (i.e., how each image exhibits the

sources), and the interactions between sources. In this way, TFA

discovers the hidden structure underlying a set of brain images.

We have designed our algorithms to scale to large data sets both in

terms of the number of images and the number of voxels.

The next section provides a formal description of the modeling

assumptions behind TFA. We then describe an efficient algorithm

for applying TFA to large fMRI datasets. As a proof of concept,

we use TFA to uncover the brain networks underlying a publicly

available fMRI dataset collected by [2]. We also discuss the

relationship between TFA and closely related approaches includ-

ing Topographic Latent Source Analysis (TLSA; [1]), Principal

Component Analysis (PCA; [3]) and Independent Component

Analysis (ICA [4,5]). We note that TFA can be cast as a special

case of TLSA whereby each brain image is treated as independent.

We discuss how the efficient algorithm we use to fit TFA to large

fMRI datasets may be applied to TLSA via a straightforward

modification. Finally, we discuss how TFA may be incorporated

into models that seek to leverage both neural and behavioral data

to gain insights into cognition.

Topographic Factor Analysis (TFA)

TFA assumes that fMRI images reflect the activities of a finite

number of sources distributed throughout the brain (Figure 2).

(This is a simplifying assumption, of course, but is useful for

uncovering hidden structures in brain activity data.) Intuitively, a

source could reflect a particular brain structure, or a set of nearby

brain structures behaving similarly or carrying out similar

computations during an experiment. Each source in TFA is

formally defined by a set of parameters of a spatial function. In
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principle, we may choose any family of spatial functions that

describes the sources’ shapes (see Discussion). To simplify the

presentation, sources in our implementation will be specified as

sets of parameters of Gaussian radial basis functions (RBFs). If an

RBF has center m and (log) width l, then its activation RBF(rDm,l)
at location r is given by:

RBF(rDm,l)~exp {
DDr{mDD2

exp lð Þ

� �
: ð1Þ

Thus, each source may be specified using a center parameter m
and width parameter l. When defined in this way, the sources

TFA finds will look ‘‘spherical’’ meaning that they decrease their

activation with increasing distance from the source’s center

(Figure 2). A source’s width roughly corresponds to a sphere’s

radius, in the sense that the width parameter determines how

gradually activation falls off with distance from the source’s center.

This parameterization allows us to easily interpret each source as a

structure or set of structures located roughly at the source’s center,

with size roughly proportional to the source’s width. The images

are then represented as a noisy weighted combination of the

sources.

Given these assumptions and a set of brain images, our objective

is to compute a conditional distribution over the sources (which

are shared across the set) and per-image source weights. This

posterior distribution will place its mass on the sources and weights

that best explain the data. For example, Figure 1B shows the

source locations, widths, and weights assigned the highest posterior

probability for the brain images in Figure 1A. In general, we use

the posterior to calculate interesting patterns in the data, such as

the locations and sizes of the structures that vary their activation

patterns during an experiment, and the interactions between those

structures. The remainder of this section provides a formal

definition of TFA and gives our efficient algorithm for estimating

the posterior distribution from large datasets of brain images.

1.1 The TFA Model
Let N be the number of observed brain images, K be the

number of sources whose parameters we wish to infer, and V be

the number of voxels in each D-dimensional brain image (for

standard fMRI images, D~3). TFA comprises the variables

summarized in Table 1 (all are real-valued scalars, unless

otherwise specified). Note that the only observed variables are

the voxel activations yn,v. All the other variables are latent

variables, whose conditional distributions are to be estimated from

the data.

TFA defines a joint distribution over the data and latent

(unobserved) variables p(Y,W,M,LDp), where

p~fs2
y,mw,kw,c,km,ml,klg is a set of fixed hyperparameters that

specify a prior over the distribution of the latent variables (Table 2).

To simplify the notation, we suppress the dependence on the

hyperparameters from here on.

To specify the joint distribution, Figure 3 displays the graphical

model for TFA. This graph depicts how the joint distribution

factorizes into a product of conditional distributions,

p(Y,W,M,L)~p(YDW,M,L)p(W)p(M)p(L), ð2Þ

where each node (circle) in the figure represents a variable.

Unshaded nodes are hidden variables: wn,k (the weight of the kth

source in the nth image), mk (the center of the kth source), and lk

(the width of the kth source). Shaded nodes are observed variables

(yn,v is the activation of voxel v in image n). Dots denote the fixed

hyperparameters. Arrows denote conditional dependence, origi-

nating at terms that appear on the right sides of conditionals and

pointing towards terms that appear on the left sides. Rectangular

plates denote repeated structure, where the number of copies is

indicated within each plate (e.g., N, V , or K ). For a comprehen-

sive introduction to graphical models see [6].

We complete the specification of the joint distribution by

identifying each factor. The data-generating distribution is

Figure 1. Inferring the hidden structure underlying a set of brain images. A. Sample image. A set of coronal slices from a single participant.
As indicated by the color bar, high activations (in standard deviation units) are shown in red and low activations are shown in blue. B. After applying
TFA to the full fMRI dataset, we uncover a set of sources, outlined in black. The coloring in this panel reflects the source weights that best explain the
example image shown in Panel A (the same color scale is used in both panels). The sources are also outlined in Panel A, to facilitate comparison. C.
TFA also reveals interactions between the sources. In this example brain network, inferred from the same participant’s data, each source is
represented as a dark gray sphere (whose radius reflects the source’s width), and interactions between the sources are represented by lines. The line
thicknesses reflect the strengths of the interactions, where excitatory (positive) connections are shown in red and inhibitory (negative) connections
are shown in blue. (To facilitate viewing, we have removed the weakest 60% of the source interactions.) This panel was created using BrainNet viewer
[24]. Movie S1 displays a rotating view of the network.
doi:10.1371/journal.pone.0094914.g001
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p(YDW,M,L)~ P
N

n~1
P
V

v~1
N yn,vD

XK

k~1

wn,kfv(mk,lk),s2
y

 !
: ð3Þ

The distributions of the source weights, centers, and widths

respectively are

p(W)~ P
N

n~1
P
K

k~1
N wn,k Dmw,exp(kw){1
� �

, ð4Þ

p(M)~ P
K

k~1
N mk Dmm,exp(km){1
� �

, and ð5Þ

p(L)~ P
K

k~1
N lkDml,exp(kl){1
� �

: ð6Þ

The factorization of the TFA joint distribution also determines

its corresponding generative process, i.e., the probabilistic process that

TFA assumes generated the data. This process is described in

Algorithm 1 (Table 3) which, if implemented, would produce brain

images from a TFA model. Specifically, each run generates a

single sample from TFA’s joint distribution, yielding one value for

each hidden variable and a set of N V -voxel brain images. One

perspective on the conditional distribution of hidden variables

given the data is that it ‘‘reverses’’ the generative process, finding

the distribution of hidden structure that likely produced the

observed data. For example, the generative process posits that

source locations are drawn from a Multivariate Gaussian (prior)

distribution centered on the brain. The goal of posterior inference

is to determine which specific sources were most likely sampled

from this prior, given the observed brain images.

1.2 Computation with TFA
Given data, the main computational goal for TFA is to estimate

the posterior distribution of the hidden variables, p(W,M,LDY).

In theory we could compute this posterior using Bayes’ rule

(e.g., [7]):

p(W,M,LDY)~
p(Y,W,M,L)

p(Y)
, where ð7Þ

p(Y)~

ð
W

ð
M

ð
L

p(Y,W,M,L)dLdMdW: ð8Þ

Figure 2. Decomposing a brain image into a weighted combination of sources. A coronal slice from an example brain image is shown on
the left. TFA approximates the image as a weighted sum of source images. The approximation (reconstruction) is shown in the middle panel, and
several of the (weighted) source images are shown on the right. The color scale is the same as for Figure 1.
doi:10.1371/journal.pone.0094914.g002

Table 1. Variables in TFA.

Variable Description

yn,v Voxel v’s activation in the nth image. We use yn to refer to the V -dimensional vector of voxel activations in image n. Let Y denote
the full set of images, y1:::N .

wn,k The activation of the kth source in image n. We use wn to refer to the K-dimensional vector of source activations in image n. Let
W denote the full set of source activation (weight) vectors, w1:::N .

mk[RD The center of the kth source (mk,d is the coordinate in the dth dimension). Let M denote the full set of source centers, m1:::K .

lk The width of the kth source. Let L denote the full set of source widths, l1:::K .

fv(m,l) The basis image, specified by center m and width l, evaluated at the location of voxel v. We use F to refer to the K by V matrix of
(unweighted) basis images, specified by m1:::K ,l1:::K , where the kth row corresponds to the basis images for the kth source.

doi:10.1371/journal.pone.0094914.t001

Topographic Factor Analysis

PLOS ONE | www.plosone.org 3 May 2014 | Volume 9 | Issue 5 | e94914



However, as for many interesting models, computing p(Y) is

intractable because it requires integrating over all possible

combinations of values that the hidden variables could take on.

(This is both analytically difficult and computationally intractable.)

Thus, we must develop a method to approximate the posterior.

Here we develop a method based on a general approach called

variational inference [8].

The idea is that we will define a second probability distribution,

q(W,M,LDa), over the hidden variables in TFA. The set of

parameters a are called variational parameters (Table 4), which

govern each factor of q(W,M,LDa), as described in Equations 9

and 10 (below):

a~ ~mmw1:::N,1:::K
,~kkw1:::N,1:::K

,~mmm1:::K
,~kkm1:::K

,~mml1:::K
,~kkl1:::K

n o
: ð9Þ

We will construct q(W,M,LDa) to factorize in a way that allows

for straightforward computations. Specifically, we will treat every

variable in q(W,M,LDa) as independent (this is called the mean field

assumption; [8]):

q(W,M,LDa)~ P
K

k~1
P
N

n~1
q wn,k D~mmwn,k

,~kkwn,k

� �� 	

q mk D~mmmk
,~kkmk

� �
q lk D~mmlk

,~kklk

� �
:

ð10Þ

In our implementation, q(W,M,LDa) is a product of (indepen-

dent) Gaussians, where each hidden variable in the model is

associated with one of those Gaussians. We tune the parameters in

a [which govern the means and (co)variances of each factor of q]

to find a local minimum of the Kullback-Leibler (KL) divergence

between q(W,M,LDa) and the posterior distribution over the

hidden variables given the data, p(W,M,LDY):

a�~ argmin
a

KL(q(W,M,LDa)DDp(W,M,LDY)), where ð11Þ

KL(q(W,M,LDa)DDp(W,M,LDY))~ q log
q(W,M,LDa)

p(W,M,LDY)

� 	
: ð12Þ

We noted above that computing the posterior directly (Equation

8) is intractable, and so it seems counterintuitive that we should be

able to nonetheless compute the KL divergence between

q(W,M,LDa) and p(W,M,LDY). The trick is to instead perform

the optimization with respect to a on the Evidence Lower BOund

(ELBO), which is equal to the negative KL divergence up to an

additive constant [9]:

L(a)~{KL(q(W,M,LDa)DDp(W,M,LDY))zp(Y)

~ q½log p(Y,W,M,L){ log q(W,M,LDa)�:
ð13Þ

This casts the posterior inference problem as an optimization

problem. Because the ELBO and KL divergence are inversely

proportional, a local maximum in the ELBO corresponds to a

local minimum in the KL divergence [9]. We proceed by

Table 2. Hyperparameters.

Parameter Description Value

s2
y

Voxel noise parameter 0.1

mw Mean of source weight distribution 0

kw Log precision of source weight distribution
log (

1

2
)

c Mean of distribution over source centers Center of brain image; computed from dataset

km Diagonal of log precision of source center distribution
log (

1

10s2
m

), where s2
m contains the variances

across voxel coordinates along each dimension

ml Mean of distribution over source widths 1

kl Log precision of distribution over source widths
log (

1

3
)

doi:10.1371/journal.pone.0094914.t002

Figure 3. Topographic Factor Analysis. A pattern of V voxel
activations is observed during each of N trials (yn,v). Each of K shared
sources are defined by their centers (mk) and widths (lk). The voxel
activations arise due to the sources being activated to varying amounts
during each trial, as specified by wn,k . Shaded nodes indicate observed
variables, unshaded nodes indicate hidden variables, and dots indicate
hyperparameters.
doi:10.1371/journal.pone.0094914.g003
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specifying the hyperparameters (prior), initializing the variational

parameters (described below), and then iteratively adjusting each

parameter in turn. When this inference procedure has converged,

we can use the variational distribution q(W,M,LDa) as an

approximation of the posterior distribution p(W,M,LDY).

1.3 Setting the Prior
The set of hyperparameters, p, may be adjusted to reflect the

properties of the data. We have found the hyperparameter values

summarized in Table 2 to work well for several fMRI datasets we

examined. To allow the model sufficient flexibility to fit the data,

we suggest keeping the prior distribution broad (i.e., by setting the

log precision parameters to take on small values, as we have done).

When we run the posterior inference procedure, we hold the

hyperparameters fixed and update the variational parameters.

The hidden variables in TFA govern the N|K per-image

source weights (w1:::N,1:::K ) and the K source centers (m1:::K ) and

widths (l1:::K ). Each of these variables corresponds to a factor of

the variational distribution q(W,M,LDa), and each factor of

q(W,M,LDa) is parameterized by a set of mean and log precision

parameters, contained in a (Equation 10). Each factor of

q(W,M,LDa) is Gaussian, so the mean of each factor reflects the

mean (and expected value) of the corresponding variable, and the

log precision of each factor reflects the uncertainty about that

variable.

Whereas Gaussian distributions are typically parameterized via

mean and variance parameters, we chose to parameterize the

Gaussian distributions in TFA using mean and log precision

parameters. The intuition driving this design decision is that log

precisions have support over the reals, whereas variances have

support only over the positive reals. Each update pushes the

parameters towards a local optimum. However, because our

inference procedure (Section 1.5) is based on stochastic optimiza-

tion [10], any given update may not increase the objective.

Utilizing parameters that do not have range restrictions avoids

parameter drift into undefined regions of parameter space [11].

(This is also why we parameterize each source’s RBF with its log

width, rather than specifying the width directly.).

1.4 Initializing the Variational Parameters
We initialize the log precisions of each factor of q(W,M,LDa) as

follows:

N Log precisions of distributions over source weights:

~kkw1:::N,1:::K
~ log (10).

N Log precisions of distributions over source centers:

~kkm1:::K
~ log

100

s2
m

 !
(see Table 2).

N Log precisions of distributions over source widths: ~kkl1:::K
~1.

Table 3. Algorithm 1: TFA’s generative process.

for k = 1 to K do

Pick source location mk*N c, exp km

� �{1
I D

� �
, where c is the center of the brain;

Pick source width lk*N ml, exp klð Þ{1
� �

;

end

for n = 1 to N do

Pick source weights wn,k*N mw, exp kwð Þ{1
� �

;

Pick voxel activation yn,v*N
PK

k~1 wn,kfv mk ,lkð Þ, s2
y

� �
;

end

Note that we parameterize the variances of the Gaussian distributions using log precision parameters (equal to the log of the inverse of the variance). The log precision
parameterization is equivalent to the more commonly used variance parameterization, and facilitates our approximate inference algorithm (Section 1.5).
doi:10.1371/journal.pone.0094914.t003

Table 4. Variational parameters.

Parameter Description

~mmwn,k
Mean of distribution over source k’s weight in image n

~kkwn,k
Log precision of distribution over source k’s weight in image n

~mmmk
Mean of distribution over source k’s center

~kkmk
Diagonal of log precision of distribution over source k’s center

~mmlk
Mean of distribution over source k’s width

~kklk
Log precision of distribution over source k’s width

doi:10.1371/journal.pone.0094914.t004
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The variational objective in Equation 13 has many local

optima, and practical applications of variational inference must

address this issue. Typically this is done in one of two ways. The

simplest is to run several random restarts of the algorithm from

randomized initial parameters. A more complex, but often more

effective, approach is to design domain-specific techniques to

initialize the variational parameters that start the algorithm in a

place that tends to lead it to good local optima. For TFA, we

explored both approaches.

To randomly initialize the means of each factor of q(W,M,LDa),
we simply draw these parameters from their associated prior

distributions by running the generative process (Algorithm 1,

Table 3) a single time. We describe a domain-specific initialization

technique, termed hotspot initialization in the next sub-section.

1.4.1 Hotspot initialization. Hotspot initialization places

and sizes sources using the areas of very high and low activation,

termed hotspots, in the mean image (where the mean is taken across

observations in the dataset). We illustrate how this process works in

Figure 4. After computing the mean image (Figure 4A), we center

it by subtracting the mean activation, and then ‘‘fold’’ the image

by taking the absolute values of all of the activations. The result is

a set of non-negative activations, where both the highest and

lowest activations in the original mean image appear as peaks in

the centered and folded image (Figure 4B). Using this folded

image, we place the mean of each source center distribution

(~mmm1:::K
), one at a time, at the locations of these peaks (i.e., hotspots).

After placing each source’s center, we adjust the mean of its width

distribution (~mml1:::K
) using convex optimization (Figure 4C). Specif-

ically, we find

~mm�lk
~ argmin

~mmlk

XV

v~1

(av{bv(~mmlk
))2, ð14Þ

where av is the activation of voxel v in the folded image, and

bv(~mmlk
) is the activation of voxel v in the source image (i.e., RBF)

constructed using mean ~mmmk
and width ~mmlk

. We next create a

source image by evaluating the activation of the source (given the

center and width parameters) at the location of each voxel in the

brain image. We subtract the source image from the brain image;

the resulting residual image contains the brain activations that are

left unexplained by the source. We then fit the next source’s

location and width using the residual image (Figure 4D). This

process of fitting sources to the residual brain images continues

until K sources (with K specified in advance) are placed

(Figure 4E).

Initializing the K source centers and widths as described above

gives us a point estimate of the source image matrix F. To obtain

F, we simply fill in each row, k[f1:::Kg, by evaluating a radial

basis function (whose parameters are the kth source’s center and

width) at the location of each voxel. Although this point estimate of

F was obtained using only the mean brain image, we can use it to

initialize the per-image source weights for all of the brain images.

To initialize the source weights, we can leverage the fact that TFA

casts voxel activations as draws from Gaussian distributions whose

means are linear combinations of RBF sources (see Algorithm 1,

Table 3). In expectation, the nth vector of voxel activations is given

by

yn~ q wn½ � q½F�: ð15Þ

We know Y (i.e., the set of N observed brain images), and we

can approximate q½F� using our point estimate of F. Therefore

we can solve for the source weight matrix W:

W~YF{1: ð16Þ

We then initialize ~mmw1:::N,1:::K
using the corresponding entries of

W. Note that although we obtain the point estimate of F using

only the mean image, the per-image weights are initialized using

the full set of images.

The hotspot-initialized parameter values often provide a good

fit to the original brain images (e.g., compare Figures 4A and 4F).

However, because the estimated source centers and widths take

only the mean brain image into account (rather than the individual

images), important information may be missed by the initialization

procedure. We next describe how we tune the variational

parameters, a, to best explain the full set of observed brain images.

1.5 Optimizing the Variational Objective
Our goal is to adjust the variational parameters to maximize the

ELBO (Equation 13), thereby minimizing the KL divergence

between the variational approximation q(W,M,LDa) and the

posterior distribution p(W,M,LDY). We use the stochastic

optimization procedure described by [12] to maximize the ELBO.

Specifically, with each update we approximate the ELBO by

drawing M samples, j1:::M , from q(W,M,LDa):

L(a)&
1

M

XM
m~1

log p(jm,Y){ log q(jmDa): ð17Þ

Note that as M?? the approximation becomes exact. Each

sample from q(W,M,LDa) contains NK source weights (one weight

per source, per image), K source centers, and K source widths. We

use stochastic gradient ascent to find a local maximum of the

ELBO by repeatedly sampling from q(W,M,LDa), computing the

gradient of the ELBO with respect to a, and updating a by taking

a small step in the direction of the gradient.

The gradient of the ELBO with respect to the ith variational

parameter, ai, may be estimated as follows [12]:

+ai
L(a)

&
1

M

XM
m~1

+ai
log q(jmDai)( log p(jm,Y){ log q(jmDai)):

ð18Þ

The gradients of log q(W,M,LDa) with respect to each element

of a may be found in Materials S1.

As shown by [12], the expectations of these estimates of +ai
L(a)

are the true gradients. However, because the estimates are

obtained by drawing random samples from q(W,M,LDa), any

given estimate will vary from the true gradient. We can use

mathematical constructs called control variates to reduce the

variance of the estimates of each +ai
L(a) while simultaneously

ensuring that the expectations of the estimates are equal to the true

gradients (for a more detailed explanation and derivation, see

[12]):

Topographic Factor Analysis
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b�i ~

PJi
j~1 Cov g

j
i ,h

j
i

� �
PJi

j~1 Var h
j
i

� � , where ð19Þ

gi~+ai
L(a) ð20Þ

hi~+ai
q(jmDai): ð21Þ

Here the superscript js denote the jth dimension of the

corresponding vectors. As outlined in Algorithm 2 (Table 5), we

subtract b�i hi from the estimate of +ai
L(a) to obtain a new, more

reliable, estimate of the gradient.

Finally, for each iteration of the inference procedure (whereby

we update all parameters in a), we assign a per-parameter learning

rate, ri
t, to each parameter in a using an adaptive subgradient

method [12,13]. This learning rate changes with each iteration; in

the tth iteration the learning rate for ai is:

ri
t~

cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
j~1 +aij

L(a)

� �2
s , ð22Þ

where we set c~0:1 in our implementation, and where +aij
L(a) is

the estimate of +ai
L(a) in the jth iteration. This learning rate is

multiplied by the gradient prior to updating each parameter in the

direction of its gradient. In other words, it scales the size of the

steps the inference procedure takes.

Our complete inference procedure is outlined in Algorithm 2

(Table 5). Note that each iteration of the outer for loop (over each

element of a0) does not depend on the updates performed in the

other iterations. Therefore, if one has access to a cluster of

compute nodes with shared access to a common filesystem, one

may perform these length(a0) updates in parallel, thereby

substantially speeding up the computation.

1.6 Subsampling
Each iteration of the inference algorithm (Algorithm 2, Table 5)

requires updating each of the Nz2K sets of variational

parameters contained in a. Further, updating each of the 2K sets

of global parameters (governing the source centers and widths)

Figure 4. Initializing source centers, widths, and weights. Here we illustrate the initialization procedure for a synthetic 2-dimensional example
image. A. The original mean image. The mean is taken across observations in the dataset. B. The centered and folded mean image. This
image was generated by subtracting the mean and taking the absolute value of the image in Panel A. Note that Panels B - E use a different color scale
than Panel A and F, as shown by the color bars. C. Fitting the first source. We begin by placing the first source’s center at the location at which the
folded image displays maximal activation. We then adjust the source’s width using convex optimization. The white level curve, which indicates the
locations at which the source’s value is 0.1, is used to illustrate the fitted source’s width. D. Fitting subsequent sources. Subsequent sources are fit
using the same procedure, but on the residual image (after previous sources have been subtracted off). Here, the source localized and sized using the
original image has been subtracted off, leaving a ‘‘hole’’ in the image. The next hotspot appears at a different location, as shown by the newly placed
white level curve. E. The full procedure. The process of iteratively fitting sources to the residual images continues until K~10 sources are placed.
Note that the original synthetic image was constructed using 25 sources, and thus some regions of the image are not explained by the fitted sources.
F. The reconstructed image. The source weights are estimated using linear regression. This panel uses the same color scale as Panel A.
doi:10.1371/journal.pone.0094914.g004
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requires performing computations on the full set of N images. For

each of these updates, we must also examine the full set of V

voxels that the images comprise.

Considering the full dataset with each update seems inefficient.

For example, suppose that we were to consider only NsubvN of

the images contained in our dataset. We might still be able to

improve our estimates of the source centers and widths, even

though we had not seen every image. Similarly, even if we

considered VsubvV of the voxels in the images (rather than all V

of the voxels), we might nonetheless be able to gain some insights

into the hidden variables. We can use a technique called stochastic

variational inference [14] to leverage these intuitions, thereby

substantially reducing the number of calculations we need to

perform during each update. Specifically, we can perform image-

level subsampling and voxel-level subsampling as described below.

Subsampling allows us to apply our inference procedure to the

large datasets prevalent in neuroscientific research using com-

monly available computing hardware in a reasonable amount of

time.

1.6.1 Image-level subsampling. We implement image-level

subsampling by selecting a new subset of Nsub unique images to be

considered during each iteration of the while loop in Algorithm 2

(Table 5). Note that the same Nsub images must be used to update

all of the parameters during a given iteration of the while loop.

Also note that we will not be able to gain any insights into the local

parameters (i.e., the per-image source weights) associated with the

N{Nsub remaining images, so updates will not be performed for

those local parameters. We will need to adjust how we update the

remaining parameters (via the gradient of the ELBO; Equation 18)

to account for the fact that we are not considering all of the images

available to us. The affected terms that must be modified include

log p(jm,Y), log q(jmDai), and +ai
log q(jmDai) (see Materials S1

for details on computing these terms, which are used in Algorithm

2 in Table 5. We found Nsub~10 to provide a good balance

between speed (which is maximized by reducing Nsub) and

accuracy (which is maximized by increasing Nsub).

1.6.2 Voxel-level subsampling. We implement voxel-level

subsampling by randomly selecting a new subset of Vsub adjacent

(contiguous) voxels to be considered during each iteration of the

while loop in Algorithm 2 (Table 5). As for image-level

subsampling, it is important that the same voxels be used to

update all of the parameters during a given iteration of the while

Table 5. Algorithm 2: Variational inference procedure for TFA.

Input : A set of N images, Y; a specified number of sources, K; and a set of hyperparameters, p

Output: A set of fitted parameters, a

t r 0;

maxStepSize r 1;

/0:01;

a r initializeParameters(Y, p);

L r length(a);

g r zeros(L);

M r 500;

while not DONE do

t r t +1;

a0 r a;

j r sampleFromQ(M, a0, p, i);

for i r 1 to L do

ri
t/

c

gi

;

for m r 1 to M do

gm/+a0i
logq jm Da0i
ð Þ logp jm,Yð Þ{logq jm Da0 i

� �� �
;

hm/+a0i
logq jm Da0i
ð Þ;

end

b�i /
PJi

j~1
Cov g

j

i
,h

j

ið ÞPJi

j~1
Var h

j
ið Þ

;

+a0i
L að Þ/ 1

M

PM
m~1 gm{b�i hm ;

di/max min r+a0i
L að Þ,maxStepSize

� �
,{maxStepSize

� �
;

ai/a0i
zdi ;

gi/giz +a0i
L að Þ

� �2

;

end

DONE/ argmax
i

dið Þ
� �

vE;

end

doi:10.1371/journal.pone.0094914.t005
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loop. Voxel-level subsampling affects only the computation of the

log p(YDW,M,L) factor of log p(W,M,L,Y), which reflects the

likelihood of the observed images given the hidden variables

(Equation 3). Because this term sums over V voxels, we must

account for the fact that we are considering only Vsub voxels by

scaling by
V

Vsub

. (This ensures that the stochastic gradient remains

unbiased.) We found Vsub~5,000 to provide a good balance

between speed and accuracy. (The images in the datasets we

examined contained on the order of 30,000 voxels.).

1.7 The Final Update
During the last iteration of the while loop in Algorithm 2 in

Table 5 (i.e., when the ELBO has reached a local optimum), we

need to account for the fact that, because we drew a random

subset of images with each update, the inference procedure may

not have considered every image. If so, the local variables (per-

image source weights) associated with the left-out images will not

have been updated from their initialized values. To ensure that all

of the per-image source weights converge to local optima, we set

Nsub~N and maxStepSize~?, fix all of the global parameters,

and re-run the inference procedure until all of the local parameters

converge. Note that although we cannot use image-level subsam-

pling to fit the full set of per-image source weights (since each

image must be considered in order to determine its associated

source weights), image-level subsampling allows the inference

procedure to converge more rapidly on the global parameter

estimates (i.e., the source centers and widths).

1.8 A Useful Approximation for Updating the Source
Weights

We found that when we initialized the per-image source weights

as described in Section 1.4.1 (i.e., when we solved for the most

likely weights using linear regression; Equation 16), the source

weight estimates were nearly always initialized to a local optimum.

We determined this empirically by first computing the ELBO

given the expectations of the initialized parameters (Equation 13).

We then took independent draws from N (0,0:01), added those

draws to each entry of the weight matrix W, and re-computed the

ELBO given those new weights. We repeated this procedure 100

times (each time resetting the weights to their initialized values

before adding the random noise) and found that the ELBO

decreased in every case, implying that the initialized values

reflected a local maximum. (In contrast, the source centers and

widths were not typically initialized to local optima, probably

because the initialization procedure for the source centers and

widths considers only the mean image rather than each individual

image.) We leveraged this finding to substantially improve our

algorithm’s convergence properties by re-initializing the weights

after updating any of the source centers or widths. Continually

updating the source weights in this way also appeared to reduce

the likelihood of the inference procedure getting stuck in poor local

optima.

Results

Our objective in fitting TFA to a set of brain images is to

discover the hidden structure underlying those images. In

particular, we wish to identify the locations and sizes of sources

(which reflect one or more brain structures or substructures), the

per-image source weights (which reflect the degree to which each

source is activated in each image), and the correlations between

source weights across images (which we interpret as reflecting the

extent to which the sources interact). In this way, we can use the

structure that TFA uncovers to help make sense of complex fMRI

datasets.

TFA casts brain images as weighted sums of spatial sources. In

Section 1.2 we described how to apply TFA to a dataset by

approximating the posterior distribution over the source centers,

widths, and weights, given an fMRI dataset. We sought to both

evaluate the quality of this posterior and to use the posterior to

gain insights into an fMRI dataset.

We applied TFA to an fMRI dataset collected by [2]. The

dataset comprises data from 9 participants who each viewed 6

presentations of each of 60 line drawings, for a total of 360

viewings (each with an associated brain image). The drawing

presentations were organized into 6 epochs, where all 60 drawings

were presented in a random order during each epoch. The

participants were instructed to think about the meaning of the

word associated with each drawing as they viewed it. The

drawings were selected from 12 categories: animals, body parts,

buildings, building parts, clothing, furniture, insects, kitchen items,

man made objects, tools, vegetables, and vehicles.

2.1 Visual Inspection of the Reconstructed Images
Figure 1A displays coronal slices from a single brain image,

taken from one participant as they viewed the word ‘‘refrigerator.’’

Figure 1B displays a reconstructed version of the same image

under TFA’s posterior (using K~10 sources). To make the

reconstructed image, we computed the source centers, widths, and

weights that were assigned the highest posterior probability after

applying TFA to the participant’s data. We used these source

centers and widths to construct a source image matrix, Fposterior,

and computed a weighted sum of the rows of Fposterior to

reconstruct each brain image in the dataset. The black curves

overlaid on the brain slices denote the contours of the 10 source

images. (Note that not all sources appear in each slice.).

Comparing the images in the original dataset with their

associated reconstructions can tell us about the qualitative aspects

of the data that TFA fits well, and also about the aspects of the

data that TFA does not fit well. The reconstructed image shown in

Figure 1B looks qualitatively similar to the corresponding original

image in Figure 1A, indicating that the inference procedure has

converged to a reasonable local optimum. Comparing the images

visually reveals that the reconstruction has maintained the low

spatial frequency information, but not the high frequency

information, in the original image. For example, the dorsal (top)

edges of slices 3–8 in the original brain image (Figure 1A) display

large contiguous patches of high activation (red). These patches

also appear in the reconstructed image (Figure 1B). However,

whereas these high activation patches are also visible in slices 1

and 2 of the reconstructed image, they are not visible in slices 1 or

2 of the original image. This is because the sources used to explain

these patches, being spherical, extend some of their mass into slices

1 and 2, whereas the patches in the original image are irregularly

shaped. TFA’s ability to fit high spatial frequency information

within a given dataset is constrained by the shapes of the sources

and the number of sources we wish to fit (Figure 5).

2.2 Explaining and Predicting the Data Covariance Matrix
In addition to examining the quality of individual image

reconstructions, we may also wish to know the extent to which

TFA preserves the covariance structure across all of a participant’s

images. As shown in Figure 6A, we computed the observed across-

image covariance matrix for one participant and compared it to

the TFA-estimated across-image covariance matrix (using K~60
sources). Each dot in the figure reflects a single entry in one of

these N by N covariance matrices (correlation between entries in
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the observed and estimated covariance matrices: r~

0:78,pv10{5).

Because each source in TFA is a spatial function, once we know

the parameters for each source (by applying TFA to an fMRI

dataset) we can evaluate those functions at any location in space,

including locations that were not included in the training set. This

is useful, for example, if we wish to correct corrupted voxels in a

given image or compare images taken at different sampling

resolutions. We used a cross validation procedure to assess the

extent to which the predicted activations for held-out voxels

preserved the covariance structure of the true activation patterns

of those voxels. This procedure provides insights into how well

TFA’s reconstructions generalize to new observations. We

repeated the procedure for a range of values of K (number of

sources), which also tells us about the number of sources we should

fit to the dataset.

We ran the cross validation procedure separately for each

participant. We began by assigning each image to one of six folds,

such that each fold contained exactly one presentation of each

word (i.e., Ntest~60 images). For each fold, we estimated K source

centers and widths by applying TFA to the out-of-fold images.

Next, we randomly assigned voxels to each of two equally sized

groups. We fit the source weights using the in-group voxels from

the in-fold images. We computed the expected activations of the

out-of-group voxels in the in-fold images, and computed the

across-image covariance matrix of those estimated activations. We

then compared the observed and estimated across-image

zcovariance matrices (for the out-of-group voxels in the in-fold

images). We repeated this procedure 12 times (once for each image

fold and voxel group) to obtain a distribution of correlation

coefficients for each value of K , for each participant.

As shown in Figure 6B, TFA achieved a peak (median)

predictive correlation of 0.45, using 60 sources. This indicates

that fewer than 60 sources do not sufficiently capture the complex

underlying spatial structure of the brain images. When we used

more than 60 sources, the model failed to generalize as well to new

data, suggesting that TFA was overfitting the training data. In this

way, cross validation may be used to determine the ideal number

of sources for a given dataset. Further, the analysis shows that the

image representations of held-out data, estimated using TFA,

accurately reflect the covariance structure of the original images

(i.e., the correlations are substantially greater than 0 as the

numbers of sources used to fit the model vary over a wide range).

2.3 Category-specific Brain Networks
The above analyses indicate that TFA yields good fits to fMRI

images (e.g., compared via visual inspection) and reliably estimates

the covariance structure of held out data. We next sought to use

TFA as an exploratory tool for finding interesting patterns in the

fMRI data.

FMRI investigations have traditionally searched for univariate

[15–17] and multivariate [18] differences in brain activations

across conditions in an experiment. Over the past several years,

neuroscientists have also become increasingly interested in

Figure 5. Sample reconstructions using different numbers of sources. A coronal slice from one participant’s brain image is displayed on the
left. Moving from left to right, each coronal slice displays the associated TFA reconstruction using the indicated number of sources. The color scale for
all panels is the same as for Figure 1.
doi:10.1371/journal.pone.0094914.g005

Figure 6. Predicting the covariance structure of an fMRI dataset. A. Each dot reflects the covariance between a pair of images from a single
participant (x-axis: observed, y-axis: estimated) using K~60 sources. The correlation reported in the panel is between entries in the two covariance
matrices. B. We also used TFA to estimate the covariance structure of held-out data, using a 6-fold cross validation procedure. The panel displays the
median correlations (+ bootstrap-estimated 95% confidence intervals) between the observed and estimated covariance matrices (of held out data),
as a function of the number of sources we fit. The medians are taken across the 6 folds and 9 participants, and the error bars reflect across-participant
variability.
doi:10.1371/journal.pone.0094914.g006
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measuring functional connections between brain structures

[19,20]. So called network connectivity analyses typically use the

voxel-by-voxel covariance matrix (taken across images) to infer the

strengths of connections between those voxels. However, comput-

ing such matrices entails a substantial computational burden. For

example, the covariance matrix of a 50,000 voxel brain image

contains 2.5 million entries, and occupies nearly 20 GB of

memory (using double precision). Manipulating many such

covariance matrices or performing post hoc analyses, such as

regressions, that require O(n2) memory can become unwieldy on

modern hardware. Consequently, researchers interested in brain

connectivity often focus on a set of preselected regions of interest.

TFA provides an alternative means of examining brain

networks that does not require preselecting regions of interest.

Applying TFA to a dataset yields a set of K sources (with K

selected in advance by the practitioner, e.g., using cross validation

as in Figure 6), each corresponding to a specific brain region or set

of regions. Importantly, these sources are determined solely from

the data and may be located anywhere in (or around) the brain.

[Note that sources need not be located solely in grey matter– they

may be located in white matter, cerebrospinal fluid, or outside of

the brain. For example, a patch of brain activation near the

cortical surface might be well explained by a source placed in the

center of that patch (e.g., in gray matter), or it could be well

explained by a sufficiently wide source placed outside of the brain,

but near the patch. One should therefore interpret a source as

reflecting the activities of brain structures over which it spreads its

mass rather than as a single point.].

The across-image covariance of the weight matrix W specifies

how similarly or differently each source behaves from image to

image. We can use the covariance of W to estimate the signs and

strengths of the interactions between each pair of sources, just as

standard connectivity analyses use image covariance matrices to

estimate interactions between pairs of voxels [20]. In this way, the

covariance of the weight matrix provides a compact representation

of the full brain connectivity matrix that may be easily interpreted,

viewed, and manipulated.

As a proof of concept, we provide one example of an

exploratory analysis that may be performed using these inferred

brain networks in Figure 7. Each panel of the figure reflects the

inferred brain network from one participant’s data as they viewed

words from the indicated categories. We show networks derived

using K~10 sources in the figure to facilitate visualization, but for

the analyses that follow we used K~60 sources (chosen using the

cross validation procedure described above and depicted in

Figure 6B). After applying TFA to the participant’s data, we

computed the covariance of the source weight matrix across

presentations of words within each category to infer the source

interactions.

We performed a split-half analysis to assess the reliability of the

category-specific networks we inferred, as follows. After applying

TFA with 60 sources to each participant’s data, we divided the

data into odd epochs (i.e., the first, third, and fifth set of

presentations of the 60 drawings) and even epochs (i.e., the second,

fourth, and sixth set of presentations). We then computed the

covariance of the corresponding epochs’ rows of W to infer each

participant’s category-specific networks, for both the odd and even

epochs. This yielded two inferred networks per category.

We computed a confusion matrix containing, for each pair of

categories, the correlations between the off-diagonal entries of

each category’s covariance matrix (which reflects the interactions

between the sources) from the odd epochs and the off-diagonal

entries of the covariance matrices from the even epochs. The

diagonal entries of the confusion matrix reflected correlations

across runs between networks of the same category, and the off-

diagonal entries reflected correlations between networks of

different categories. We used a permutation test to ask whether

the correlations along the diagonal were reliably stronger than the

off-diagonal correlations. We first took the mean confusion matrix

across participants, and used a t-test to compare its on- and off-

diagonal entries. We then estimated a null distribution of t-values

by repeating the analysis 1,000 times, shuffling the rows of the

confusion matrix each time [21]. The observed across-participant

t-value was larger than 99.33% of the shuffled t-values (i.e.,

p~0:0067), indicating that the networks we inferred for the same

category were reliably more similar (across runs) than the networks

we inferred for different categories.

Discussion

TFA reveals the locations and sizes of sources of brain activity

that underly an fMRI dataset, as well as the interactions between

those sources. TFA identifies these sources by decomposing fMRI

data into weighted sums of spatial functions. Applying TFA to a

dataset yields a conditional distribution over parameters (i.e.,

centers and widths) of each source, and the per-image source

weights given the brain images. The covariance of the source

weights across images provides information about the interactions

between the sources.

We demonstrated that reconstructed images, created by

computing weighted sums of the sources’ images (i.e., the

activations of the sources at the location of each voxel), preserve

the low spatial frequency content of the original images. TFA also

preserves the covariance structure of a dataset across images and

can accurately predict the covariance structure of held-out voxels.

Finally, we demonstrated how TFA may be used to discover

Figure 7. Brain networks underlying category representations. Each panel reflects the inferred brain network from one participant’s data as
they viewed words from the indicated category. (Connections with absolute strengths less than the 80th percentile strength from the ANIMALS network
are omitted for visualization purposes; no thresholding was used in our statistical tests of network reliability.) Movies S2–S5 display rotating views of
these networks.
doi:10.1371/journal.pone.0094914.g007
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networks of sources that reflect thoughts about a specific stimulus

category.

3.1 Relation to Other Techniques
By decomposing fMRI data into weighted combinations of

spatial functions (Figure 2), TFA reveals some aspects of the

structure underlying a dataset. Standard techniques, such as

Principal Component Analysis (PCA; [3]) and Independent

Component Analysis (ICA; [4,5]) are closely related to TFA. For

example, PCA may be used to obtain a set of factors that best

explain the covariance structure of a set of observations, and ICA

may be used to determine a set of distinct features that underly

those observations (Figures 8B, C). Each observation in the

original dataset may then be approximated by a weighted sum of a

subset of those factors.

Factors obtained using PCA and ICA are themselves images of

the same size as the images in the original dataset (i.e., each PCA

and ICA factor is a V -dimensional vector). In contrast, TFA

factors are constrained to have a specified functional form; in our

implementation, each factor was defined by a set of radial basis

function parameters. Constraining TFA’s factors to have a given

functional form substantially reduces the freedom TFA has to

explain the dataset, which in turn reduces the fidelity of the

representations. However, this reduction in reconstruction perfor-

mance buys interpretability: whereas PCA and ICA factors are not

directly interpretable, each TFA factor is easily interpreted

through its set of parameters (e.g., its center and width

parameters). In addition, TFA may be used to predict the

activations of held-out voxels using their locations (e.g., Figure 6),

whereas PCA and ICA cannot.

TFA is also closely related to Topographic Latent Source

Analysis (TLSA; [1]). Like TFA, TLSA also defines each factor via

a set of parameters to a spatial function, and therefore TFA and

TLSA both benefit from having interpretable and resolution-

independent factors. From a matrix factorization perspective, TFA

decomposes a matrix of brain images Y into the product of a

source weight matrix W and a source image matrix F:

Y*N WF,s2
yIV

� �
, or

Y~WFzN 0,s2
yIV

� �
: ð23Þ

TLSA performs an additional decomposition on W:

Y*N XVF,s2
yIV

� �
, or

Y~XVFzN 0,s2
yIV

� �
, ð24Þ

where X is called the experimental design matrix and V is the covariate-

source loading matrix. The N by C experimental design matrix

describes the extent to which each of C covariates of interest were

activated as each image was collected. For example, a given row of

X might correspond to an indicator vector denoting which of

several experimental conditions the image is associated with, or a

vector representation of the word the participant was viewing

while the image was collected. Each column of X reflects a

different covariate, such as a particular category or semantic

feature. The (unobserved) C by K covariate-source loading matrix

V describes how each of the C covariates affects the activations of

each of the K sources (where sources in TLSA are defined as in

TFA). In this way, TLSA builds on the intuition that images

collected during similar experimental conditions (e.g., while the

participant was thinking about the same word) will be similar. The

Figure 8. Factors. A. Sample image. One coronal slice of a single brain image; high activations are shown in red and low activations are shown in
blue. Examples of factors obtained using (B) PCA, (C) ICA, and (D) TFA are shown in the panels. The color scale for all panels is the same as for
Figure 1.
doi:10.1371/journal.pone.0094914.g008

Figure 9. Integrating TFA into behavioral models. We show a
proposed graphical model describing how TFA may be integrated into
behavioral models. The model describes how a participant’s internal
mental state during the nth trial of an experiment (mn) gives rise to the
observed behavioral data (bn) and the observed neural data (yn). These
mental states are drawn from a distribution controlled by a set of global
variables, y. (The hyperparameters are omitted for notational com-
pactness).
doi:10.1371/journal.pone.0094914.g009
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sources that TLSA finds are biased towards brain regions that

exhibit the same covariance structure as X.

When X is equal to the N by N identity matrix, V~W. In this

way, TFA may be considered as a special case of TLSA, where X
is the identity matrix (i.e., each image is treated as independent).

By treating images as independent, TFA is able to uncover

interactions between sources (via the covariance of W). Defining X
to be anything other than the identity matrix (as in the general

formalization of TLSA) forces the source interactions to precisely

mirror X, precluding the identification of interesting interactions

between sources.

3.2 What Other Types of Data could TFA be Applied to?
In principle, TFA may be applied to any spatial dataset–that is,

any dataset whose observations comprise sets of value-location

pairs (e.g., brain images, photographs, video, geolocation data,

motion tracking data, etc.). However, in practice TFA will likely

provide useful information only when the data conform to the

general assumptions underlying TFA’s generative process (Algo-

rithm 1 in Table 3). Specifically, TFA assumes that sources are

shared across observations and contribute to each observation to a

varying degree. Brain data satisfy this assumption especially well:

intuitively, each source reflects the activity of a set of nearby brain

structures or substructures, which remain at the same locations

within the participant’s brain over the course of the experiment.

Examples of spatial data that we expect TFA to perform well on

include:

N Neural recordings [e.g., (functional) Magnetic Resonance

Imaging, intracranial and scalp electroencephalography,

magnetoencephalography, etc.]. The sources will reflect brain

structures and substructures that vary their activation during

the recordings.

N Photographs taken from a fixed location. Sources will reflect

structures that are common from image to image.

N Sensory measurements (e.g., seismic data). Sources will reflect

activity hubs (e.g., hubs of seismic change).

We do not expect TFA to perform well on datasets where the

underlying structure is not held constant (or not measured) across

observations. Examples include:

N Geolocation data (e.g., cloud movement, GPS tracking, etc.).

N Sets of photographs taken from different locations.

N Tracking systems (e.g., radar).

3.3 Extending TFA
TFA makes a number of simplifying assumptions that may be

worth examining further in future work. For example, in our

implementation, each source is an RBF, and each participant and

image is treated independently. Here we propose several ways in

which these simplifications may be relaxed.

3.3.1 Source shapes. As illustrated in Figure 1, contiguous

patches of activation in fMRI images can be irregularly shaped. As

more sources are added, TFA explains high spatial frequency

information in the images with increasing accuracy (Figure 5). (In

the limit, where each voxel has its own source, this is mechanically

true.) However, we might benefit in computational efficiency from

allowing sources to take more complex shapes.

For example, rather than specifying one width parameter per

source (i.e., forcing sources to be spherical), one could specify, for

each source, one width parameter for each dimension (resulting in

ellipsoid sources in 3-dimensional images). This would allow

sources to expand or contract along each dimension to better

explain patches of brain activity. One could also implement

multivariate Gaussian sources, which would result in sources that

would appear as oriented ellipsoids. Further, one could model

each source as a weighted combination of Gaussians by fitting the

parameters of g Gaussians (for each source), and also fitting a set of

g mixing parameters (for each source) describing the relative

activations of each source’s components. As g increased, each

source’s shape would become more complex, allowing TFA to fit

more complex patterns (i.e., patterns at higher spatial resolutions)

with fewer sources. However, these benefits do not come for free:

as the source shapes become more complex, each source becomes

more difficult to interpret and more parameters must be estimated.

3.3.2 Hierarchical extensions. In our implementation, we

applied TFA to each participant’s data individually, which was

sufficient for demonstrating our approach. However, future work

may benefit from a hierarchical implementation of TFA, whereby

each participant’s data are treated as perturbations of a global

template [22]. This would facilitate comparisons across partici-

pants, and would also allow for hypothesis testing on the locations

of specific sources and source interactions. A hierarchical

approach may also allow our inference procedure to find better

local optima, especially in noisy data, to the extent that different

participants’ data are similar. This is because ambiguities in one

participant’s data may be resolved by examining another’s data.

3.4 Integrating TFA into Behavioral Models
TFA defines a probability distribution whose draws are brain

images. When we apply TFA to a dataset by performing posterior

inference, we uncover the most probable hidden variables that

produced the observed data. In other words, we uncover the

distribution, within the family of distributions defined by TFA,

that takes into account our observed brain images. Sampling from

this distribution (using TFA’s generative process; Algorithm 1 in

Table 3) yields sets of brain images that look similar to the original

dataset (where the degree of similarity depends on the number of

sources; Figure 5). This distribution over brain images can be

treated as any other probability distribution and thereby

integrated into more complex models that seek to incorporate

neural data [23].

One way of integrating TFA into models of neural and

behavioral data would be to vary the per-image source weights

(wn) according to the internal cognitive states predicted by the

behavioral model. As shown in Figure 9, the internal cognitive

state mn reflects what was happening in the participants’ mind

during the nth trial of the experiment, during which image yn was

collected and the participant exhibited behavior bn. Each trial’s

mental state is, in turn, drawn from a distribution controlled by a

set of global variables, y, that define the general properties of the

mental states participants are likely to exhibit. Combining neural

and behavioral data into a common model allows these converging

sources of information about participants’ internal mental states to

jointly influence which brain structures are identified and which

sequences of mental states are deemed most probable.

Concluding Remarks

Topographic Factor Analysis (TFA) provides a means of

automatically discovering a set of sources (and the interactions

between those sources) that underlies an fMRI dataset. We

presented an efficient algorithm that allowed us to apply TFA to

fMRI datasets containing hundreds of images, each containing

tens of thousands of voxels. In addition to yielding insights into

complex datasets, we suggest that TFA may be incorporated into

Topographic Factor Analysis
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models that attempt to jointly account for neural and behavioral

data.
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