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ABSTRACT

Many songs in large music databases are not labeled with
semantic tags that could help users sort out the songs they
want to listen to from those they do not. If the words that
apply to a song can be predicted from audio, then those
predictions can be used both to automatically annotate a
song with tags, allowing users to get a sense of what qual-
ities characterize a song at a glance. Automatic tag predic-
tion can also drive retrieval by allowing users to search for
the songs most strongly characterized by a particular word.
We present a probabilistic model that learns to predict the
probability that a word applies to a song from audio. Our
model is simple to implement, fast to train, predicts tags
for new songs quickly, and achieves state-of-the-art per-
formance on annotation and retrieval tasks.

1. INTRODUCTION

It has been said that talking about music is like dancing
about architecture, but people nonetheless use words to de-
scribe music. In this paper we will present a simple system
that addresses tag prediction from audio—the problem of
predicting what words people would be likely to use to de-
scribe a song.

Two direct applications of tag prediction are semantic
annotation and retrieval. If we have an estimate of the
probability that a tag applies to a song, then we can say
what words in our vocabulary of tags best describe a given
song (automatically annotating it) and what songs in our
database a given word best describes (allowing us to re-
trieve songs from a text query).

We present the Codeword Bernoulli Average (CBA)
model, a probabilistic model that attempts to predict the
probability that a tag applies to a song based on a vector-
quantized (VQ) representation of that song’s audio. Our
CBA-based approach to tag prediction

e Is easy to implement using a simple EM algorithm.
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e [s fast to train.
e Makes predictions efficiently on unseen data.

e Performs as well as or better than state-of-the-art ap-
proaches.

2. DATA REPRESENTATION
2.1 The CALS500 data set

We train and test our method on the CAL500 dataset [1,
2]. CALS500 is a corpus of 500 tracks of Western popular
music, each of which has been manually annotated by at
least three human labelers. We used the “hard” annotations
provided with CAL500, which give a binary value y;,, €
{0, 1} for all songs j and tags w indicating whether tag w
applies to song j.

CALS500 is distributed with a set of 10,000 39-dimensional

Mel-Frequency Cepstral Coefficient Delta (MFCC-Delta)
feature vectors for each song. Each Delta-MFCC vector
summarizes the timbral evolution of three successive 23ms
windows of a song. CAL500 provides these feature vec-
tors in a random order, so no temporal information beyond
a 69ms timescale is available.

Our goals are to use these features to predict which tags
apply to a given song and which songs are characterized by
a given tag. The first task yields an automatic annotation
system, the second yields a semantic retrieval system.

2.2 A vector-quantized representation

Rather than work directly with the MFCC-Delta feature
representation, we first vector quantize all of the feature
vectors in the corpus, ignoring for the moment what feature
vectors came from what songs. We:

1. Normalize the feature vectors so that they have mean
0 and standard deviation 1 in each dimension.

2. Run the k-means algorithm [3] on a subset of ran-
domly selected feature vectors to find a set of K
cluster centroids.

3. For each normalized feature vector f}; in song j, as-
sign that feature vector to the cluster k;; with the
smallest squared Euclidean distance to f;;.



This vector quantization procedure allows us to represent
each song j as a vector n; of counts of a discrete set of

codewords:
N;

njp = Z 1(kj; = k) (1)
i=1
where nj, is the number of feature vectors assigned to
codeword k, N is the total number of feature vectors in
song j, and 1(a = b) is a function returning 1 if a = b and
Oifa # 0.

This discrete “bag-of-codewords” representation is less
rich than the original continuous feature vector representa-
tion. However, it is effective. Such VQ codebook represen-
tations have produced state-of-the-art performance in im-
age annotation and retrieval systems [4], as well as in sys-
tems for estimating timbral similarity between songs [5,6].

3. THE CODEWORD BERNOULLI AVERAGE
MODEL

In order to predict what tags will apply to a song and what
songs are characterized by a tag, we developed the Code-
word Bernoulli Average model (CBA). CBA models the
conditional probability of a tag w appearing in a song j
conditioned on the empirical distribution 72; of codewords
extracted from that song. One we have estimated CBA’s
hidden parameters from our training data, we will be able
to quickly estimate this conditional probability for new
songs.

3.1 Related work

One class of approaches treats audio tag prediction as a
set of binary classification problems to which variants of
standard classifiers such as the Support Vector Machine
(SVM) [7,8] or AdaBoost [9] can be applied. Once a set of
classifiers has been trained, the classifiers attempt to pre-
dict whether or not each tag applies to previously unseen
songs. These predictions come with confidence scores that
can be used to rank songs by relevance to a given tag (for
retrieval), or tags by relevance to a given song (for anno-
tation). Classifiers like SVMs or AdaBoost focus on bi-
nary classification accuracy rather than directly optimiz-
ing the continuous confidence scores that are used for re-
trieval tasks, which might lead to suboptimal results for
those tasks.

Another approach is to fit a generative probabilistic
model such as a Gaussian Mixture Model (GMM) for each
tag to the audio feature data for all of the songs manifest-
ing that tag [2]. The posterior likelihood p(tag|audio) of
the feature data for a new song being generated from the
model for a particular tag is then used to estimate the rel-
evance of that tag to that song (and vice versa). Although
this model tells us how to generate the audio feature data
for a song conditioned on a single tag, it does not define
a generative process for songs with multiple tags, and so
heuristics are necessary to estimate the posterior likelihood
of a set of tags.

Rather than assuming that the audio for a song depends
on the tags associated with that song, we will assume that
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Figure 1. Graphical model representation of CBA. Shaded
nodes represent observed variables, unshaded nodes repre-
sent hidden variables. A directed edge from node a to node
b denotes that the variable b depends on the value of vari-
able a. Plates (boxes) denote replication by the value in
the lower right of the plate. .J is the number of songs, K is
the number of codewords, and W is the number of unique
tags.

the tags depend on the audio data. This will yield a proba-
bilistic model with a discriminative flavor, and a more co-
herent generative process than that in [2].

3.2 Generative process

CBA assumes a collection of binary random variables vy,
with y;,, € {0,1} determining whether or not tag w ap-
plies to song j. These variables are generated in two steps.
First, a codeword z;,, € {1,..., K} is selected with prob-
ability proportional to the number of times 7 that that
codeword appears in song j’s feature data:
p(zjw = kln;, Nj) = % )
J
Then a value for y;,, is chosen from a Bernoulli distribu-
tion with parameter S.,:

p(ij = 1|ijaﬁ) = ﬂzjww 3)
p(ij = 0|ij»ﬂ) = 1- ﬁzj-ww

The full joint distribution over z and y conditioned on
the observed counts of codewords 7 is:

p(z,y|n) = H H nj\zfjw ﬁz]'ww “@
w

The random variables in CBA and their dependencies
are summarized in figure 1.

3.3 Inference using expectation-maximization

We fit CBA with maximum-likelihood (ML) estimation.
Our goal is to estimate a set of values for our Bernoulli
parameters 3 that will maximize the likelihood p(y|n, 3)
of the observed tags y conditioned on the VQ codeword
counts n and the parameters 3. Analytic ML estimates
for B are not available because of the latent variables z.
We use the Expectation-Maximization (EM) algorithm, a
widely used coordinate ascent algorithm for maximum-
likelihood estimation in the presence of latent variables
[10].

Each iteration of EM operates in two steps. In the ex-
pectation (“E”) step, we compute the posterior of the latent



variables z given our current estimates for the parameters
B. We define a set of expectation variables h ;) corre-
sponding to the posterior p(z;., = k|n,y, 8):

hjwe = p(zjw =kn,y,B) )
_ PWwlzie =k Bp(iw =kn) o
p(ij‘n,ﬁ)
- z%;rg{i_ﬁéw ) %f Yjw =1 -
— ik T Pkw) lfy- -0
YK nji(1-Biw) Jw

In the maximization (“M”) step, we find maximum-
likelihood estimates of the parameters 3 given the ex-
pected posterior sufficient statistics:

E[ij|zjw = k: h} (8)
> P(zjw = k[R)Yjuw
2. P(zjw = k|h)

; h jwk Yjw
— M (10)
Zj hjwk
By iterating between computing h (using equation 7)
and updating 3 (using equation 10), we find a set of values
for 3 under which our training data become more likely.

/Bkw —

€))

3.4 Generalizing to new songs

Once we have inferred a set of Bernoulli parameters (3
from our training dataset, we can use them to infer the
probability that a tag w will apply to a previously unseen
song j based on the counts n; of codewords for that song:

p(ij|njw6) = Zp(zjw = k|nj)p(ij|2jw =k)
k

1
Pjw =1n5,8) = 5= D nirfu (11)
Ik

As a shorthand, we will refer to our inferred value of
Py = 1n;. B) as s

Once we have inferred s;,, for all of our songs and
tags, we can use these inferred probabilities both to re-
trieve the songs with the highest probability of having a
particular tag and to annotate each song with a subset of
our vocabulary of tags. In a retrieval system, we return the
songs in descending order of s;,,. To do automatic tag-
ging, we could annotate each song with the M most likely
tags for that song. However, this may lead to our annotat-
ing many songs with common, uninformative tags such as
“Not Bizarre/Weird” and a lack of diversity in our annota-
tions. To compensate for this, we use a simple heuristic:
we introduce a “diversity factor” d and discount each s,
by d times the mean of the estimated probabilities s.,,. A
higher value of d will make less common tags more likely
to appear in annotations, which may lead to less accurate
but more informative annotations. The diversity factor d
has no impact on retrieval.

The cost of computing each sj,, using equation 11 is
linear in the number of codewords K, and the cost of vec-
tor quantizing new songs’ feature data using the previously

computed centroids obtained using k-means is linear in the
number of features, the number of codewords /K, and the
length of the song. For practical values of K, the total cost
of estimating the probability that a tag applies to a song is
comparable to the cost of feature extraction. Our approach
can therefore tag new songs efficiently, an important fea-
ture for large commercial music databases.

4. EVALUATION

We evaluated our model’s performance on an annotation
task and a retrieval task using the CAL500 data set. We
compare our results on these tasks with two other sets
of published results for these tasks on this corpus: those
obtained by Turnbull et al. using mixture hierarchies
estimation to learn the parameters to a set of mixture-
of-Gaussians models [2], and those obtained by Bertin-
Mahieux et al. using a discriminative approach based on
the AdaBoost algorithm [9]. In the 2008 MIREX audio tag
classification task, the approach in [2] was ranked either
first or second according to all metrics measuring annota-
tion or retrieval performance [11].

4.1 Annotation task

To evaluate our model’s ability to automatically tag unla-
beled songs, we measured its average per-word precision
and recall on held-out data using tenfold cross-validation.

First, we vector quantized our data using k-means. We
tested VQ codebook sizes from K = 5to K = 2500. After
finding a set of K centroids using k-means on a randomly
chosen subset of 125,000 of the Delta-MFCC vectors (250
feature vectors per song), we labeled each Delta-MFCC
vector in each song with the index of the cluster centroid
whose squared Euclidean distance to that vector was small-
est. Each song j was then represented as a K -dimensional
vector 12, with n ;. giving the number of times label % ap-
peared in song j, as described in equation 1.

We ran a tenfold cross-validation experiment modeled
after the experiments in [2]. We split our data into 10 dis-
joint 50-song test sets at random, and for each test set

1. We iterated the EM algorithm described in section
3.3 on the remaining 450 songs to estimate the pa-
rameters 3. We stopped iterating once the negative
log-likelihood of the training labels conditioned on
3 and n decreased by less than 0.1% per iteration.

2. Using equation 11, for each tag w and each song j
in the test set we estimated p(y;., |1, 3), the prob-
ability of song j being characterized by tag w con-
ditioned on 3 and the vector quantized feature data
n;.

3. We subtracted d = 1.25 times the average condi-
tional probability of tag w from our estimate
of p(y;jw|n;, @) for each song j to get a score sy,
for each song.

4. We annotated each song j with the ten tags with the
highest scores 5.



Model | Precision |  Recall [ F-Score | AP | AROC |
UpperBnd 0.712 (0.007) | 0.375 (0.006) | 0.491 1 1
Random 0.144 (0.004) | 0.064 (0.002) | 0.089 | 0.231 (0.004) | 0.503 (0.004)
MixHier 0.265 (0.007) | 0.158 (0.006) | 0.198 | 0.390 (0.004) | 0.710 (0.004)
Autotag (MFCC) 0.281 0.131 0.179 0.305 0.678
Autotag (afeats exp.) 0.312 0.153 0.205 0.385 0.674
CBAK =5 0.198 (0.006) | 0.107 (0.005) | 0.139 | 0.328 (0.009) | 0.707 (0.007)
CBA K =10 0.214 (0.006) | 0.111 (0.006) | 0.146 | 0.336 (0.007) | 0.715 (0.007)
CBA K =25 0.247 (0.007) | 0.134 (0.007) | 0.174 | 0.352(0.008) | 0.734 (0.008)
CBA K =50 0.257 (0.009) | 0.145(0.007) | 0.185 | 0.366 (0.009) | 0.746 (0.008)
CBA K =100 0.263 (0.007) | 0.149 (0.004) | 0.190 | 0.372(0.007) | 0.748 (0.008)
CBA K = 250 0.279 (0.007) | 0.153 (0.005) | 0.198 | 0.385(0.007) | 0.760 (0.007)
CBA K =500 0.286 (0.005) | 0.162 (0.004) | 0.207 | 0.390 (0.008) | 0.759 (0.007)
CBA K = 1000 0.283 (0.008) | 0.161 (0.006) | 0.205 | 0.393 (0.008) | 0.764 (0.006)
CBA K = 2500 0.282 (0.006) | 0.162 (0.004) | 0.206 | 0.394 (0.008) | 0.765 (0.007)

Table 1. Summary of the performance of CBA (with a variety of VQ codebook sizes K), a mixture-of-Gaussians model
(MixHier), and an AdaBoost-based model (Autotag) on an annotation task (evaluated using precision, recall, and F-score)
and a retrieval task (evaluated using average precision (AP) and area under the receiver-operator curve (AROC)). Autotag
(MFCC) used the same Delta-MFCC feature vectors and training set size of 450 songs as CBA and MixHier. Autotag
(afeats exp.) used a larger set of features and a larger set of training songs. UpperBnd uses the optimal labeling for each
evaluation metric, and shows the upper limit on what any system can achieve. Random is a baseline that annotates and

ranks songs randomly.

To evaluate our system’s annotation performance, we
computed the average per-word precision, recall, and F-
score. Per-word recall is defined as the average fraction
of songs actually labeled w that our model annotates with
label w. Per-word precision is defined as the average frac-
tion of songs that our model annotates with label w that are
actually labeled w. F-score is the harmonic mean of pre-
cision and recall, and is one metric of overall annotation
performance.

Following [2], when our model does not annotate any
songs with a label w we set the precision for that word to
be the empirical probability that a word in the dataset is
labeled w. This is the expected per-word precision for w
if we annotate all songs randomly. If no songs in a test set
are labeled w, then per-word precision and recall for w are
undefined, so we ignore these words in our evaluation.

4.2 Retrieval task

To evaluate our system’s retrieval performance, for each
tag w we ranked each song j in the test set by the prob-
ability our model estimated of tag w applying to song j.
We evaluated the average precision (AP) and area under
the receiver-operator curve (AROC) for each ranking. AP
is defined as the average of the precisions at each possi-
ble level of recall, and AROC is defined as the area under
a curve plotting the percentage of true positives returned
against the percentage of false positives returned. As in the
annotation task, if no songs in a test set are labeled w then
AP and AROC are undefined for that label, and we exclude
it from our evaluation for that fold of cross-validation.

4.3 Annotation and retrieval results

Table 1 and figure 2 compare our CBA model’s average
performance under the five metrics described above with
other published results on the same dataset. MixHier is
Turnbull et al.’s system based on a mixture-of-Gaussians
model [2], Autotag (MFCC) is Bertin-Mahieux’s AdaBoost-
based system using the same Delta-MFCC feature vec-
tors as our model, and Autotag (afeats exp.) is Bertin-
Mahieux’s system trained using additional features and
training data [9]. Random is a random baseline that re-
trieves songs in a random order and annotates songs ran-
domly based on tags’ empirical frequencies. UpperBnd
shows the best performance possible under each metric.
Random and UpperBnd were computed by Turnbull et al.,
and give a sense of the possible range for each metric.

We tested our model using a variety of codebook sizes
K from 5 to 2500. Cross-validation performance improves
as the codebook size increases until X = 500, at which
point it levels off. Our model’s performance does not de-
pend strongly on fine tuning K, at least within a range of
500 < K < 2500.

When using a codebook size of at least 500, our CBA
model does at least as well as MixHier and Autotag under
every metric except precision. Autotag gets significantly
higher precision than CBA when it uses additional training
data and features, but not when it uses the same features
and training set as CBA.

Tables 2 and 3 give examples of annotations and re-
trieval results given by our model during cross-validation.
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Figure 2. Visual comparison of the performance of several models evaluated using F-score, mean average precision, and

area under receiver-operator curve (AROC).

4.4 Computational cost

We measured how long it took to estimate the parame-
ters to CBA and to generalize to new songs. All experi-
ments were conducted on one core of a server with a 2.2
GHz AMD Opteron 275 CPU and 16 GB of RAM running
CentOS Linux.

Using a MATLAB implementation of the EM algorithm
described in 3.3, it took 84.6 seconds to estimate CBA’s pa-
rameters from 450 training songs vector-quantized using a
500-cluster codebook. In experiments with other codebook
sizes K the training time scaled linearly with K. Once
3 had been estimated, it took less than a tenth of a mil-
lisecond to predict the probabilities of 174 labels for a new
song.

We found that the vector-quantization process was the
most expensive part of training and applying CBA. Finding
a set of 500 cluster centroids from 125,000 39-dimensional
Delta-MFCC vectors using a C++ implementation of k-
means took 479 seconds, and finding the closest of 500
cluster centroids to the 10,000 feature vectors in a song
took 0.454 seconds. Both of these figures scaled linearly
with the size of the VQ codebook in other experiments.

S. DISCUSSION AND FUTURE WORK

We introduced the Codeword Bernoulli Average model,
which predicts the probability that a tag will apply to a
song based on counts of vector-quantized feature data ex-
tracted from that song. Our model is simple to implement,
fast to train, generalizes to new songs efficiently, and yields
state-of-the-art performance on annotation and semantic
retrieval tasks.

We plan to explore several extensions to this model in
the future. In place of the somewhat ad hoc diversity fac-
tor, one could use a weighting similar to TF-IDF to choose
informative words for annotations. The vector quantiza-
tion preprocessing stage could be replaced with a mixed-
membership mixture-of-Gaussians model that could be fit
simultaneously with 3. Also, we hope to explore princi-
pled ways of incorporating song-level feature data describ-
ing information not captured by MFCCs, such as rhythm.

] Query \ Top 5 Retrieved Songs

John Lennon—Imagine
Shira Kammen—Music of Waters
Crosby Stills and Nash—Guinnevere
Jewel—Enter From the East
Yakshi—Chandra

Tender/Soft

Tim Rayborn—Yedi Tekrar
Solace—Laz 7 8
Eminem—My Fault
Sir Mix-a-Lot—Baby Got Back
2-Pac—Trapped

Hip Hop

Robert Johnson—Sweet Home Chicago
Shira Kammen—Music of Waters
Miles Davis—Blue in Green
Guns n” Roses—November Rain
Charlie Parker—Ornithology

Piano

Tim Rayborn—Yedi Tekrar
Monoide—Golden Key
Introspekt—TBD
Belief Systems—Skunk Werks
Solace—Laz 7 8

Exercising

Nova Express—I'm Alive
Rocket City Riot—Mine Tonite
Seismic Anamoly—WTreckinball
Pizzle—What’s Wrong With My Footman
Jackalopes—Rotgut

Screaming

Table 3. Examples of semantic retrieval from the CAL500
data set. The left column shows a query word, and the right
column shows the five songs in the dataset judged by our
system to best match that word.
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