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ABSTRACT

We develop a method for discovering the latent structure in
MFCC feature data using the Hierarchical Dirichlet Process
(HDP). Based on this structure, we compute timbral simi-
larity between recorded songs. The HDP is a nonparametric
Bayesian model. Like the Gaussian Mixture Model (GMM),
it represents each song as a mixture of some number of
multivariate Gaussian distributions However, the number of
mixture components is not fixed in the HDP, but is deter-
mined as part of the posterior inference process. Moreover,
in the HDP the same set of Gaussians is used to model all
songs, with only the mixture weights varying from song to
song. We compute the similarity of songs based on these
weights, which is faster than previous approaches that com-
pare single Gaussian distributions directly. Experimental re-
sults on a genre-based retrieval task illustrate that our HDP-
based method is both faster and produces better retrieval
quality than such previous approaches.

1 INTRODUCTION

We develop a new method for estimating the timbral sim-
ilarity between recorded songs. Our technique is based on
the hierarchical Dirichlet process, a flexible Bayesian model
for uncovering latent structure in high-dimensional data.

One approach to computing the timbral similarity of two
songs is to train a single Gaussian or a Gaussian Mixture
Model (GMM) on the Mel-Frequency Cepstral Coefficient
(MFCC) feature vectors for each song and compute (for
the single Gaussian) or approximate (for the GMM) the
Kullback-Leibler (K-L) divergence between the two models
[1]. The basic single Gaussian approach with full covariance
matrix (“G1” [2]) has been successful, forming the core of
the top-ranked entries to the MIREX similarity evaluation
task two years running [3, 4].

Although MFCC data are not normally distributed within
songs, using a richer model such as the GMM to more ac-
curately represent their true distribution provides little or
no improvement in numerous studies [2, 5, 1]. This sug-
gests that a “glass ceiling” has been reached for this type
of representation. Moreover, the computational cost of the

Monte Carlo estimation procedure involved in comparing
two GMMs is orders of magnitude more than that incurred
by computing the K-L divergence between two single Gaus-
sians exactly. This is a very significant issue if we want to
compute similarity matrices for large sets of songs, since the
number of comparisons between models that must be done
grows quadratically with the number of songs.

Another approach [6] produced results statistically indis-
tinguishable from the other top algorithms in MIREX 2007
by using a mid-level semantic feature representation to com-
pute similarity. Using painstakingly human-labeled data,
Barrington et al. trained GMMs to estimate the posterior
likelihood that a song was best characterized by each of 146
words. These models then produced a vector for each test
song defining a multinomial distribution over the 146 se-
mantic concepts. To compute the dissimilarity of two songs,
the K-L divergence between these multinomial distributions
for the songs was computed.

The success of this method suggests that alternative sta-
tistical representations of songs are worth exploring. Rather
than take a supervised approach requiring expensive hand-
labeled data, we make use of the Hierarchical Dirichlet Pro-
cess (HDP), which automatically discovers latent structure
within and across groups of data (songs, in our case). This
latent structure generates a compact alternative representa-
tion of each song, and the model provides a natural and ef-
ficient way of comparing songs using K-L divergence.

2 HDP-BASED SIMILARITY USING LATENT
FEATURES

The hierarchical Dirichlet process (HDP) is an extension of
the Dirichlet process (DP), a nonparametric Bayesian model
of mixtures of an unknown number of simple densities. We
first outline the DP and then describe how we model songs
with an HDP.

2.1 Dirichlet Process Mixture Models

The Gaussian Mixture Model (GMM) is a generative pro-
cess that assumes that each of our feature vectors was gen-
erated by one of K multivariate Gaussian distributions. To
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Figure 1. Four tables and eight customers in a Chinese
Restaurant Process (CRP). In this example, the 1st, 3rd, 4th,
and 7th customers all sat at an empty table, whereas the 2nd,
5th, 6th, and 8th sat at existing tables. The 9th customer will
sit at table 1, 2, 3, or 4 with probabilities 3

8+α , 1
8+α , 3

8+α ,
and 1

8+α respectively, or will sit at a new table with proba-
bility α

8+α

draw a new vector yt, the process first chooses a mixture
component index zt ∈ 1...K with probability πzt

(where π
is a vector of mixture probabilities summing to one), then
draws the vector from the ztth Gaussian distribution. Given
K and a set of vectors assumed to have been generated by
a GMM, algorithms such as Expectation-Maximization (E-
M) can find a maximum-likelihood estimate of the mixture
probabilities π1...K , the parameters defining the K Gaus-
sians µ1...K and Σ1...K , and which mixture component zt
generated each vector yt.

A nagging issue in mixture modeling is model selection,
i.e., choosing the number of components K with which to
explain the data. Recent work in nonparametric Bayesian
statistics has produced models such as the Dirichlet Process
Mixture Model (DPMM) that sidestep this issue. Where the
GMM assumes the existence of K mixture components, the
DPMM [7] assumes the existence of a countably infinite set
of mixture components, only a finite subset of which are
used to explain the observations.

A traditional metaphor for the way a DP generates data
is called the Chinese Restaurant Process (CRP). In the CRP,
we imagine a Chinese restaurant with an infinite number of
communal tables and a positive scalar hyperparameter α.
The restaurant is initially empty. The first customer sits at
the first table and orders a dish. The second customer en-
ters and decides either to sit at the first table with probabil-
ity 1

1+α or a new table with probability α
1+α . When sitting

at a new table the customer orders a new dish. This pro-
cess continues for each new customer, with the tth customer
choosing either to sit at a new table with probability α

α+t−1
or at the kth existing table with probability nk

α+t−1 , where
nk is the number of other customers already sitting at table
k. Notice that popular tables become more popular, and that
as more customers come in they become less and less likely
to sit down at a new table.

We obtain a DPMM from a CRP as follows. The “dishes”
in the CRP correspond to probability density functions, and
the process of “ordering” a dish k corresponds to drawing
the parameters φk to a PDF from a prior distribution H over
those parameters. (For example, each dish φk can be a Gaus-

sian with parameters {µk,Σk} = φk ∼ H .) The process of
a customer t choosing a table zt corresponds to choosing a
distribution φzt

from which to draw an observation yt (in
our case, a feature vector). Since customers in the CRP tend
to sit at tables with many other customers, the DPMM tends
to draw points from the same mixture components again and
again even though it has an infinite number of mixture com-
ponents to choose from.

Analysis under a DPMM involves inferring the poste-
rior distribution over its latent parameters conditioned on
the data. This provides a partition of the data (feature vec-
tors) into an unknown number of clusters (the number of
tables) and the identities of the parameters φ (the means and
covariances of the Gaussian mixture components). The pos-
terior distribution P (φ, z1...T |y1...T ) of the set of mixture
component parameters φ and the cluster labels for each fea-
ture vector z1...T to a DPMM conditioned on the data y1...T
can be inferred using Markov Chain Monte Carlo (MCMC)
methods such as Gibbs sampling [7]. For simple data, there
will be relatively few unique cluster labels in z, but more
clusters will be necessary to explain more complex data.

2.2 The Hierarchical Dirichlet Process

The Hierarchical Dirichlet Process (HDP) [8] is a model of
grouped data, which is more appropriate than the DPMM
for modeling songs represented as a collection of MFCCs.
Rather than associate each song with a single table in the
restaurant, each song is represented as a group of features
which sit at a song-specific “local” restaurant. The dishes
for this restaurant, however, are drawn from a “global” set
of dishes. Thus, each song is represented as a distribution
over latent components, but the population of latent compo-
nents is shared across songs. Similarity between songs can
be defined according to the similarity between their corre-
sponding distributions over components.

The generative process underlying the HDP can be un-
derstood with the Chinese Restaurant Franchise (CRF). The
CRF takes two hyperparameters α and γ. Each song j has
its own CRP, and each feature vector yj,t chooses a table
from CRP(α). If it sits down at a new table, then it chooses
a dish for that table from a global CRP (with hyperparame-
ter γ) shared by all songs – that is, it either chooses a dish
that is already being served at some number of other tables
m with probability proportional to m, or it chooses a new
dish with probability proportional to γ.

Although we have defined the CRP as a sequential pro-
cess, in fact data under a CRP are exchangeable – the proba-
bility of a seating plan under the CRP is the same regardless
of the order in which the customers sat down. This allows
us to think of the CRP as defining an implicit prior on infi-
nite multinomial distributions over mixture components. In
the DPMM, the infinite-dimensional vector of probabilities
π̄ defining such an infinite multinomial distribution is analo-
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Figure 2. Chinese Restaurant Franchise (CRF) for three
songs with eight observations. Below are three CRPs (cor-
responding to the three songs), and above is the global CRP
from which the CRPs get their dishes. Each customer j, i
sitting at a table in the global CRP corresponds to table i
in restaurant j, and customer j, i’s table membership in the
global CRP determines the dish that is served at table i in
restaurant j. If a new customer coming into a restaurant j
sits down at a new table, then the dish for that table will
be φ1, φ2, φ3, or φ4 with probability 5

γ+11 , 3
γ+11 , 2

γ+11 , or
1

γ+11 respectively, or a new dish with probability γ
γ+11 .

gous to the K-dimensional vector π in the GMM. The HDP
has J such vectors π̄1...J , each of which defines a different
distribution over the same mixture components.

We use Gibbs sampling to approximate the posterior dis-
tribution over the latent variables conditioned on observed
data. The distribution is over the cluster partition assign-
ing feature vectors to clusters and a truncated vector πj
defining the mixture proportions for each song over the fi-
nite subset of K mixture components that are actually as-
signed to observations. We let πj,1...K = π̄j,1...K , and
πj,K+1 = 1 −

∑K
k=1 π̄j,k, where πj,K+1 is the probability

of drawing an observation from a mixture component that
has not been used to explain any feature vector in any song.

For a complete exposition of the HDP, including how to
infer the posteriors for its parameters conditioned on data,
see [8].

2.3 Representing Songs Using the HDP

The mixture components parameterized by φ1...K capture
the latent structure in the feature data, and the mixture pro-
portion vectors π1...J express the feature data for songs 1...J
in terms of that latent structure. φ and πj together can de-
scribe the empirical distribution of feature vectors for a song
j as richly as a GMM can, but the HDP does not require that
we choose a fixed value of K, and represents the songs in a
more compact way.

To compute the distance between two songs i and j, we
can compute the symmetrized KL divergence between the
posterior distributions P (πi|β,m) and P (πj |β,m) which
are of the form

P (πj |β,m) = Dir(β1 +mj,1, ..., βK +mj,K , βK+1) (1)

where mj,k is the number of tables in restaurant j serving
dish k, βk is the likelihood of choosing a dish k from the
global CRP, and βK+1 is 1 −

∑K
k=1 βk, the likelihood of

choosing a previously unseen dish in the global CRP.
This allows us to compare two songs in terms of the latent

structure of their feature data, rather than directly comparing
their distributions over the low-level features as the G1 algo-
rithm and GMM-based algorithms do. The KL divergence
between these two posteriors can be efficiently computed.
The KL divergence between two Dirichlet distributions with
parameters v and w each of length K is [9]:

D(Dir(v)||Dir(w)) = log
Γ(

∑
v)

Γ(
∑
w)

+
K∑
s=1

log(Γ(ws))
log(Γ(vs))

+

K∑
s=1

((vs − ws)(Ψ(vs)−Ψ(
∑

v))

where Γ(x) is the gamma function, Ψ(x) is the digamma
function (the first derivative of the log gamma function), and∑
v and

∑
w denote the sum of the K elements of v and w

respectively.
This is less expensive to compute than the KL divergence

between two high-dimensional multivariate Gaussian densi-
ties. It can be sped up further by computing the gamma and
digamma terms offline for each song.

2.4 Generalizing to New Songs

It is important that our approach be scalable to new songs
not seen during training. Once we have inferred the global
dish likelihoods β and the mixture component parameters
φ1...K , we can infer the posterior distribution over the mix-
ture proportions πJ+1 for a new song J + 1 conditioned on
β, φ, and the new data yJ+1 using the same Gibbs sam-
pling techniques originally used to train the model, holding
all other parameters constant.



3 EVALUATION

In this section we describe the experiments we performed to
evaluate our approach against G1, GK (the analogous algo-
rithm for K-component GMMs), and an approach based on
Vector Quantization (VQ).

3.1 South by Southwest Dataset

We test our approach on a dataset that we compiled from
the South by Southwest (SXSW) 2007 and 2008 festivals’
freely distributed “artist showcase” mp3s [10]. We selected
a set of up to twenty mp3s (all by different artists to avoid bi-
asing the results) for seven genres: country, electronic, hip-
hop, jazz, metal, punk, and rock. Songs that we felt were un-
representative of their genre were removed or replaced prior
to any quantitative evaluations. There were fewer than 20
usable songs available for country (12), jazz (14), and metal
(15), so those genres are slightly underrepresented. There
are a total of 121 songs in the dataset.

3.2 Features

All models were trained on the same sets of feature vectors,
which for each frame consisted of 13 MFCCs (extracted us-
ing jAudio [11]) combined with 26 delta features computed
by subtracting the MFCCs for frame t from those at frame
t − 1 and t − 2, for a total of 39 dimensions. Each frame
was approximately 23 ms long, or 512 samples at the files’
sampling rate of 22050 Hz, with a hop size of 512 samples
(no overlap). 1000 feature vectors were extracted from the
middle of each song.

3.3 Models Evaluated

3.3.1 G1

As described above, G1 models each song’s distribution
over feature vectors with a single multivariate Gaussian dis-
tribution with full covariance matrix. Models are compared
using the symmetrized KL divergence.

3.3.2 K-component GMMs

We trainK-component GMMs for each song using the E-M
algorithm. The symmetrized KL divergence between mod-
els is approximated by drawing 1000 synthetic feature vec-
tors from the trained models and evaluating their log likeli-
hoods under both models [1]. This approach is evaluated for
K = 5, 10, 20, and 30.

3.3.3 VQ Codebook

This algorithm is meant to be a simple approximation to
the HDP method we outlined above. First, we cluster all
of the feature vectors for all songs into K groups using the

k-means algorithm, renormalizing the data so that all dimen-
sions have unit standard deviation. This defines a codebook
of K cluster centers that identifies every feature vector with
the cluster center to which it is closest in Euclidean space.
For each song j, we compute the vector πj,1...K of the rela-
tive frequencies of each cluster label. Each πj,1...K defines a
multinomial distribution over clusters, and we compute the
distance between songs as the symmetrized KL divergence
between these multinomial distributions (smoothed by a fac-
tor of 10−5 to prevent numerical issues).

This algorithm, like our HDP-based method, represents
each song as a multinomial distribution over latent cluster
identities discovered using an unsupervised algorithm, and
lets us see how a much simpler algorithm that uses similar
ideas performs compared with the HDP.

3.3.4 HDP

We train an HDP on all of the data using the direct assign-
ment method [8], inferring the posterior distributions over
the πj’s for each song j and computing the distance between
two songs i and j as the KL divergence between the posteri-
ors over πi and πj . We place vague gamma priors on α and
γ [8]:

α ∼ gamma(1, 0.1), γ ∼ gamma(1, 0.1) (2)

and learn them during inference. For the prior H over φ,
we use the normal-inverse-Wishart distribution [12] with pa-
rameters κ0 = 2, ν0 = 41 (the number of dimensions plus
two), and µ0 = ȳ (the mean of all feature vectors across
songs). The normal-inverse-Wishart matrix parameter Λ0

was chosen by averaging the covariance matrices from 100
clusters of feature vectors, each of which was obtained by
choosing a feature vector at random and choosing the 24,200
feature vectors closest to it under a Euclidean distance met-
ric. (The number 24,200 was chosen because it was 1/5 of
the total number of points.) The goal of this process is to
choose a matrix Λ0 that resembles the covariance matrix of
fairly large cluster of points, encouraging the model to find
similarly shaped clusters. Using smaller (larger) clusters to
choose Λ0 would result in the model creating more (fewer)
latent topics to explain the data.

3.4 Experiments

Since human-labeled ground truth similarity data is inher-
ently expensive and difficult to acquire, we follow previous
researchers [1, 2] in using genre as a proxy for similarity.
We assume that all songs labeled with the same genre are
“similar,” which allows us to use evaluation metrics from
the information retrieval literature. We first compute a full
121x121 distance matrix between all songs using each al-
gorithm. For each query song sq , each other song si is



G1 G5 G10 G20 G30 VQ5 VQ10 VQ30 VQ50 VQ100 HDP
13.24 829 1487 2786 4072 0.58 0.59 0.63 0.686 0.85 0.25

Table 1. Time in seconds required to compute a 121x121 distance matrix for G1, GMM-based (K = 5, 10, 20, 30), VQ-based
(K = 5, 10, 30, 50, 100), and HDP-based algorithms.

G1 G5 G10 G20 G30 VQ5 VQ10 VQ30 VQ50 VQ100 HDP
RP 0.3254 0.3190 0.3287 0.3144 0.3146 0.2659 0.2997 0.3191 0.340 0.3313 0.3495
AP 0.3850 0.3761 0.3746 0.3721 0.3706 0.3171 0.3546 0.3850 0.3989 0.3910 0.3995
AUC 0.6723 0.6712 0.6687 0.6679 0.6661 0.6513 0.6675 0.6846 0.6893 0.6758 0.7002

Table 2. Three measures of retrieval quality: mean R-Precision (RP), mean Average Precision (AP), and mean Area Under
ROC Curve (AUC) for G1, GMM-based (K = 5, 10, 20, 30), VQ-based (K = 5, 10, 30, 50, 100), and HDP-based algorithms
on the large SXSW dataset.

G1 HDP
RP 0.5486 0.6000
AP 0.6807 0.7154
AUC 0.8419 0.8983

Table 3. Mean R-Precision (RP), mean Average Precision
(AP), and mean Area Under ROC Curve (AUC) for G1 and
our HDP-based algorithm on the smaller dataset.

given a rank rq,i based on its similarity to sq . The qual-
ity of this ranking, i.e. how well it does at ranking songs
of the same genre as sq more similar than songs of differ-
ent genres, is summarized using R-Precision (RP), Average
Precision (AP), and the Area Under the ROC Curve (AUC),
which are standard metrics from the information retrieval
literature [13]. All experiments were conducted on a Mac-
Book Pro with a 2.0 GHz Intel Core Duo processor and 2
GB of RAM. All models were implemented in MATLAB.

3.4.1 Testing on Additional Data

To test our HDP-based method’s ability to generalize to un-
seen data using the method in section 2.4, we use the HDP
trained on the large SXSW set to compute a similarity ma-
trix on a smaller set consisting of 5 artist-filtered songs per
genre (35 in all) by artists not in the training set. The elec-
tronic, punk, rap, and rock songs came from the SXSW artist
showcase collection, and the country, jazz, and metal songs
came from a dataset previously used by George Tzanetakis
[14]. We also compute a similarity matrix on this dataset
using G1, and compare the RP, AP, and AUC metrics for
retrieval quality obtained using both algorithms.

4 RESULTS

Tables 1, 2, and 3 summarize the results of our experiments.
The best results in each row are in bold.

The amount of time required to compute the distance ma-
trices for the GMMs was, as expected, enormous by com-
parison to the other models. The cost of computing the KL
divergence for the VQ-based and HDP-based models was
more than an order of magnitude lower even than the cost of
computing the KL divergence between single Gaussians.

The HDP performed better than the other models for all
three standard information retrieval metrics, although the
VQ model with K = 50 was a very close second. None
of the GMMs outperformed G1.

The results in table 3 show that the HDP-based approach
does generalize well to new songs, showing that the al-
gorithm can be scaled up efficiently to databases of many
songs.

4.1 SIMILARITY HUBS

The G1 and GK approaches are known to produce “hubs”
[1] – an undesirable phenomenon where certain songs are
found to be similar to many other songs. The hub phe-
nomenon is a potentially serious concern, since it can re-
sult in very bad matches being selected as similar to a query
song.

Our HDP-based approach does not suffer from this prob-
lem. Figure 3 shows how often each song is ranked in the top
five of another song’s similarity list for similarity matrices
obtained from G1, the HDP, and choosing distances at ran-
dom. The randomly generated histogram shows the sort of
distribution of hubs one would expect to see due to chance
in a dataset of this size. The HDP’s histogram closely re-
sembles the random one, indicating an absence of abnormal
hubs. G1’s histogram, by contrast, shows more severe and
more numerous hubs than the other two histograms.
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Figure 3. Histograms of how often each song is ranked in
the top five of another song’s similarity list for similarity
matrices obtained using G1 (left), the HDP (center), and by
choosing distances at random (right).

5 CONCLUSION

We developed a new method for assessing the similarity
between songs. Our HDP-based approach outperformed
the G1 algorithm, can compute large distance matrices ef-
ficiently, and does not suffer from the “hub” problem where
some songs are found to be similar to all other songs.
Since our approach does not have access to any informa-
tion about temporal structure beyond that provided by the
MFCC deltas (about 69 ms in total), we expect that com-
bining the distances it provides with fluctuation patterns or
some similar feature set would provide an improvement in
similarity performance, as it does for the G1C algorithm [2].

One area of future work involves relaxing the bag-of-
feature-vectors assumption. For example, we might learn
distributions over texture patches of feature vectors instead
of individual feature vectors. Hidden Markov models can
also be fit into the HDP framework [8], and may yield im-
proved results.
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