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Abstract

Variational inference is a scalable technique for approximate Bayesian inference.
Deriving variational inference algorithms requires tedious model-specific calcula-
tions; this makes it difficult for non-experts to use. We propose an automatic varia-
tional inference algorithm, automatic differentiation variational inference (advi);
we implement it in Stan (code available), a probabilistic programming system. In
advi the user provides a Bayesian model and a dataset, nothing else. We make
no conjugacy assumptions and support a broad class of models. The algorithm
automatically determines an appropriate variational family and optimizes the vari-
ational objective. We compare advi to mcmc sampling across hierarchical gen-
eralized linear models, nonconjugate matrix factorization, and a mixture model.
We train the mixture model on a quarter million images. With advi we can use
variational inference on any model we write in Stan.

1 Introduction

Bayesian inference is a powerful framework for analyzing data. We design a model for data using
latent variables; we then analyze data by calculating the posterior density of the latent variables. For
machine learning models, calculating the posterior is often difficult; we resort to approximation.

Variational inference (vi) approximates the posterior with a simpler distribution [1, 2]. We search
over a family of simple distributions and find the member closest to the posterior. This turns ap-
proximate inference into optimization. vi has had a tremendous impact on machine learning; it is
typically faster than Markov chain Monte Carlo (mcmc) sampling (as we show here too) and has
recently scaled up to massive data [3].

Unfortunately, vi algorithms are difficult to derive. We must first define the family of approximating
distributions, and then calculate model-specific quantities relative to that family to solve the varia-
tional optimization problem. Both steps require expert knowledge. The resulting algorithm is tied to
both the model and the chosen approximation.

In this paper we develop a method for automating variational inference, automatic differentiation
variational inference (advi). Given any model from a wide class (specifically, probability models
differentiable with respect to their latent variables), advi determines an appropriate variational fam-
ily and an algorithm for optimizing the corresponding variational objective. We implement advi in
Stan [4], a flexible probabilistic programming system. Stan describes a high-level language to define
probabilistic models (e.g., Figure 2) as well as a model compiler, a library of transformations, and an
efficient automatic differentiation toolbox. With advi we can now use variational inference on any
model we write in Stan.1 (See Appendices F to J.)

1advi is available in Stan 2.8. See Appendix C.
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Figure 1: Held-out predictive accuracy results | Gaussian mixture model (gmm) of the imageclef
image histogram dataset. (a) advi outperforms the no-U-turn sampler (nuts), the default sampling
method in Stan [5]. (b) advi scales to large datasets by subsampling minibatches of size B from the
dataset at each iteration [3]. We present more details in Section 3.3 and Appendix J.

Figure 1 illustrates the advantages of our method. Consider a nonconjugate Gaussian mixture model
for analyzing natural images; this is 40 lines in Stan (Figure 10). Figure 1a illustrates Bayesian
inference on 1000 images. The y-axis is held-out likelihood, a measure of model fitness; the x-
axis is time on a log scale. advi is orders of magnitude faster than nuts, a state-of-the-art mcmc
algorithm (and Stan’s default inference technique) [5]. We also study nonconjugate factorization
models and hierarchical generalized linear models in Section 3.

Figure 1b illustrates Bayesian inference on 250 000 images, the size of datawemore commonly find in
machine learning. Here we use advi with stochastic variational inference [3], giving an approximate
posterior in under two hours. For data like these, mcmc techniques cannot complete the analysis.

Related work. advi automates variational inference within the Stan probabilistic programming
system [4]. This draws on two major themes.

The first is a body of work that aims to generalize vi. Kingma and Welling [6] and Rezende et al.
[7] describe a reparameterization of the variational problem that simplifies optimization. Ranganath
et al. [8] and Salimans and Knowles [9] propose a black-box technique, one that only requires the
model and the gradient of the approximating family. Titsias and Lázaro-Gredilla [10] leverage the
gradient of the joint density for a small class of models. Here we build on and extend these ideas to
automate variational inference; we highlight technical connections as we develop the method.

The second theme is probabilistic programming. Wingate and Weber [11] study vi in general proba-
bilistic programs, as supported by languages like Church [12], Venture [13], and Anglican [14]. An-
other probabilistic programming system is infer.NET, which implements variational message passing
[15], an efficient algorithm for conditionally conjugate graphical models. Stan supports a more com-
prehensive class of nonconjugate models with differentiable latent variables; see Section 2.1.

2 Automatic Differentiation Variational Inference

Automatic differentiation variational inference (advi) follows a straightforward recipe. First we
transform the support of the latent variables to the real coordinate space. For example, the logarithm
transforms a positive variable, such as a standard deviation, to the real line. Then we posit a Gaussian
variational distribution to approximate the posterior. This induces a non-Gaussian approximation in
the original variable space. Last we combine automatic differentiation with stochastic optimization
to maximize the variational objective. We begin by defining the class of models we support.

2.1 Differentiable Probability Models

Consider a dataset X D x1WN withN observations. Each xn is a discrete or continuous random vec-
tor. The likelihood p.X j �/ relates the observations to a set of latent random variables � . Bayesian
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xn

�

˛ D 1:5; � D 1

N

data {
i n t N; // number o f ob s e rva t i on s
i n t x [N ] ; // d i s c r e t e - valued obs e rva t i on s

}
parameters {

// l a t e n t va r i ab l e , must be p o s i t i v e
r ea l < lower=0> theta ;

}
model {

// non - conjugate p r i o r f o r l a t e n t v a r i a b l e
theta ~ we ibu l l ( 1 . 5 , 1) ;

// l i k e l i h o o d
f o r (n in 1 :N)

x [ n ] ~ po i s son ( theta ) ;
}

Figure 2: Specifying a simple nonconjugate probability model in Stan.

analysis posits a prior density p.�/ on the latent variables. Combining the likelihood with the prior
gives the joint density p.X;�/ D p.X j �/ p.�/.

We focus on approximate inference for differentiable probability models. These models have contin-
uous latent variables � . They also have a gradient of the log-joint with respect to the latent variables
r� logp.X;�/. The gradient is valid within the support of the prior supp.p.�// D

˚
� j � 2

RK and p.�/ > 0
	
� RK , where K is the dimension of the latent variable space. We assume that

the support of the posterior equals that of the prior. We make no assumptions about conjugacy, either
full or conditional.2

For example, consider a model that contains a Poisson likelihood with unknown rate, p.x j �/. The
observed variable x is discrete; the latent rate � is continuous and positive. Place a Weibull prior
on � , defined over the positive real numbers. The resulting joint density describes a nonconjugate
differentiable probability model. (See Figure 2.) Its partial derivative @=@� p.x; �/ is valid within the
support of theWeibull distribution, supp.p.�// D RC � R. Because this model is nonconjugate, the
posterior is not a Weibull distribution. This presents a challenge for classical variational inference.
In Section 2.3, we will see how advi handles this model.

Manymachine learningmodels are differentiable. For example: linear and logistic regression, matrix
factorization with continuous or discrete measurements, linear dynamical systems, and Gaussian pro-
cesses. Mixture models, hidden Markov models, and topic models have discrete random variables.
Marginalizing out these discrete variables renders these models differentiable. (We show an example
in Section 3.3.) However, marginalization is not tractable for all models, such as the Ising model,
sigmoid belief networks, and (untruncated) Bayesian nonparametric models.

2.2 Variational Inference

Bayesian inference requires the posterior density p.� j X/, which describes how the latent variables
vary when conditioned on a set of observations X. Many posterior densities are intractable because
their normalization constants lack closed forms. Thus, we seek to approximate the posterior.

Consider an approximating density q.� I �/ parameterized by �. We make no assumptions about its
shape or support. We want to find the parameters of q.� I �/ to best match the posterior according to
some loss function. Variational inference (vi) minimizes the Kullback-Leibler (kl) divergence from
the approximation to the posterior [2],

�� D argmin
�

KL.q.� I �/ k p.� j X//: (1)

Typically the kl divergence also lacks a closed form. Instead we maximize the evidence lower bound
(elbo), a proxy to the kl divergence,

L.�/ D Eq.�/
�
logp.X;�/

�
� Eq.�/

�
log q.� I �/

�
:

The first term is an expectation of the joint density under the approximation, and the second is the
entropy of the variational density. Maximizing the elbo minimizes the kl divergence [1, 16].

2The posterior of a fully conjugate model is in the same family as the prior; a conditionally conjugate model
has this property within the complete conditionals of the model [3].

3



The minimization problem from Eq. (1) becomes

�� D argmax
�

L.�/ such that supp.q.� I �// � supp.p.� j X//: (2)

We explicitly specify the support-matching constraint implied in the kl divergence.3 We highlight
this constraint, as we do not specify the form of the variational approximation; thus q.� I �/ must
remain within the support of the posterior, which we assume equal to the support of the prior.

Why is vi difficult to automate? In classical variational inference, we typically design a condition-
ally conjugate model. Then the optimal approximating family matches the prior. This satisfies the
support constraint by definition [16]. When we want to approximate models that are not condition-
ally conjugate, we carefully study the model and design custom approximations. These depend on
the model and on the choice of the approximating density.

One way to automate vi is to use black-box variational inference [8, 9]. If we select a density whose
support matches the posterior, then we can directly maximize the elbo using Monte Carlo (mc)
integration and stochastic optimization. Another strategy is to restrict the class of models and use a
fixed variational approximation [10]. For instance, we may use a Gaussian density for inference in
unrestrained differentiable probability models, i.e. where supp.p.�// D RK .

We adopt a transformation-based approach. First we automatically transform the support of the latent
variables in our model to the real coordinate space. Then we posit a Gaussian variational density. The
transformation induces a non-Gaussian approximation in the original variable space and guarantees
that it stays within the support of the posterior. Here is how it works.

2.3 Automatic Transformation of Constrained Variables

Begin by transforming the support of the latent variables � such that they live in the real coordinate
space RK . Define a one-to-one differentiable function T W supp.p.�// ! RK and identify the
transformed variables as � D T .�/. The transformed joint density g.X; �/ is

g.X; �/ D p
�
X; T �1.�/

�ˇ̌
det JT�1.�/

ˇ̌
;

where p is the joint density in the original latent variable space, and JT�1 is the Jacobian of the
inverse of T . Transformations of continuous probability densities require a Jacobian; it accounts for
how the transformation warps unit volumes [17]. (See Appendix D.)

Consider again our running example. The rate � lives in RC. The logarithm � D T .�/ D log.�/
transforms RC to the real line R. Its Jacobian adjustment is the derivative of the inverse of the
logarithm, j det JT�1.�/j D exp.�/. The transformed density is

g.x; �/ D Poisson.x j exp.�//Weibull.exp.�/ I 1:5; 1/ exp.�/:

Figures 3a and 3b depict this transformation.

As we describe in the introduction, we implement our algorithm in Stan to enable generic inference.
Stan implements a model compiler that automatically handles transformations. It works by applying
a library of transformations and their corresponding Jacobians to the joint model density.4 This
transforms the joint density of any differentiable probability model to the real coordinate space. Now
we can choose a variational distribution independent from the model.

2.4 Implicit Non-Gaussian Variational Approximation

After the transformation, the latent variables � have support on RK . We posit a diagonal (mean-field)
Gaussian variational approximation

q.� I �/ D N .� I �; � / D

KY
kD1

N .�k I �k ; �k/:

3If supp.q/ › supp.p/ then outside the support of p we have KL.q k p/ D Eq Œlog q� � Eq Œlogp� D �1.
4Stan provides transformations for upper and lower bounds, simplex and ordered vectors, and structured

matrices such as covariance matrices and Cholesky factors [4].
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Figure 3: Transformations for advi. The purple line is the posterior. The green line is the approxi-
mation. (a) The latent variable space is RC. (a!b) T transforms the latent variable space to R. (b)
The variational approximation is a Gaussian. (b!c) S�;! absorbs the parameters of the Gaussian.
(c)We maximize the elbo in the standardized space, with a fixed standard Gaussian approximation.

The vector � D .�1; � � � ; �K ; �1; � � � ; �K/ contains the mean and standard deviation of each Gaus-
sian factor. This defines our variational approximation in the real coordinate space. (Figure 3b.)

The transformation T maps the support of the latent variables to the real coordinate space; its inverse
T �1 maps back to the support of the latent variables. This implicitly defines the variational approx-
imation in the original latent variable space as q.T .�/ I �/

ˇ̌
det JT .�/

ˇ̌
: The transformation ensures

that the support of this approximation is always bounded by that of the true posterior in the original
latent variable space (Figure 3a). Thus we can freely optimize the elbo in the real coordinate space
(Figure 3b) without worrying about the support matching constraint.

The elbo in the real coordinate space is

L.�; � / D Eq.�/

�
logp

�
X; T �1.�/

�
C log

ˇ̌
det JT�1.�/

ˇ̌�
C
K

2
.1C log.2�//C

KX
kD1

log �k ;

where we plug in the analytic form of the Gaussian entropy. (The derivation is in Appendix A.)

We choose a diagonal Gaussian for efficiency. This choice may call to mind the Laplace approxima-
tion technique, where a second-order Taylor expansion around the maximum-a-posteriori estimate
gives a Gaussian approximation to the posterior. However, using a Gaussian variational approxima-
tion is not equivalent to the Laplace approximation [18]. The Laplace approximation relies on max-
imizing the probability density; it fails with densities that have discontinuities on its boundary. The
Gaussian approximation considers probability mass; it does not suffer this degeneracy. Furthermore,
our approach is distinct in another way: because of the transformation, the posterior approximation
in the original latent variable space (Figure 3a) is non-Gaussian.

2.5 Automatic Differentiation for Stochastic Optimization

We now maximize the elbo in real coordinate space,

��; � � D argmax
�;�

L.�; � / such that � � 0: (3)

We use gradient ascent to reach a local maximum of the elbo. Unfortunately, we cannot apply auto-
matic differentiation to the elbo in this form. This is because the expectation defines an intractable
integral that depends on � and � ; we cannot directly represent it as a computer program. More-
over, the standard deviations in � must remain positive. Thus, we employ one final transformation:
elliptical standardization5 [19], shown in Figures 3b and 3c.

First re-parameterize the Gaussian distribution with the log of the standard deviation, ! D log.� /,
applied element-wise. The support of ! is now the real coordinate space and � is always positive.
Then define the standardization � D S�;!.�/ D diag

�
exp .!/�1

�
.� � �/. The standardization

5Also known as a “co-ordinate transformation” [7], an “invertible transformation” [10], and the “re-
parameterization trick” [6].

5



Algorithm 1: Automatic differentiation variational inference (advi)

Input: Dataset X D x1WN , model p.X;�/.
Set iteration counter i D 0 and choose a stepsize sequence �.i/.
Initialize �.0/ D 0 and !.0/ D 0.
while change in elbo is above some threshold do

DrawM samples �m � N .0; I/ from the standard multivariate Gaussian.
Invert the standardization �m D diag.exp .!.i///�m C �.i/.
Approximate r�L and r!L using mc integration (Eqs. (4) and (5)).

Update �.iC1/  � �.i/ C �.i/r�L and !.iC1/  � !.i/ C �.i/r!L.
Increment iteration counter.

end
Return ��  � �.i/ and !�  � !.i/.

encapsulates the variational parameters and gives the fixed density

q.� I 0; I/ D N .� I 0; I/ D

KY
kD1

N .�k I 0; 1/:

The standardization transforms the variational problem from Eq. (3) into

��;!� D argmax
�;!

L.�;!/

D argmax
�;!

EN .� I0;I/

�
logp

�
X; T �1.S�1�;!.�//

�
C log

ˇ̌
det JT�1

�
S�1�;!.�/

�ˇ̌�
C

KX
kD1

!k ;

where we drop constant terms from the calculation. This expectation is with respect to a standard
Gaussian and the parameters � and ! are both unconstrained (Figure 3c). We push the gradient
inside the expectations and apply the chain rule to get

r�L D EN .�/

�
r� logp.X;�/r�T �1.�/Cr� log

ˇ̌
det JT�1.�/

ˇ̌�
; (4)

r!k
L D EN .�k/

��
r�k

logp.X;�/r�k
T �1.�/Cr�k

log
ˇ̌
det JT�1.�/

ˇ̌�
�k exp.!k/

�
C 1: (5)

(The derivations are in Appendix B.)

We can now compute the gradients inside the expectation with automatic differentiation. The only
thing left is the expectation. mc integration provides a simple approximation: drawM samples from
the standard Gaussian and evaluate the empirical mean of the gradients within the expectation [20].

This gives unbiased noisy gradients of the elbo for any differentiable probability model. We can
now use these gradients in a stochastic optimization routine to automate variational inference.

2.6 Automatic Variational Inference

Equipped with unbiased noisy gradients of the elbo, advi implements stochastic gradient ascent
(Algorithm 1). We ensure convergence by choosing a decreasing step-size sequence. In practice, we
use an adaptive sequence [21] with finite memory. (See Appendix E for details.)

advi has complexity O.NMK/ per iteration, where M is the number of mc samples (typically
between 1 and 10). Coordinate ascent vi has complexity O.NK/ per pass over the dataset. We
scale advi to large datasets using stochastic optimization [3, 10]. The adjustment to Algorithm 1 is
simple: sample a minibatch of size B � N from the dataset and scale the likelihood of the sampled
minibatch by N=B [3]. The stochastic extension of advi has per-iteration complexity O.BMK/.
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Figure 4: Hierarchical generalized linear models. Comparison of advi to mcmc: held-out predic-
tive likelihood as a function of wall time.

3 Empirical Study

We now study advi across a variety of models. We compare its speed and accuracy to two Markov
chain Monte Carlo (mcmc) sampling algorithms: Hamiltonian Monte Carlo (hmc) [22] and the no-
U-turn sampler (nuts)6 [5]. We assess advi convergence by tracking the elbo. To place advi and
mcmc on a common scale, we report predictive likelihood on held-out data as a function of time. We
approximate the posterior predictive likelihood using a mc estimate. For mcmc, we plug in posterior
samples. For advi, we draw samples from the posterior approximation during the optimization. We
initialize advi with a draw from a standard Gaussian.

We explore two hierarchical regression models, two matrix factorization models, and a mixture
model. All of these models have nonconjugate prior structures. We conclude by analyzing a dataset
of 250 000 images, where we report results across a range of minibatch sizes B .

3.1 A Comparison to Sampling: Hierarchical Regression Models

We begin with two nonconjugate regression models: linear regression with automatic relevance de-
termination (ard) [16] and hierarchical logistic regression [23].

Linear Regression with ard. This is a sparse linear regression model with a hierarchical prior
structure. (Details in Appendix F.) We simulate a dataset with 250 regressors such that half of the
regressors have no predictive power. We use 10 000 training samples and hold out 1000 for testing.

Logistic Regression with Spatial Hierarchical Prior. This is a hierarchical logistic regression
model from political science. The prior captures dependencies, such as states and regions, in a
polling dataset from the United States 1988 presidential election [23]. (Details in Appendix G.)
We train using 10 000 data points and withhold 1536 for evaluation. The regressors contain age,
education, state, and region indicators. The dimension of the regression problem is 145.

Results. Figure 4 plots average log predictive accuracy as a function of time. For these simple
models, all methods reach the same predictive accuracy. We study advi with two settings ofM , the
number of mc samples used to estimate gradients. A single sample per iteration is sufficient; it is
also the fastest. (We setM D 1 from here on.)

3.2 Exploring Nonconjugacy: Matrix Factorization Models

We continue by exploring two nonconjugate non-negative matrix factorization models: a constrained
Gamma Poisson model [24] and a Dirichlet Exponential model. Here, we show how easy it is to
explore new models using advi. In both models, we use the Frey Face dataset, which contains 1956
frames (28 � 20 pixels) of facial expressions extracted from a video sequence.

Constrained Gamma Poisson. This is a Gamma Poisson factorization model with an ordering
constraint: each row of the Gamma matrix goes from small to large values. (Details in Appendix H.)

6nuts is an adaptive extension of hmc. It is the default sampler in Stan.
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Figure 5: Non-negative matrix factorization of the Frey Faces dataset. Comparison of advi to
mcmc: held-out predictive likelihood as a function of wall time.

Dirichlet Exponential. This is a nonconjugate Dirichlet Exponential factorization model with a
Poisson likelihood. (Details in Appendix I.)

Results. Figure 5 shows average log predictive accuracy as well as ten factors recovered from both
models. advi provides an order of magnitude speed improvement over nuts (Figure 5a). nuts
struggles with the Dirichlet Exponential model (Figure 5b). In both cases, hmc does not produce
any useful samples within a budget of one hour; we omit hmc from the plots.

3.3 Scaling to Large Datasets: Gaussian Mixture Model

We conclude with the Gaussian mixture model (gmm) example we highlighted earlier. This is a
nonconjugate gmm applied to color image histograms. We place a Dirichlet prior on the mixture
proportions, a Gaussian prior on the component means, and a lognormal prior on the standard devi-
ations. (Details in Appendix J.) We explore the imageclef dataset, which has 250 000 images [25].
We withhold 10 000 images for evaluation.

In Figure 1a we randomly select 1000 images and train a model with 10 mixture components. nuts
struggles to find an adequate solution and hmc fails altogether. This is likely due to label switching,
which can affect hmc-based techniques in mixture models [4].

Figure 1b shows advi results on the full dataset. Here we use advi with stochastic subsampling
of minibatches from the dataset [3]. We increase the number of mixture components to 30. With a
minibatch size of 500 or larger, advi reaches high predictive accuracy. Smaller minibatch sizes lead
to suboptimal solutions, an effect also observed in [3]. advi converges in about two hours.

4 Conclusion

We develop automatic differentiation variational inference (advi) in Stan. advi leverages automatic
transformations, an implicit non-Gaussian variational approximation, and automatic differentiation.
This is a valuable tool. We can explore many models and analyze large datasets with ease. We
emphasize that advi is currently available as part of Stan; it is ready for anyone to use.
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A Transformation of the Evidence Lower Bound

Recall that � D T .�/ and that the variational approximation in the real coordinate space is q.� I �/.

We begin with the evidence lower bound (elbo) in the original latent variable space. We then trans-
form the latent variable space of to the real coordinate space.

L D

Z
q.� I �/ log

�
p.X;�/

q.� I �/

�
d�

D

Z
q.� I �/ log

"
p
�
X; T �1.�/

�ˇ̌
det JT�1.�/

ˇ̌
q.� I �/

#
d�

D

Z
q.� I �/ log

�
p
�
X; T �1.�/

�ˇ̌
det JT�1.�/

ˇ̌�
d� �

Z
q.� I �/ log Œq.� I �/� d�

D Eq.�/
�
logp

�
X; T �1.�/

�
C log

ˇ̌
det JT�1.�/

ˇ̌�
� Eq.�/ Œlog q.� I �/�

The variational approximation in the real coordinate space is a Gaussian. Plugging in its entropy
gives the elbo in the real coordinate space

L D Eq.�/
�
logp

�
X; T �1.�/

�
C log

ˇ̌
det JT�1.�/

ˇ̌�
C
1

2
K .1C log.2�//C

KX
kD1

log �k :

B Gradients of the Evidence Lower Bound

First, consider the gradient with respect to the � parameter of the standardization. We exchange the
order of the gradient and the integration through the dominated convergence theorem [1]. The rest
is the chain rule for differentiation.

r�L D r�

n
EN .� I0;I/

�
logp

�
X; T �1.S�1�;!.�//

�
C log

ˇ̌
det JT�1

�
S�1�;!.�/

�ˇ̌�
C
K

2
.1C log.2�//C

KX
kD1

log �k
o

D EN .� I0;I/

�
r�

˚
logp

�
X; T �1.S�1.�//

�
C log

ˇ̌
det JT�1

�
S�1.�/

�ˇ̌	�
D EN .� I0;I/

�
r� logp.X;�/r�T �1.�/r�S�1�;!.�/Cr� log

ˇ̌
det JT�1.�/

ˇ̌
r�S

�1
�;!.�/

�
D EN .� I0;I/

�
r� logp.X;�/r�T �1.�/Cr� log

ˇ̌
det JT�1.�/

ˇ̌�
Similarly, consider the gradient with respect to the ! parameter of the standardization. The gradient
with respect to a single component, !k , has a clean form. We abuse the r notation to maintain
consistency with the rest of the text (instead of switching to @).

r!k
L D r!k

n
EN .� I0;I/

�
logp

�
X; T �1.S�1�;!.�//

�
C log

ˇ̌
det JT�1

�
S�1�;!.�/

�ˇ̌�
C
K

2
.1C log.2�//C

KX
kD1

log.exp.!k//
o

D EN .�k/

�
r!k

˚
logp

�
X; T �1.S�1�;!.�//

�
C log

ˇ̌
det JT�1

�
S�1�;!.�/

�ˇ̌	�
C 1

D EN .�k/

��
r�k

logp.X;�/r�k
T �1.�/Cr�k

log
ˇ̌
det JT�1.�/

ˇ̌�
r!k

S�1�;!.�//
�
C 1:

D EN .�k/

��
r�k

logp.X;�/r�k
T �1.�/Cr�k

log
ˇ̌
det JT�1.�/

ˇ̌�
�k exp.!k/

�
C 1:
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C Running advi in Stan

Visit http://mc-stan.org/ to download the latest version of Stan. Follow instructions on how to
install Stan. You are then ready to use advi.
Stan offers multiple interfaces. We describe the command line interface (cmdStan) below.

The syntax is

./myModel variational
grad_samples=M ( M D 1 default )
data file=myData.data.R
output file=output_advi.csv
diagnostic_file=elbo_advi.csv

wheremyData.data.R is the dataset stored in the R language Rdump format. output_advi.csv
contains samples from the posterior and elbo_advi.csv reports the elbo.

D Transformations of Continuous Probability Densities

We present a brief summary of transformations, largely based on [2].

Consider a univariate (scalar) random variableX with probability density function fX .x/. Let X D
supp.fX .x// be the support of X . Now consider another random variable Y defined as Y D T .X/.
Let Y D supp.fY .y// be the support of Y .

If T is a one-to-one and differentiable function from X to Y, then Y has probability density function

fY .y/ D fX
�
T �1.y/

� ˇ̌̌̌dT �1.y/
dy

ˇ̌̌̌
:

Let us sketch a proof. Consider the cumulative density function Y . If the transformation T is in-
creasing, we directly apply its inverse to the cdf of Y . If the transformation T is decreasing, we
apply its inverse to one minus the cdf of Y . The probability density function is the derivative of the
cumulative density function. These things combined give the absolute value of the derivative above.

The extension to multivariate variablesX and Y requires a multivariate version of the absolute value
of the derivative of the inverse transformation. This is the the absolute determinant of the Jacobian,
j det JT�1.Y /j where the Jacobian is

JT�1.Y / D

˙
@T�1

1

@y1
� � �

@T�1
1

@yK

:::
:::

@T�1
K

@y1
� � �

@T�1
K

@yK

�

:

Intuitively, the Jacobian describes how a transformation warps unit volumes across spaces. This
matters for transformations of random variables, since probability density functions must always
integrate to one.

E Setting a Stepsize Sequence for advi

We use adaGrad [3] to adaptively set the stepsize sequence in advi. While adaGrad offers attractive
convergence properties, it can be slow for non-convex problems. One reason is because it has infinite
memory. (It tracks the norm of the gradient starting from the beginning of the optimization.) In advi
we randomly initialize the variational approximation, which can be far from the true posterior. This
makes adaGrad take very small steps for the rest of the optimization, thus slowing convergence.
Limiting adaGrad’s memory speeds up convergence in practice, an effect also observed in training
neural networks [4]. (See [5] for an analysis of these trade-offs and a method that combines benefits
from both.)
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Consider the stepsize �.i/ and a gradient vector g.i/ at iteration i . In adaGrad, kth element of �.i/ is

�
.i/

k
D

�

� C

q
s
.i/

k

:

The vector s is the gradient vector squared element-wise and summed over all times steps since the
start of the optimization. Instead, we limit this by recursively downweighting previous iterations as

s
.i/

k
D 0:9 � s

.i�1/

k
C 0:1 � g2k

.i/
:

We do a grid search for the scaling coefficient � and, following Hoffman et al. [6], set the offset
� D 1.

F Linear Regression with Automatic Relevance Determination

Linear regression with automatic relevance determination (ard) is a high-dimensional sparse re-
gression model [7, 8]. We describe the model below. Stan code is in Figure 6.

The inputs are X D x1WN where each xn is D-dimensional. The outputs are y D y1WN where each
yn is 1-dimensional. The weights vector w isD-dimensional. The likelihood

p.y j X;w; �/ D

NY
nD1

N
�
yn j w

>xn ; �
�

describes measurements corrupted by iid Gaussian noise with unknown standard deviation � .

The ard prior and hyper-prior structure is as follows
p.w; �;˛/ D p.w; � j ˛/p.˛/

D N
�
w j 0 ; �

�
diag
p
˛
��1� InvGam.� j a0; b0/ DY

iD1

Gam.˛i j c0; d0/

where ˛ is a D-dimensional hyper-prior on the weights, where each component gets its own inde-
pendent Gamma prior.

We simulate data such that only half the regressions have predictive power. The results in Figure 4a
use a0 D b0 D c0 D d0 D 1 as hyper-parameters for the Gamma priors.

G Hierarchical Logistic Regression

Hierarchical logistic regression models structured datasets in an intuitive way. We study a model of
voting preferences from the 1988 United States presidential election. Chapter 14.1 of [9] motivates
the model and explains the dataset. We also describe the model below. Stan code is in Figure 7,
based on [10].

Pr.yn D 1/ D sigmoid
�
ˇ0 C ˇfemale

� femalen C ˇblack
� blackn C ˇfemale.black

� female.blackn

C ˛
age
kŒn�
C ˛edulŒn� C ˛

age.edu
kŒn�;lŒn�

C ˛statej Œn�

�
˛statej � N

�
˛
region
mŒj �

C ˇv.prev
� v.prevj ; �state

�
:

The hierarchical variables are
˛
age
k
� N

�
0 ; �age

�
for k D 1; : : : ; K

˛edul � N .0 ; �edu/ for l D 1; : : : ; L

˛
age.edu
k;l

� N
�
0 ; �age.edu

�
for k D 1; : : : ; K; l D 1; : : : ; L

˛regionm � N
�
0 ; �region

�
for m D 1; : : : ;M:

The standard deviation terms all have uniform hyper-priors, constrained between 0 and 100.
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H Non-negative Matrix Factorization: Constrained Gamma Poisson Model

The Gamma Poisson factorization model describes discrete data matrices [11, 12].

Consider a U � I matrix of observations. We find it helpful to think of u D f1; � � � ; U g as users
and i D f1; � � � ; I g as items, as in a recommendation system setting. The generative process for a
Gamma Poisson model with K factors is

1. For each user u in f1; � � � ; U g:
� For each component k, draw �uk � Gam.a0; b0/.

2. For each item i in f1; � � � ; I g:
� For each component k, draw ˇik � Gam.c0; d0/.

3. For each user and item:
� Draw the observation yui � Poisson.�>u ˇi /.

A potential downfall of this model is that it is not uniquely identifiable: swapping rows and columns
of � and ˇ give the same inner product. One way to contend with this is to constrain either vector to
be an ordered vector during inference. We constrain each �u vector in our model in this fashion. Stan
code is in Figure 8. We set K D 10 and all the Gamma hyper-parameters to 1 in our experiments.

I Non-negative Matrix Factorization: Dirichlet Exponential Model

Another model for discrete data is a Dirichlet Exponential model. The Dirichlet enforces uniqueness
while the exponential promotes sparsity. This is a non-conjugate model that does not appear to have
been studied in the literature.

The generative process for a Dirichlet Exponential model with K factors is

1. For each user u in f1; � � � ; U g:
� Draw the K-vector �u � Dir.˛0/.

2. For each item i in f1; � � � ; I g:
� For each component k, draw ˇik � Exponential.�0/.

3. For each user and item:
� Draw the observation yui � Poisson.�>u ˇi /.

Stan code is in Figure 9. We set K D 10, ˛0 D 1000 for each component, and �0 D 0:1. With this
configuration of hyper-parameters, the factors ˇi appear sparse.

J Gaussian Mixture Model

The Gaussian mixture model (gmm) is a celebrated probability model. We use it to group a dataset of
natural images based on their color histograms. We build a high-dimensional gmm with a Gaussian
prior for the mixture means, a lognormal prior for the mixture standard deviations, and a Dirichlet
prior for the mixture components.

The images are in Y D y1WN where each yn is D-dimensional and there are N observations. The
likelihood for the images is

p.Y j �;�; � / D

NY
nD1

KX
kD1

�k

DY
dD1

N .ynd j �kd ; �kd /

with a Dirichlet prior for the mixture proportions

p.�/ D Dir.� I ˛0/;
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a Gaussian prior for the mixture means

p.�/ D

DY
kD1

DY
dD1

N .�kd I 0; 1/

and a lognormal prior for the mixture standard deviations

p.� / D

DY
kD1

DY
dD1

logNormal.�kd I 0; 1/

The dimension of the color histograms in the imageclef dataset isD D 576. This is a concatenation
of three 192-length histograms, one for each color channel (red, green, blue) of the images.

We scale the image histograms to have zero mean and unit variance. Setting ˛0 to a small value
encourages the model to use fewer components to explain the data. Larger values of ˛0 encourage
the model to use all K components. We set ˛0 D 1 000 in our experiments.

advi code is in Figure 10. The stochastic data subsampling version of the code is in Figure 11.

data {
int < lower=0> N; // number o f data items
int < lower=0> D; // dimension o f input f e a t u r e s
matrix [N,D] x ; // input matrix
vec to r [N] y ; // output vec to r

// hyperparameters f o r Gamma p r i o r s
r ea l < lower=0> a0 ;
r ea l < lower=0> b0 ;
r ea l < lower=0> c0 ;
r ea l < lower=0> d0 ;

}

parameters {
vec to r [D] w; // weights ( c o e f f i c i e n t s ) vec to r
r ea l < lower=0> sigma ; // standard dev i a t i on
vector < lower=0>[D] alpha ; // h i e r a r c h i c a l l a t e n t v a r i a b l e s

}

transformed parameters {
vec to r [D] one_over_sqrt_alpha ;
f o r ( i in 1 :D) {

one_over_sqrt_alpha [ i ] < - 1 / sq r t ( alpha [ i ] ) ;
}

}

model {
// alpha : hyper - p r i o r on weights
alpha ~ gamma( c0 , d0 ) ;

// sigma : p r i o r on standard dev i a t i on
sigma ~ inv_gamma( a0 , b0 ) ;

// w: p r i o r on weights
w ~ normal (0 , sigma * one_over_sqrt_alpha ) ;

// y : l i k e l i h o o d
y ~ normal ( x * w, sigma ) ;

}

Figure 6: Stan code for Linear Regression with Automatic Relevance Determination.
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data {
int < lower=0> N;
int < lower=0> n_age ;
int < lower=0> n_age_edu ;
int < lower=0> n_edu ;
int < lower=0> n_reg ion_fu l l ;
int < lower=0> n_state ;
int < lower=0,upper=n_age> age [N ] ;
int < lower=0,upper=n_age_edu> age_edu [N ] ;
vector < lower=0,upper=1>[N] b lack ;
int < lower=0,upper=n_edu> edu [N ] ;
vector < lower=0,upper=1>[N] female ;
int < lower=0,upper=n_region_ful l > r e g i o n_ fu l l [N ] ;
int < lower=0,upper=n_state > s t a t e [N ] ;
vec to r [N] v_prev_ful l ;
int < lower=0,upper=1> y [N ] ;

}
parameters {

vec to r [ n_age ] a ;
vec to r [ n_edu ] b ;
vec to r [ n_age_edu ] c ;
vec to r [ n_state ] d ;
vec to r [ n_reg ion_fu l l ] e ;
vec to r [ 5 ] beta ;
r ea l < lower=0,upper=100> sigma_a ;
r ea l < lower=0,upper=100> sigma_b ;
r ea l < lower=0,upper=100> sigma_c ;
r ea l < lower=0,upper=100> sigma_d ;
r ea l < lower=0,upper=100> sigma_e ;

}
transformed parameters {

vec to r [N] y_hat ;

f o r ( i in 1 :N)
y_hat [ i ] < - beta [ 1 ]

+ beta [ 2 ] * b lack [ i ]
+ beta [ 3 ] * female [ i ]
+ beta [ 5 ] * female [ i ] * b lack [ i ]
+ beta [ 4 ] * v_prev_ful l [ i ]
+ a [ age [ i ] ]
+ b [ edu [ i ] ]
+ c [ age_edu [ i ] ]
+ d [ s t a t e [ i ] ]
+ e [ r e g i o n_ fu l l [ i ] ] ;

}
model {

a ~ normal (0 , sigma_a ) ;
b ~ normal (0 , sigma_b ) ;
c ~ normal (0 , sigma_c ) ;
d ~ normal (0 , sigma_d ) ;
e ~ normal (0 , sigma_e ) ;
beta ~ normal (0 , 100) ;
y ~ b e r n ou l l i _ l o g i t ( y_hat ) ;

}

Figure 7: Stan code for Hierarchical Logistic Regression, from [10].
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data {
int < lower=0> U;
int < lower=0> I ;
int < lower=0> K;
int < lower=0> y [U, I ] ;
r ea l < lower=0> a ;
r ea l < lower=0> b ;
r ea l < lower=0> c ;
r ea l < lower=0> d ;

}

parameters {
pos i t i v e_orde red [K] theta [U ] ; // user p r e f e r en c e
vector < lower=0>[K] beta [ I ] ; // item a t t r i b u t e s

}

model {
f o r (u in 1 :U)

theta [ u ] ~ gamma(a , b) ; // componentwise gamma
f o r ( i in 1 : I )

beta [ i ] ~ gamma( c , d) ; // componentwise gamma

f o r (u in 1 :U) {
f o r ( i in 1 : I ) {

y [ u , i ] ~ po i s son ( theta [ u ] ‘ * beta [ i ] ) ;
}

}
}

Figure 8: Stan code for Gamma Poisson non-negative matrix factorization model.

data {
int < lower=0> U;
int < lower=0> I ;
int < lower=0> K;
int < lower=0> y [U, I ] ;
r ea l < lower=0> lambda0 ;
r ea l < lower=0> alpha0 ;

}

transformed data {
vector < lower=0>[K] alpha0_vec ;
f o r ( k in 1 :K) {

alpha0_vec [ k ] < - alpha0 ;
}

}

parameters {
s implex [K] theta [U ] ; // user p r e f e r en c e
vector < lower=0>[K] beta [ I ] ; // item a t t r i b u t e s

}

model {
f o r (u in 1 :U)

theta [ u ] ~ d i r i c h l e t ( alpha0_vec ) ; // componentwise d i r i c h l e t
f o r ( i in 1 : I )

beta [ i ] ~ exponent i a l ( lambda0 ) ; // componentwise exponent i a l

f o r (u in 1 :U) {
f o r ( i in 1 : I ) {

y [ u , i ] ~ po i s son ( theta [ u ] ‘ * beta [ i ] ) ;
}

}
}

Figure 9: Stan code for Dirichlet Exponential non-negative matrix factorization model.
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data {
int < lower=0> N; // number o f data po in t s in e n t i r e da ta s e t
int < lower=0> K; // number o f mixture components
int < lower=0> D; // dimension
vec to r [D] y [N ] ; // ob s e rva t i on s

r ea l < lower=0> alpha0 ; // d i r i c h l e t p r i o r
}

transformed data {
vector < lower=0>[K] alpha0_vec ;
f o r ( k in 1 :K)

alpha0_vec [ k ] < - alpha0 ;
}

parameters {
s implex [K] theta ; // mixing propor t i ons
vec to r [D] mu[K ] ; // l o c a t i o n s o f mixture components
vector < lower=0>[D] sigma [K ] ; // standard dev i a t i on s o f mixture components

}

model {
// p r i o r s
theta ~ d i r i c h l e t ( alpha0_vec ) ;
f o r ( k in 1 :K) {

mu[ k ] ~ normal ( 0 . 0 , 1 . 0 ) ;
sigma [ k ] ~ lognormal ( 0 . 0 , 1 . 0 ) ;

}

// l i k e l i h o o d
f o r (n in 1 :N) {

r e a l ps [K ] ;
f o r ( k in 1 :K) {

ps [ k ] < - l og ( theta [ k ] ) + normal_log (y [ n ] , mu[ k ] , sigma [ k ] ) ;
}
increment_log_prob ( log_sum_exp ( ps ) ) ;

}
}

Figure 10: Stan code for the gmm example.
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f un c t i on s {
r e a l divide_promote_real ( i n t x , i n t y ) {

r e a l x_real ;
x_real < - x ;
r e turn x_real / y ;

}
}

data {
int < lower=0> NFULL; // t o t a l number o f datapo int s in data s e t
int < lower=0> N; // number o f data po in t s in minibatch

int < lower=0> K; // number o f mixture components
int < lower=0> D; // dimension

vec to r [D] yFULL [NFULL ] ; // data s e t
vec to r [D] y [N ] ; // minibatch

r ea l < lower=0> alpha0 ; // d i r i c h l e t hyper - p r i o r parameter
}

transformed data {
r e a l minibatch_factor ;
vector < lower=0>[K] alpha0_vec ;
f o r ( k in 1 :K) {

alpha0_vec [ k ] < - alpha0 / K;
}
minibatch_factor < - divide_promote_real (N, NFULL) ;

}

parameters {
s implex [K] theta ; // mixing propor t i ons
vec to r [D] mu[K ] ; // l o c a t i o n s o f mixture components
vector < lower=0>[D] sigma [K ] ; // standard dev i a t i on s o f mixture components

}

model {
// p r i o r s
theta ~ d i r i c h l e t ( alpha0_vec ) ;
f o r ( k in 1 :K) {

mu[ k ] ~ normal ( 0 . 0 , 1 . 0 ) ;
sigma [ k ] ~ lognormal ( 0 . 0 , 1 . 0 ) ;

}

// l i k e l i h o o d
f o r (n in 1 :N) {

r e a l ps [K ] ;
f o r ( k in 1 :K) {

ps [ k ] < - l og ( theta [ k ] ) + normal_log (y [ n ] , mu[ k ] , sigma [ k ] ) ;
}
increment_log_prob ( log_sum_exp ( ps ) ) ;

}
increment_log_prob ( l og ( minibatch_factor ) ) ;

}

Figure 11: Stan code for the gmm example, with stochastic subsampling of the dataset.
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