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Abstract

This is the supplement for “Nonparametric Density Estimation for Stochastic Op-
timization with an Observable State Variable.” It contains details on constructing
the approximate function for gradient-based optimization.

1 Details for gradient-based optimization
Let F,,(z | 5) be the approximate function. We construct it in the following manner.
Step 1: Observe S, and generate weights (w,,(S,,S;))/_;. This is discussed in Section 3 of

the main paper. An example observation of stochastic gradients and random state is given in Figure
An example of those stochastic gradients weighted by the state is given in Figure[2]
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Figure 1: Observe gradients, here blue dots, and the random state, .S, here a red line.
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Figure 2: Weight observed gradients with (wy, (Sn, S;))7, . Shading indicates relative weight.

Step 2: Construct slopes for f*(x|S,) given gradient Blm, decisions ., 1 and weights
(wy,(Sn, Si))7=y. We begin by placing the observed decisions in ascending order: ;vﬁ)] < xﬁ] <
- < xfn_1]7 where [0], ..., [n — 1] is the ordered numbering. A necessary and sufficient condition

for f,’f (z|Sy) to be convex is for the slopes to be nondecreasing; that is,
d d
N Sn < — n Sn
gy o (@15n) < dyf (y|Sn)

for every x < y. We find a set of slopes ”5,[0](571) < <ok 1] (Sp) corresponding to the

ordered decisions xfo], cee ;vfnfl} using weighted least squares minimization, which is a quadratic
program,
n—1 R 2
vk(s) = arg min Z wy, (s,5) (ﬂ(% Sliy Wli+1)) — v[i]) ; )
i=0
subject to : vj_1) S v, 1=1,...,n— 1L

Equation (T)) is a quadratic program and easily solvable with a solver. An example of slopes found
in this manner is given in Figure

Step 3: Reconstruct marginal functions f*(z|S,) and approximate function F, (z|s) given

slopes vF(s) = {vF [0](5'”), L [n_l]( )} Suppose that X' is compact; there exists a min-
imum value zk . and a maximum value zF . for each dimension k. Set x[ ) = zk . and
Ty = Thae Define f1:(x]S,) as follows,

T (@|Sh) qu x[z xﬁ'—l])JF”fL,[e](Sn) (x—xﬁ]), 2)

where /£ is the smallest index such that x[ 7 <z < xﬁ, +1) An example is given in FigureEl Construct
the approximate function by setting

d
Fo(@]Sn) =Y fr(x|Sn).
k=1
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Figure 3: Weight observed gradients with (wy, (Sn, S;))7=,, with slope found via Equation .
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Figure 4: Reconstructed marginal function f7(z|S,,) from slope function in Figure

Step 4: Choose z,, given F,(x|S,,). We want to choose an z,, so that we learn as much as possible
for an arbitrary s. This is done by picking x,, as follows,

T, = argmin F,(x|S,). 3)
zEX
Note that F,, is a piecewise linear function; if X is a linear constraint set, the minimum can be found

with a linear program. Note that linear programs can quickly be solved for thousands of decision
variables and constraints.



The full implementation is given in Algorithm|[I]

Algorithm 1: Gradient-based optimization with an observable state variable

Require: Query state s, initial slopes vg.
1: fori =0ton —1do
2:  Observe random state .S;.

3:  Generate weights (w;(S;, S]));;lo

4: fork=1toddo

5: Place decision observations in ascending order: xf“o] < xﬁ] <. < xﬁ_l].

6: Compute slopes v¥(S;) by
i—1 ) )

Uf(si) = arg mvin Zwi (S,‘, S[j]) (ﬂ(l‘ﬁ], S[j],w[jJrl]) — U[j]) 5
j=0
subject to : vjj_y) <wpy, j=1,...,0— L
7: Reconstruct marginal function f¥(2*|S;) using slopes v¥(.S;) by
¢
FE@]Si) = D vl (S0) (afyy = afi_a) + vl (S) (x = afy),

=0

where / is the smallest index such that xf‘é] <z< xf} -

8: end for
9:  Set

d
vy = argmin > f("]5)).
k=1

10:  Observe random gradient 3(x;, S;,wit1) = Vo F (2, Si, Z(wit1))-
11: end for

12: Compute v¥(s), k =1,...,d as in Step 6.

13: Compute %(a:k\s), k=1,...,dusing v¥(s) as in Step 7.

n
14: Set d
* _ : k(o k
o (s) = arg min g_l fn (@F]s).
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