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Abstract

We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new
class of methods for nonparametric regression. DP-GLMs allow both continuous and cat-
egorical inputs, and can model the same class of responses that can be modeled with a
generalized linear model. Given a data set of input-response pairs, the DP-GLM gives an
estimate of the mean function, which maps each possible input to an average response. We
prove conditions for the asymptotic unbiasedness of this estimate, and show that these con-
ditions hold in several examples. We study the properties of the DP-GLM, and show why
it provides better predictions and density estimates than existing Dirichlet process mixture
regression models. We evaluate DP-GLMs on several data sets, comparing it to modern
methods of nonparametric regression like CART, Bayesian trees and Gaussian processes.
Compared to existing techniques, the DP-GLM provides a single algorithm that performs
well in many regression settings.
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1. Introduction

In this paper, we examine the general regression problem. The general regression problem
models a response variable Y as dependent on a set of covariates x,

Y|z~ f(m(z)). (1)

The function m(z) is the mean function, which maps the covariates to the conditional
mean of the response; the distribution f characterizes the deviation of the response from its
conditional mean. The simplest example is linear regression, where m(z) is a linear function
of z, and f is a Gaussian distribution with mean m(x) and fixed variance.

Generalized linear models (GLMs) extend linear regression to many types of response
variables (McCullagh and Nelder, 1989). In their canonical form, a GLM assumes that the
conditional mean of the response is a linear function of the covariates, and that the response
distribution is in an exponential family. Many classical regression and classification methods
are GLMs, including logistic regression, multinomial regression, and Poisson regression.

The GLM framework makes two assumptions about the relationship between the covari-
ates and the response. First, the covariates enter the distribution of the response through
a linear function; a non-linear function may be applied to the output of the linear function,
but only one that does not depend on the covariates. Second, the variance of the response
cannot depend on the covariates. Both these assumptions can be limiting—there are many
applications where we would like the response to be a non-linear function of the covariates
or where our uncertainty around the response might depend on the covariates. In this
paper, we develop a general regression algorithm that relaxes both of these assumptions.
Our method captures arbitarily shaped response functions and heteroscedasticity, i.e., the
property of the response distribution where both its mean and variance change with the
covariates, while still retaining the flexibility of GLMs.

Our idea is to model the mean function m(z) by a mixture of simpler “local” response
distributions f;(m;(z)), each one applicable in a region of the covariates that exhibits similar
response patterns. To handle multiple types of responses, each local regression is a GLM.
This means that each m;(z) is a linear function, but a non-linear mean function arises
when we marginalize out the uncertainty about which local response distribution is in
play. (See Figure 1 for an example with one covariate and a continuous response function.)
Furthermore, our method captures heteroscedasticity: the variance of the response function
can vary across mixture components and, consequently, varies as a function of the covariates.

Finally, we use a Bayesian nonparametric mixture model to let the data determine both
the number and form of the local mean functions. This is critical for modeling arbitrary
response distributions: complex response functions can be constructed with many local
functions, while simple response functions need only a small number. Unlike frequentist
nonparametric regression methods, e.g., those that create a mean function for each data
point, the Bayesian nonparametric approach uses only as complex a model as the data
require. Moreover, it produces a generative model. It can be used to infer properties other
than the mean function, such as the conditional variance or response quantiles.

Thus, we develop Dirichlet process mixtures of generalized linear models (DP-GLMs),
a regression tool that can model many response types and many response shapes. DP-
GLMs generalize several existing Bayesian nonparametric regression models (Muller et al.,



1996; Shahbaba and Neal, 2009) to a variety of response distributions. We derive Gibbs
sampling algorithms for fitting and predicting with DP-GLMs. We investigate some of their
statistical properties, such as the form of their posterior and conditions for the asymptotic
unbiasedness of their predictions. We study DP-GLMs with several types of data.

We organized the paper as follows. In Section 2, we review the current research on
Bayesian nonparametric regression and discuss how the DP-GLM extends this field. In
Section 3, we review Dirichlet process mixture models and generalized linear models. In
Section 4, we construct the DP-GLM and derive algorithms for posterior computation. In
Section 5 we give general conditions for unbiasedness and show several models where the
conditions hold. In Section 6 we study the DP-GLM and other methods on three data sets;
our study illustrates that the DP-GLM provides a powerful nonparametric regression model
that can be used in many types of data analysis.

2. Related work

Existing methods for Bayesian nonparametric regression include Gaussian processes (GP),
Bayesian regression trees, and Dirichlet process mixtures.

GP priors assume that the observations arise from a Gaussian process model with known
covariance function form (Rasmussen and Williams (2006)). GPs are can model many re-
sponse types, including continuous, categorical, and count data (Rasmussen and Williams,
2006; Adams et al., 2009). With the proper choice of covariance function, GPs can handle
continuous and discrete covariates (Rasmussen and Williams, 2006; Qian et al., 2008). GPs
assume that the response exhibits a constant covariance; this assumption is relaxed with
Dirichlet process mixtures of GPs (Rasmussen and Ghahramani, 2002) or treed GPs (Gra-
macy and Lee, 2008).

Regression tree models, such as classification and regression trees (CART) Brieman et al.
(1984), are a natural way to handle regression with continuous, categorical or mixed data.
They split the data into a fixed, tree-based partitioning and fit a regression model within
each leaf of the tree. Bayesian regression trees place a prior over the size of the tree and
can be viewed as an automatic bandwidth selection method for CART (Chipman et al.,
1998). Bayesian trees have been expanded to include linear models (Chipman et al., 2002)
and GPs (Gramacy and Lee, 2008) in the leaf nodes.

In regression, the Dirichlet process has been applied to problems with a continuous re-
sponse. West et al. (1994); Escobar and West (1995) and Muller et al. (1996) used joint
Gaussian mixtures for continuous covariates and response. Rodriguez et al. (2009) general-
ized this method using dependent DPs, that is, Dirichlet processes with a Dirichlet process
prior on their base measures, in a setting with a response defined as a set of functionals.
However, regression by a joint density estimate poses certain challenges. The balance be-
tween fitting the response and the covariates, which often outnumber the response, can be
slanted toward fitting the covariates at the cost of fitting the response.

To avoid these issues—which amount to over-fitting the covariate distribution and under-
fitting the response—some researchers have developed methods that use local weights on the
covariates to produce local response DPs. This has been achieved with kernels and basis
functions (Griffin and Steel, 2007; Dunson et al., 2007), GPs (Gelfand et al., 2005) and
general spatial-based weights (Griffin and Steel, 2006, 2007; Duan et al., 2007). Still other



methods, again based on dependent DPs, capture similarities between clusters, covariates
or groups of outcomes, including in non-continuous settings (De Iorio et al., 2004; Rodriguez
et al., 2009). The method presented here is equally applicable to the continuous response
setting and tries to balance its fit of the covariate and response distributions by introducing
local GLMs—the clustering structure is based on both the covariates and how the response
varies with them.

There is less research about Bayesian nonparametric models for other types of response.
Mukhopadhyay and Gelfand (1997) and Ibrahim and Kleinman (1998) used a DP prior for
the random effects portion of a GLM. Likewise, Amewou-Atisso et al. (2003) used a DP
prior to model arbitrary symmetric error distributions in a semi-parametric linear regression
model. These methods still maintain the assumption that the covariates enter the model
linearly and in the same way. Our work is closest to Shahbaba and Neal (2009). They
proposed a model that mixes over both the covariates and response, where the response is
drawn from a multinomial logistic model. The DP-GLM is a generalization of their idea.

Asymptotic properties of Dirichlet process regression models are not well studied. Most
current research centers around the consistency of the posterior density for DP Gaussian
mixture models (Barron et al., 1999; Ghosal et al., 1999; Ghosh and Ramamoorthi, 2003;
Walker, 2004; Tokdar, 2006) and semi-parametric linear regression models (Amewou-Atisso
et al., 2003; Tokdar, 2006). Recently, the posterior properties of DP regression estimators
have been studied. Rodriguez et al. (2009) showed point-wise asymptotic unbiasedness for
their model assuming continuous covariates under different treatments with a continuous
responses and a conjugate base measure (normal-inverse Wishart). In Section 5 we show
pointwise asymptotic unbiasedness of the DP-GLM in both the continuous and categorical
response settings. In the continuous response setting, our results generalize those of Ro-
driguez et al. (2009) and Rodriguez (2007). In the categorical response setting, our theory
provides results for the classification model of Shahbaba and Neal (2009).

3. Mathematical background

In this section we provide mathematical background. We review Dirichlet process mixture
models and generalized linear models.

Dirichlet Process Mixture Models. The Dirichlet process (DP) is a distribution over
distributions (Ferguson, 1973). It is denoted,

G ~ DP(aGy), (2)

where G is a random distribution. There are two parameters. The base distribution Gy is
a distribution over the same space as G. For example, if G is a distribution on reals then
Gy must be a distribution on reals too. The concentration parameter « is a positive scalar.
One property of the DP is that random distributions G are discrete, and each places its
mass on a countably infinite collection of atoms drawn from Gy.

Consider the model

G ~ DP(aGy) (3)
0, ~ G. (4)



Marginalizing out the random distribution, the joint distribution of n replicates of 6; is

p(B1n | aGo) = / <HG(92-)> P(G)dG. (5)
=1

This joint distribution has a simpler form. The conditional distribution of 6,, given 6., _1)
follows a Polya urn distribution (Blackwell and MacQueen, 1973),

n—1
1 o
9n|‘91:(n—1) ~ m Z 591- + mGO- (6)
=1

With this conditional distribution, we use the chain rule to specify the joint distribution.

Equation (6) reveals the clustering property of the joint distribution of 0;.,: There is a
positive probability that each ¢; will take on the value of another 6;, leading some of the
variables to share values. This equation also reveals the roles of scaling parameter o and
base distribution Gg. The unique values contained in 6., are drawn independently from
Go, and the parameter o determines how likely 6,1 is to be a newly drawn value from Gy
rather than take on one of the values from 6;.,,.

In a DP mixture, 6; is a latent variable that parameterizes the distribution of an observed
data point, point (Antoniak, 1974),

P ~DP(aGy),
®i ~ P7
zi|0; ~ f(-]0;).

Consider the posterior distribution of 6;., given x1.,. Because of the clustering property,
observations group according to their shared parameters. Unlike finite clustering models,
however, the number of groups is not assumed known in advance of seeing the data. For
this reason, DP mixtures are sometimes called “infinite clustering” models.

Generalized Linear Models. Generalized linear models (GLMs) build on linear re-
gression to provide a flexible suite of predictive models. GLMs relate a linear model to
a response via a link function; examples include familiar models like logistic regression,
Poisson regression, and multinomial regression. See McCullagh and Nelder (1989).

GLMs have three components: the conditional probability model of response Y given
covariates x, the linear predictor, and the link function. GLMs assume that the response
distribution is in the exponential family,

yn — b(n)
ol = exp (P22 4 el ).
Here we give the canonical form of the exponential family, where a, b, and ¢ are known
functions specific to the exponential family, ¢ is a scale parameter (sometimes called a
dispersion parameter), and 7 is the canonical parameter. A linear predictor, X 3, is used to
determine the canonical parameter through a set of transformations. The mean response
is '(n) = p = E[Y|X] (Brown, 1986). However, we can choose a link function g such that
p =g Y(Xp), which defines  equal to X 3.
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Figure 1: The top figure shows the training data (gray) fitted into clusters, with the pre-
diction given a single sample from the posterior, #%) (red). The bottom figure
shows the smoothed regression estimate (black) for the Gaussian model of Equa-
tion (7) with the testing data (blue). Data plot multipole moments against power
spectrum Cy for cosmic microwave background radiation (Bennett et al., 2003).

4. Dirichlet process mixtures of generalized linear models

We now turn to Dirichlet process mixtures of generalized linear models (DP-GLMs), a
Bayesian predictive model that places prior mass on a large class of response densities.
Given a data set of covariate-response pairs, we describe Gibbs sampling algorithms for
approximate posterior inference and prediction. We derive theoretical properties of the
DP-GLM in Section 5.

4.1 Model formulation

In a DP-GLM, we assume that the covariates X are modeled by a mixture of exponential-
family distributions, the response Y is modeled by a GLM conditioned on the covariates,
and that these models are connected by associating a set of GLM coeflicients with each
exponential family mixture component. Let 6§ = (6,,0,) be the bundle of parameters over
X and Y | X, and let Gg be a base measure on the space of both. For example, 6, might
be a set of d-dimensional multivariate Gaussian location and scale parameters for a vector
of continuous covariates; 6, might be a d + 2-vector of reals for their corresponding GLM



linear prediction coefficients, along with a GLM dispersion parameter. The full model is

P ~ DP(aGy),
0= (97:7:E79y,i)‘P ~ P7
leez,a: ~ fl?(’al,l?))
Yilwi, 05y ~ GLM (| X, 0; ).

The density f; describes the covariate distribution; the GLM for y depends on the form of
the response (continuous, count, category, or others) and how the response relates to the
covariates (i.e., the link function).

The Dirichlet process clusters the covariate-response pairs (x,y). When both are ob-
served, i.e., in “training,” the posterior distribution of this model will cluster data points
according to near-by covariates that exhibit the same kind of relationship to their response.
When the response is not observed, its predictive expectation can be understood by cluster-
ing the covariates based on the training data, and then predicting the response according
to the GLM associated with the covariates’ cluster. The DP prior acts as a kernel for
the covariates; instead of being a Euclidean metric, the DP measures the distance between
two points by the probability that the hidden parameter is shared. See Figure 1 for a
demonstration of the DP-GLM.

We now give a few examples of the DP-GLM that will be used throughout this paper.

Example: Gaussian model. We now give an example of the DP-GLM for continuous
covariates/response that will be used throughout the rest of the paper. For continuous
covariates/response in R, we model locally with a Gaussian distribution for the covariates
and a linear regression model for the response. The covariates have mean y; ; and variance
01'2, ; for the 4% dimension of the i*" observation; the covariance matrix is diagonal in this
example. The GLM parameters are the linear predictor S;0,...,3; 4 and the response
variance Uzy. Here, 0, = (1i.1:d, 04,1:a) and 0y ; = (5;.0.d, 0i,y). This produces a mixture of
multivariate Gaussians. The full model is,

P ~ DP(aGy), 7)
0,|P ~ P,
XijlOiz ~ N (pij, 03;) ji=1,....d,

d
YilXi, 00y ~ N | Bio + > BijXij, 03,
=1

This model has been proposed by West et al. (1994); Escobar and West (1995) and Muller
et al. (1996). However, they use a fully populated covariance matrix that gives de facto
B parameters. This is computationally expensive for larger problems and adds posterior
likelihood associated with the covariates, rather than the response. A discussion of the
problems associated with the latter issue is given in Section 4.4.

Example: multinomial model (Shahbaba and Neal, 2009). This model was pro-
posed by Shahbaba and Neal (2009) for nonlinear classification, using a Gaussian mixture
to model continuous covariates and a multinomial logistic model for a categorical response



with K categories. The covariates have mean p; ; and variance o? j for the j** dimension of

the i*" observation; the covariance matrix is diagonal for simplicity. The GLM parameters
are the K linear predictor B0, ---,Bidk k=1,..., K. The full model is,

P ~ DP(aGy), ®)
0;|P ~ P,
Xi,j|91',w'\“N(Mij:Uz‘2j)> j=1,...,d,
exp <ﬁi,o,k + Z;; /Bz',j,kXi,j)

K d ’
>_i—1€xXp (@',ox + 251 ﬂz’,j,eXi,j)

P(Y; = k| X;,0iy) =

Example: Poisson model with categorical covariates. We model the categorical
covariates by a mixture of multinomial distributions and the count response by a Poisson
distribution. If covariate j has K categories, let (p;j1,...,pi k) be the probabilities for

categories 1,..., K. The covariates are then coded by indicator variables, 1;x, .y, which
are used with the linear predictor, 3;,0, 3;1,1:K,- -, Bi,4,1:x- The full model is,
P ~ DP(aGy), (9)
0;|P ~ P,
P(Xi,j:k|9i,x):pi,j,ka jzl,...,d, k‘Il,...,K,

d K
Ail X, 05y = exp | Bio + Z Z/Bi,j,kl{Xi,j:k} ;
=1 k=1
e*)‘i/\;C
o

P(Y; = k| X;,0;,) = k=0,1,2,....

We apply Model (9) to data in Section 6.

4.2 Heteroscedasticity and overdispersion

One advantage of the DP-GLM is that it provides a strategy for handling common prob-
lems in predictive modeling. Many models, such as GLMs and Gaussian processes, make
assumptions about data dispersion and homoscedasticity. Over-dispersion occurs in single
parameter GLMs when the data variance is larger than the variance predicted by the model
mean. Mukhopadhyay and Gelfand (1997) have successfully used DP mixtures over GLM
intercept parameters to create classes of models that include over-dispersion. The DP-GLM
retains this property, but is not limited to linearity in the covariates.

A model is homoscedastic when the response variance is across all covariates; a model
is heteroscedastic when the response variance changes with the covariates. Models like
GLMs are homoscedastic and give poor fits when that assumption is violated in the data.
In contrast, the DP-GLM captures heteroscedasticity when mixtures of GLMs are used.
The mixture model setting allows variance to be modeled by a separate parameter in each
cluster or by a collection of clusters in a single covariate location. This lead to smoothly
transitioning heteroscedastic posterior response distributions.
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Figure 2: Modeling heteroscedasticity with the DP-GLM and other Bayesian nonparametric
methods. The estimated mean function is given along with a 90% predicted

confidence interval for the estimated underlying distribution. DP-GLM produces
a smooth mean function and confidence interval.

A demonstration of this property is shown in Figure 2, where we compare a DP-GLM
to a homoscedastic model (Gaussian processes) and heteroscedastic modifications of ho-
moscedastic models (treed Gaussian processes and treed linear models). The DP-GLM is
robust to heteroscedastic data—it provides a smooth mean function estimate, while the
other models are not as robust or provide non-smooth estimates.



4.3 Posterior prediction with a DP-GLM

The DP-GLM is used in prediction problems. Given a collection of covariate-response pairs
D = (X;,Y;)?,, we estimate the joint distribution of (X,Y") | D . For a new set of covariates
x, we use the joint to compute the conditional distribution, Y |z, D and the conditional
expectation, E[Y |z, D]. We give the step-by-step process for formulating specific DP-GLM
models and computing the conditional distribution of the response.

Choosing the mixture component and GLM. We begin by choosing f, and the GLM.
The Dirichlet process mixture model and GLM provide flexibility in both the covariates and
the response. Dirichlet process mixture models allow many types of variable to be modeled
by the covariate mixture and subsequently transformed for use as a covariate in the GLM.
Note that certain mixture distributions support certain types of covariates but may not
necessarily be a good fit. The same care that goes into choosing distributions and GLMs
in a parametric setting is required here.

Choosing the base measure and other hyperparameters. The choice of the base
measure g affects how expressive the DP-GLM is, the computational efficiency of the pre-
diction and whether some theoretical properties, such as asymptotic unbiasedness, hold. For
example, Gg for the Gaussian model is a distribution over (p;, 0, 8i0:d, 0iy). A conjugate
base measure is normal-inverse-gamma, for each covariate dimension and multivariate nor-
mal inverse-gamma for the response parameters. This Gq allows all continuous, integrable
distributions to be supported, retains theoretical properties, such as asymptotic unbiased-
ness, and yields efficient posterior approximation by collapsed Gibbs sampling (Neal, 2000).
In summary, the base measure is chosen in line with data size, distribution type, distribution
features (such as heterogeneity, and others) and computational constraints.

Hyperparameters for the DP-GLM include the DP scaling parameter o and hyperpa-
rameters parameters for the base measure Gg. We can place a gamma prior on « (Escobar
and West, 1995); the parameters of Gy may also have a prior. Each level of prior reduces
the influence of the hyperparameters, but adds computational complexity to posterior in-
ference (Escobar and West, 1995).

Approximating the posterior and forming predictions. We derive all quantities
of interest—i.e. conditional distributions and expectations—from the posterior of the joint
distribution of (z,y). Define f(z,y| D) as the joint posterior distribution given data D and
f(x,y]01.n) as the joint distribution given parameters 6;., that are associated with data
D = (X;,Y;)?,. The posterior can be expressed through a conditional expectation,

While the true posterior distribution, f(z,y|D), may be impossible to compute, the joint
distribution conditioned on 6;.,, has the form

n

| 0120 wl0)G () + e D Rl 00 o).

i=1

(6%
f(xaylglzn)_ a+n

10



We approximate the expectation in Equation (10) by Monte Carlo integration using M
posterior samples of 0.y,

M
1
@,y D)~ 2 3 fay] 61
m:l

We use Markov chain Monte Carlo (MCMC) to obtain M ii.d. samples from this
distribution. We use Gibbs sampling, a widely-used algorithm for DP mixture models. (See
Escobar (1994), MacEachern (1994), Escobar and West (1995) and MacEachern and Miiller
(1998) for foundational work; Neal (2000) provides a review and state of the art algorithms.)
We construct a Markov chain on the hidden variables 6., such that its limiting distribution
is the posterior. We give implementation details in Appendix A-1.

We use a similar strategy to construct the conditional distribution of Y | X = x, D. The
conditional distribution is

f(Y,z|D)

TIX=a D)=, D)y

Again using M i.i.d. samples from the posterior of 0., | D,

M
1 m
FOIX =aD)~ 37 3 F(VIX = w.00)

m=1
_ L % a [ fy(Y|X = 2,0) f,(2]0)Go(d0) + S0, f,(Y|X =z, 0§m))fw(x19§m>)'
Ho o J Jo(@10)Go(d0) + 1L, felal0]™)

We use the same methodology to compute the conditional expectation of the response
given a new set of covariates x and the observed data D, E[Y | X = z,D]. Again using
iterated expectation, we condition on the latent variables,

E[Y|X =2, D] =E[E[Y | X = z,01,] | D]. (11)

Conditional on the latent parameters 6., that generated the observed data, the inner
expectation is

E[Y|X = z,0] f2(x]0)Go(df) + > i | E[Y|X = z, 6] fz(x]t%).

E[Y|X = &, 01] = 9T
4 mj —
a [ fo(2]0)Go(d) + 323, fo(]0;)
(12)
Since we assume Y is a GLM, E[Y|X = z, 6] is available in closed form as a function of x
and 6.
The outer expectation of Equation (11) is usually intractable. We approximate it by

Monte Carlo integration with M posterior samples of 0.,

S

E[Y|X =2,D] ~ — ZE[Y|X::E,9§T)]. (13)

m:l

11



4.4 Comparison to the Dirichlet process mixture model regression

The DP-GLM models the response Y conditioned on the covariates X. An alternative is one
where we model (X,Y’) from a common mixture component in a classical DP mixture (see
Section 3), and then form the conditional distribution of the response from this joint. We
investigate the mathematical differences between these approaches and the consequences of
those differences. (They are compared empirically in Section 6.)

A Dirichlet process mixture model (DPMM) has the form,

P ~ DP(aGy), (14)
0;|P ~ P,

Xil0i oz ~ fu(®|0:2),

Yilbiy ~ fy(ylOiy)-

Using this model to form the conditional distribution of Y has been studied in Escobar
and West (1995), but has not been widely used in practice due to poor results (with a
diagonal covariance matrix) or computational difficulties (with a full covariance matrix).
We focus on the case with diagonal covariance. We study why it performs poorly and
how the DP-GLM improves on it with minimal increase in computational difficulty. The
difference between Model (14) and the DP-GLM is that the distribution of Y given 6 is
conditionally independent of the covariates X. This difference has consequences on the
posterior distribution and, thus, the predictions.

One consequence is that the GLM response component acts to remove boundary bias
for samples near the boundary of the covariates in the training data set. The GLM fits a
linear predictor through the training data; all predictions for boundary and out-of-sample
covariates follow the local predictors. The traditionally DP model, however, only fits a local
mean; all boundary and out-of-sample predictions center around that mean. The boundary
effects are compared in Figure 3. The DP-GLM can be viewed as a Bayesian analogy of
a locally linear kernel estimator while the regular DP is similar to the Nadaraya-Watson
kernel estimator Nadaraya (1964); Watson (1964).

Another consequence is that the proportion of the posterior likelihood devoted to the
response differs between the two methods. Consider the log of the posterior of the DPMM
given in Model (14). Assume that f, is a single parameter exponential, where 6, = 3,

K d
007 D) oc > 1 UBe) + Y UyelBe,) + > 4(0c,a; | D) - (15)
i=1 ceC; j=1

Here, ¢ denotes log likelihood and “ox” means “proportional in the log space.” The log of the
DP-GLM posterior for a single parameter exponential family GLM, where 6, = (8o, . .., f4),
has the form,

d d

(OP"™ | D) oc Y | D o) + Y el Bae) + ) Ubc,w, I DY| . (16)
] 0

i=1 |j= ceC; j=1

As the number of covariates grows, the likelihood associated with the covariates grows in
both equations. However, the likelihood associated with the response also grows with the
extra response parameters in Equation (16), whereas it is fixed in Equation (15).

12



These posterior differences lead to two predictive differences. First, the DP-GLM is
much more resistant to dimensionality than the DPMM. Since the number of response
related parameters grows with the number of covariate dimensions in the DP-GLM, the
relative posterior weight of the response does not shrink as quickly in the DP-GLM as
it does in the DPMM. This keeps the response variable important in the selection of the
mixture components and makes the DP-GLM a better predictor than the DPMM as the
number of dimensions grows.

As the dimensionality grows, the DP-GLM produces less stable predictions than the
DPMM. While the additional GLM parameters help maintain the relevance of the response,
they also add noise to the prediction. This is seen in Figure 3. The GLM parameters in
this figure have a Gaussian base measure, effectively creating a local ridge regression.! In
lower dimensions, the DP-GLM produced more stable results than the DPMM because a
smaller number of larger clusters were required to fit the data well. The DPMM, however,
consistently produced stable results in higher dimensions as the response became more of a
sample average than a local average. The DPMM has the potential to predict well if changes
in the mean function coincide with underlying local modes of the covariate density. However,
the DP-GLM forces the covariates into clusters that coincide more with the response variable
due to the inclusion of the slope parameters.

We now discuss the theoretical properties of the DP-GLM.

5. Weak Consistency and Asymptotic Unbiasedness of the DP-GLM
Model

In this section, we study the asymptotic properties of the DP-GLM model, namely weak
consistency of the joint density estimate and asymptotic unbiasedness of the regression esti-
mate. Consistency is the notion that posterior distribution accumulates in regions close to
the true distribution. Weak consistency assures that the posterior distribution accumulates
in regions of densities where “properly behaved” functions (i.e., bounded and continuous)
integrated with respect to the densities in the region are arbitrarily close to the integral
with respect to the true density. We then use the weak consistency results to give conditions
for asymptotic unbiasedness of the regression estimate. Both consistency and asymptotic
unbiasedness act as frequentist justification of Bayesian methods; more observations lead
to models that tend toward the “correct” value. Neither weak consistency nor asymptotic
unbiasedness are guaranteed for Dirichlet process mixture models.

Notation for this section is more complicated than the notation for the model. Let
fo(x,y) be the true joint distribution of (x,y); in this case, we will assume that fy is
a density. Let F be the set of all density functions over (z,y). Let II/ be the prior
over F induced by the DP-GLM model. Let Ey [] denote the expectation under the true
distribution and Eps[-] be the expectation under the prior I17.

In general, an estimator is a function of observations. Assuming a true distribution of
those observations, an estimator is called unbiased if its expectation under that distribution
is equal to the value that it estimates. In the case of DP-GLM, that would mean for every

1. In unpublished results, we tried other base measures, such as a Laplacian distribution. They produced
less stable results than the Gaussian base measure.
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Comparison over Dimensions
DP Mixture DPGLM

NS A AN

Figure 3: A plain Dirichlet process mixture model regression (left) versus DP-GLM, plotted
against the number of spurious dimensions (vertical plots). We give the estimated
mean function along with a 90% predicted confidence interval for the estimated
underlying distribution. Data have one predictive covariate and a varying number
of spurious covariates. The covariate data were generated by a mixture model.
DP-GLM produces a smoother mean function and is much more resistant to
spurious dimensionality.
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x in a fixed domain A and every n > 0,
IEfo [Eﬂf [Y|JI, (Xiv Y;)?:l]] = Efo [Y‘LL’]

Since we use Bayesian priors in DP-GLM, we will have bias in almost all cases. The best
we can hope for is asymptotic unbiasedness, where as the number of observations grows to
infinity, the mean function estimate converges to the true mean function. That is, for every
e A,

Eqs[Ylx, (X, V)i, = E[Y|x] asn— oc.

5.1 Weak Consistency

Weak consistency is the idea that the posterior distribution, IT/(f | (X;, Y;)% ) collects in
weak neighborhoods of the true distribution, fo(z,y). A weak neighborhood of fy of radius
€, We(fo), is defined as follows,

Wi = {1 ‘ [ gt yazay - | f(x,y)g(x,y)dwdy‘ <e}

for every bounded, continuous function g. Aside from guaranteeing that the posterior
collects in regions close to the true distribution, weak consistency can be used to show
asymptotic unbiasedness under certain conditions. We give conditions for weak consistency
for joint posterior distribution of the Gaussian and multinomial models and use these results
to show asymptotic unbiasedness of the regression estimate for these same models.

We now give a theorem for the asymptotic unbiasedness of the Gaussian model.

Theorem 1 Let II/ be the prior induced by the Gaussian model of Equation (7). If fo(x,y)
has compact support and Gq has support R% x Ri x RHL xR, then

I We(fo) | (Xi, Yi)iey) = 1
as n — oo for every € > 0.

Posterior consistency of similar models, namely Dirichlet process mixtures of Gaussians, has
been extensively studied by Ghosal et al. (1999); Ghosh and Ramamoorthi (2003); Tokdar
(2006) and convergence rates in Walker et al. (2007). The compact support condition for
fo allows for broad array of base measures to produce weakly consistent posteriors. See
Tokdar (2006) for results on non-compactly supported fp.

We now give an analogous theorem for the multinomial model.

Theorem 2 Let II/ be the prior induced by the multinomial model of Equation (8). If fo(x)
has compact support, Gg has support R% x Ri x R and PglY = k| X = x] is continuous
mx fork=1,..., K, then

I We(fo) | (Xi, Yi)iey) = 1
as n — oo for every € > 0.

The proofs of Theorems 1 and 2 are given in the Appendix.
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5.2 Asymptotic Unbiasedness of the Regression Estimate

We approach asymptotic unbiasedness by using weak consistency for the posterior of the
joint distribution and then placing additional integrability constraints on the base measure
Go and continuity constraints on fy. We now give results for the Gaussian and multinomial
models.

Theorem 3 Let II7 be the prior induced by the Gaussian model of Equation (7). If
(i) Go and fy satisfy the conditions of Theorem 1,

(ii) fo(x,y) is continuous over its compact support C, and

(iii) [(Bo+ L, Bizi)Go(dB) < oo for every x € C,

then
nl;n;o IEfo [Eﬂf [Y|:IZ, (Xi7 E)?:l” = Efo [Y‘x]

almost surely IP]‘%;’.

Similarly, we give a theorem for the multinomial model.
Theorem 4 Let II7 be the prior induced by the multinomial model of Equation (8). If
(i) Go and fy satisfy the conditions of Theorem 2,
(ii) fo(z) is continuous over its compact support C, and
(iii) Py, [Y = k| X = ] is continuous in x fork=1,..., K,
then

lim Eg, [Py [Y = ke, (X, Yo l) = Py [Y = klal

n—oo

almost surely PF fork=1,... K.

See the Appendix for proofs of Theorems 3 and 4.

5.3 Asymptotic Unbiasedness Example: Gaussian Model

Examples that satisfy Theorems 1 and 3 are as follows.

Normal-Inverse-Wishart. Note that in the Gaussian case, slope parameters can be
generated by a full covariance matrix: using a conjugate prior, a Normal-Inverse-Wishart,
will produce an instance of the DP-GLM. Define the following model, which was used by
Muller et al. (1996),

P ~ DP(aGy), (17)
0;| P ~ P,
(Xi,Yi)[0; ~ N(p, %)
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The last line of Model (17) can be broken down in the following manner,
Xil0; ~ N (g, Xz),
Yil 0 v N (1 + BTS00 — pig), o = BT, 1D)

where
2 3T
=] =T s ]
Ha b X,
We can then define (3 as,
Bo = py = b7 55 Bra=b"%".

The base measure Gy is defined as,
(1, X) ~ Normal Inverse Wishart(\, v, a, B).

Here A is a mean vector, v is a scaling parameter for the mean, a is a scaling parameter for
the covariance, and B is a covariance matrix.

Diagonal Normal-Inverse-Gamma. It is often more computationally efficient to spec-
ify that X, is a diagonal matrix. In this case, we can specify a conjugate base measure
component by component:

gij ~ Inverse Gamma(aj, b;), j=1,....d,
Ui,jNN()\jan,j/Vj)a jzl,...,d,

oiy ~ Inverse Gamma(ay, by),

Bijloiy ~ Nar1(Ay, 0y /vy).

M,L’]

The Gibbs sampler can still be collapsed, but the computational cost is much lower than
the full Normal-Inverse-Wishart.

Normal Mean, Log Normal Variance. Conjugate base measures tie the mean to the
variance and can be a poor fit for small, heteroscedastic data sets. The following base
measure was proposed Shahbaba and Neal (2009),

log(oij) ~ N(mjs,s5,), j=y,1,....,d,
pig ~ N(mju, s5,,), j=1,....d,
Bij ~ N(mjgp,s35) j=0,...,d

5.4 Asymptotic Unbiasedness Example: Multinomial Model
Now consider the multinomial model of Shahbaba and Neal (2009), given in Model (8),
P ~ DP(aGy),
0;|P ~ P,
Xijl0iz ~ N (,uij,(r?j) , j=1,....d,
exp (/Bi,o,k + 205 Bz',j,kXi,j)

K d ’
D=1 €XP (ﬁi,ox + > 51 5i,j,£Xz‘,j)

P(Y; = k| X;,0;,) =
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Examples that satisfy Theorems 2 and 4 are as follows.

Normal-Inverse-Wishart. The covariates have a Normal-Inverse-Wishart base measure
while the GLM parameters have a Gaussian base measure,

(Hiz, Xiz) ~ Normal Inverse Wishart(\,v,a, B),
Bijo ~ N(mjk,s51), j=0,....d, k=1,...,K.
Diagonal Normal-Inverse-Gamma. It is often more computationally efficient to spec-

ify that >, is a diagonal matrix. Again, we can specify a conjugate base measure component
by component while keeping the Gaussian base measure on the GLM components,

oi; ~ Inverse Gamma(a;, b;), j=1,...,d,
tij | oij ~ N(Aj, 065/v5), j=1,....d,
Bijn | Tigg ~ N(mjg, 53 5), j=0,....d, k=1,...,K.

Normal Mean, Log Normal Variance. Likewise, for heteroscedastic covariates we can
use the log normal base measure of Shahbaba and Neal (2009),

log(0ij) ~ N(mjo,s5,), j=1,...,d,
piig ~ N(mju,s3 ), j=1,....d,
Bk ~ N(mjkg, 55 55) j=0,....d, k=1,....K

6. Empirical study

We compare the performance of DP-GLM regression to other regression methods. We
studied data sets that illustrate the strengths of the DP-GLM, including robustness with
respect to data type, heteroscedasticity and higher dimensionality than can be approached
with traditional methods. Shahbaba and Neal (2009) used a similar model on data with
categorical covariates and count responses; their numerical results were encouraging. We
tested the DP-GLM on the following datasets.

Datasets. We selected three data sets with continuous response variables. They high-
light various data difficulties within regression, such as error heteroscedasticity, moderate
dimensionality (10-12 covariates), various input types and response types.

e Cosmic Microwave Background (CMB) Bennett et al. (2003). The data
set consists of 899 observations which map positive integers £ = 1,2,...,899, called
‘multipole moments,” to the power spectrum C,. Both the covariate and response are
considered continuous. The data pose challenges because they are highly nonlinear
and heteroscedastic. Since this data set is only two dimensions, it allows us to easily
demonstrate how the various methods approach estimating a mean function while
dealing with non-linearity and heteroscedasticity.

e Concrete Compressive Strength (CCS) Yeh (1998). The data set has eight
covariates: the components cement, blast furnace slag, fly ash, water, superplasticizer,
coarse aggregate and fine aggregate, all measured in kg per m?, and the age of the
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mixture in days; all are continuous. The response is the compressive strength of the
resulting concrete, also continuous. There are 1,030 observations. The data have
relatively little noise. Difficulties arise from the moderate dimensionality of the data.

Solar Flare (Solar) Bradshaw (1989). The response is the number of solar flares
in a 24 hour period in a given area; there are 11 categorical covariates. 7 covariates
are binary and 4 have 3 to 6 classes for a total of 22 categories. The response is the
sum of all types of solar flares for the area. There are 1,389 observations. Difficulties
are created by the moderately high dimensionality, categorical covariates and count
response. Few regression methods can appropriately model this data.

Dataset testing sizes ranged from very small (20 observations) to moderate sized (800 obser-
vations). Small dataset sizes were included due to interests in (future) online applications.

Competitors. The competitors represent a variety of regression methods; some methods
are only suitable for certain types of regression problems.

Ordinary Least Squares (OLS). A parametric method that often provides a rea-
sonable fit when there are few observations. Although OLS can be extended for use
with any set of basis functions, finding basis functions that span the true function
is a difficult task. We naively choose [1 X7 ... X4|T as basis functions. OLS can be
modified to accommodate both continuous and categorical inputs, but it requires a
continuous response function.

CART. A nonparametric tree regression method generated by the Matlab function
classregtree. It accommodates both continuous and categorical inputs and any type
of response.

Bayesian CART. A tree regression model with a prior over tree size (Chipman et al.,
1998); it was implemented in R with the tgp package.

Bayesian Treed Linear Model. A tree regression model with a prior over tree size
and a linear model in each of the leaves (Chipman et al., 2002); it was implemented
in R with the tgp package.

Gaussian Processes (GP). A nonparametric method that can accommodate only
continuous inputs and continuous responses. GPs were generated in Matlab by the
program gpr of Rasmussen and Williams (2006).

Treed Gaussian Processes. A tree regression model with a prior over tree size and
a GP on each leaf node (Gramacy and Lee, 2008); it was implemented in R with the
tgp package.

Basic DP Regression. Similar to DP-GLM, except the response is a function only
of p,, rather than By + > f;x;. For the Gaussian model,

P ~ DP(aGy),
0;|P ~ P,
Xil0; ~ N(ptiz, 07,),
Yil0; ~ N (piy, Ulz,y’)
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METHOD MEAN ABSOLUTE ERROR MEAN SQUARE ERROR

Training set size 30 50 100 250 500 30 50 100 250 500
DP-GLM 0.58 0.51 0.49 0.48 0.45|1.00 0.94 0.91 0.94 0.83
LINEAR REGRESSION 0.66 0.65 0.63 0.65 0.63 | 1.08 1.04 1.01 1.04 0.96
CART 0.62 0.60 0.60 0.56 0.56 | 1.45 1.34 1.43 1.29 1.41
BAYESIAN CART 0.66 0.64 0.54 050 0.47|1.04 1.01 0.93 0.94 0.84
TREED LINEAR MODEL | 0.64 0.52 0.49 0.48 0.46 | 1.10 0.95 0.93 0.95 0.85
GAUSSIAN PROCESS 0.55 0.3 0.50 0.51 0.47 | 1.06 097 0.93 096 0.85
TREED GP 0.52 0.49 0.48 0.48 0.46 | 1.03 0.95 0.95 0.96 0.89

Table 1: Mean absolute and square errors for methods on the CMB data set by training
data size. The best results for each size of training data are in bold.

This model was explored in Section 4.4.

e Poisson GLM (GLM). A Poisson generalized linear model, used on the Solar Flare
data set. It is suitable for count responses.

Cosmic Microwave Background (CMB) Results. For this dataset, we used a Guas-
sian model with base measure

Mz ~ N(mxv 82)7 O-S% ~ exp {N(mxvs’ Sis)} ’

T

50:d ~ N(my,O:da 3370;0})) 0—5 ~ €xXp {N(mm,m 3:2(:,5)} :

This prior was chosen because the variance tails are heavier than an inverse gamma and
the mean is not tied to the variance. It is a good choice for heterogeneous data because of
those features. Computational details are given in Appendix A-6.

All non-linear methods except for CART (DP-GLM, Bayesian CART, treed linear mod-
els, GPs and treed GPs) did comparably on this dataset; CART had difficulty finding an
appropriate bandwidth. Linear regression did poorly due to the non-linearity of the dataset.
Fits for heteroscedasticity for the DP-GLM, GPs, treed GPs and treed linear models on
250 training data points can be seen in Figure 2. See Figure 4 and Table 1 for results.

Concrete Compressive Strength (CCS) Results. The CCS dataset was chosen be-
cause of its moderately high dimensionality and continuous covariates and response. For
this dataset, we used a Gaussian model and a conjugate base measure with conditionally
independent covariate and response parameters,

(e, 02) ~ Normal — Inverse — Gamma(mg, Sz, az, by,
(Bo-d, O'Z) ~ Multivariate Normal — Inverse — Gamma(My, Sy, ay, by).
This base measure allows the sampler to be fully collapsed but has fewer covariate-associated
parameters than a full Normal-Inverse-Wishart base measure, giving it a better fit in a

moderate dimensional setting. In testing, it also provided better results for this dataset
than the exponentiated Normal base measure used for the CMB dataset; this is likely due

20



CMB Dataset

<

@D

QD

=}

>

oy

(%) .

g Algorithm

@ | 4 DP-GLM

m

§ ~+ OLS
()] CART
= G .
© =| _  Gaussian
> g Process

w Treed

e} .

g Gaussian

) Process

m

S

[ [
5 10 30 50 100 250 500
Number of Observations

Figure 4: The average mean absolute error (top) and mean squared error (bottom) for
ordinary least squares (OLS), tree regression, Gaussian processes and DP-GLM
on the CMB data set. The data were normalized. Mean +/— one standard
deviation are given for each method.
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Figure 5: The average mean absolute error (top) and mean squared error (bottom) for ordi-
nary least squares (OLS), tree regression, Gaussian processes, location/scale DP
and the DP-GLM Poisson model on the CCS data set. The data were normalized.
Mean +/— one standard deviation are given for each method.

to the low noise and variance of the CCS dataset. Computational details are given in
Appendix A-7.

Results on this dataset were more varied than those for the CMB dataset. GPs had
the best performance overall; on smaller sets of training data, the DP-GLM outperformed
frequentist CART. Linear regression, basic DP regression and Bayesian CART all performed
comparatively poorly. Treed linear models and treed GPs performed very well most of the
time, but had convergence problems leading to overall higher levels of predictive error.
Convergence issues were likely caused by the moderate dimensionality (8 covariates) of the
dataset. See Figure 5 and Table 2 for results.

Solar Flare Results. The Solar dataset was chosen to demonstrate the flexibility of DP-
GLM. Many regression techniques cannot accommodate categorical covariates and most
cannot accommodate a count-type response. For this dataset, we used the following DP-
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METHOD MEAN ABSOLUTE ERROR MEAN SQUARE ERROR
30 50 100 250 500 30 50 100 250 500

DP-GLM 0.54 050 045 042 040 | 0.47 041 033 028 0.27
LOCATION/SCALE DP 0.66 0.62 0.58 0.56 0.54 | 0.68 0.59 0.52 0.48 0.45
LINEAR REGRESSION 0.61 0.56 0.51 0.50 0.50 | 0.66 0.50 0.43 0.41 0.40

CART 0.72 0.62 0.52 0.43 0.34 | 0.87 0.65 0.46 0.33 0.23
BavesiaN CART 0.78 0.72 0.63 0.55 0.54 | 0.95 0.80 0.61 0.49 0.46
TREED LINEAR MODEL | 1.08 0.95 0.60 0.35 1.10 | 7.85 9.56 4.28 0.26 1232
GAUSSIAN PROCESS 0.53 0.52 0.38 0.31 0.26 | 0.49 0.45 0.26 0.18 0.14
TREED GP 0.73 0.40 0.47 0.28 0.22 | 1.40 0.30 3.40 0.20 0.11

Table 2: Mean absolute and square errors for methods on the CCS data set by training
data size. The best results for each size of training data are in bold.

GLM,
P ~ DP(aGy),
0;| P~ P,
Xijl0i ~ (pijas--PijK3G))s
d K(j)
Yi|0; ~ Poisson | Bio+ > > Bijklix,,-k}
J=1 k=1

We used a conjugate covariate base measure and a Gaussian base measure for j3,

(Pj1s -5 Pji(G) ~ Dirichlet(ajq, ..., a; k), Bk ~ N(mj, Sg,k)'

Computational details are given in Appendix A-8.

The only other methods that can handle this dataset are CART, Bayesian CART and
Poisson regression. GP regression was run with a squared exponential covariance function
and Gaussian errors to make use of the ordering in the covariates. The DP-GLM had good
performance under both error measures. The high mean squared error values suggests that
frequentist CART overfit while the high mean absolute error for Poisson regression suggests
that it did not adequately fit nonlinearities. See Figure 6 and Table 3 for results.

Discussion. The DP-GLM is a relatively strong competitor on all of the datasets. It was
more stable than most of its Bayesian competitors (aside from GPs) on the CCS dataset.
Our results suggest that the DP-GLM would be a good choice for small sample sizes when
there is significant prior knowledge; in those cases, it acts as an automatic outlier detector
and produces a result that is similar to a Bayesian GLM. Results from Section 4 suggest
that the DP-GLM is not appropriate for problems with high dimensional covariates; in those
cases, the covariate posterior swamps the response posterior with poor numerical results.

7. Conclusions and Future Work

We developed the Dirichlet process mixture of generalized linear models (DP-GLM), a flex-
ible Bayesian regression technique. We discussed its statistical and empirical properties; we
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Figure 6: The average mean absolute error (top) and mean squared error (bottom) for tree
regression, a Poisson GLM (GLM) and DP-GLM on the Solar data set. Mean
+/— one standard deviation are given for each method.

METHOD

MEAN ABSOLUTE ERROR
50 100 200 500 800

MEAN SQUARE ERROR
50 100 200 500 800

DP-GLM

Po1ssoN REGRESSION
CART

BavesiaN CART
GAUSSIAN PROCESS

0.52 049 048 0.45 0.44
0.65 0.59 0.54 0.52 0.48
0.53 0.48 0.50 0.47 0.47
0.59 0.52 0.51 0.47 0.45
0.55 0.47 0.47 0.45 0.44

0.84 0.76 0.71 0.69 0.63
0.87 0.84 0.80 0.73 0.64
1.13 0.88 1.03 0.88 0.83
0.86 0.80 0.78 0.71 0.60
1.14 0.83 0.83 0.81 0.67

Table 3: Mean absolute and square errors for methods on the Solar data set by training
data size. The best results for each size of training data are in bold.
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gave conditions for asymptotic unbiasedness and gave situations in which they hold; finally,
we tested the DP-GLM on a variety of datasets against state of the art Bayesian com-
petitors. The DP-GLM was competitive in most setting and provided stable, conservative
estimates, even with extremely small sample sizes.

One concern with the DP-GLM is computational efficiency as implemented. All results
were generated using MCMC, which does not scale well to large datasets. An alternative
implementation using variational inference (Blei and Jordan, 2005), possibly online vari-
ational inference (Sato, 2001), would greatly increase computational feasibility for large
datasets.

Our empirical analysis of the DP-GLM has implications for regression methods that
rely on modeling a joint posterior distribution of the covariates and the response. Our
experiments suggest that the covariate posterior can swamp the response posterior, but
careful modeling can mitigate the effects for problems with low to moderate dimensionality.
A better understanding would allow us to know when and how such modeling problems can
be avoided.

Appendix

A-1 Posterior Inference

In the Gibbs sampler, the state is the collection of labels (z1,...,z,) and parameters
(0],...,0%), where 6} is the parameter associated with cluster ¢ and K is the number
of unique labels given z;.,. In a collapsed Gibbs sampler, all or part of (07,...,60}) is
eliminated through integration. Let z_; = (21,..., -1, Zi+1,. -, 2n). A basic inference al-

gorithm is given in Algorithm 1 Convergence criteria for our numerical examples are given

Algorithm 1: Gibbs Sampling Algorithm for the DP-GLM
Require: Starting state (z1,...,2,), (67,...,0%), convergence criteria.
1: repeat
2 for i =1ton do
3 Sample z; from p(z; | D, z—;, 075 ).
4 end for
5. forc=1to K do
6: Sample 0} given {(X;,Y;) : z; = c}.
7
8
9

end for
if Convergence criteria are met then
Record (z1,...,2,) and (67,...,0%).
10: end if
11: until M posterior samples obtained.

in Appendix sections A-6 to A-8. See Gelman et al. (2004) for a more complete discussion
on convergence criteria.
We can sample from the distribution p(z; | D, z_;, 07.,) as follows,

p(2i| D, 2, O1.1) < p(zi | 2-)p(Xi | 21:m, D, 01.5)p(Yi | Xis 21, D, 07.5¢)- (A-1)
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The first part of Equation (A-1) is the Chinese Restaurant Process posterior value,

Nz : .,
p(zi|z_) = n-lta if z; = zj for some j # 1,
e < if z; # z; for all j # i.

n—1+a«
Here n; is the number of elements with the label z;. The second term of Equation (A-1)
is the same as in other Gibbs sampling algorithms. If possible, the component parameters

03.;c can be integrated out (in the case of conjugate base measures and parameters that
pertain strictly to the covariates) and p(X; | z1.n, D, 0}.) can be replaced with

/ PX: | 21ms D, 01 ) (O | 21m) 0}

The third term of Equation (A-1) is not found in traditional Dirichlet process mixture model
samplers. In some cases, this term can also be collapsed, such as Gaussian model with a
Normal-Inverse-Gamma base measure. In that case,
I((ny +1)/2) 1 2
S S O Y Y, —

I'(n,/2) nnsn( i ) ’

. ~ —1
(V—1 i XCTXC) ,

p(Yi| Xi, 26, De) = (nnsn)_l/2 exp (1/2(717,, +1)log (1 +

v

iy =V (mUV_l + XTY)

2 _y (sgo +1/2 <m0V*1mOT +YTY, - mZV*lmn)) / ((nyo + nC)XCf/XCT)

)
I

Here, we define X, = {[1X,] : zj = 2.}, Yo = {Y; : zj = z.}, X; = [1X;], n. is the number
of data associated with label z. and the base measure is define as,

2 2
o, ~ Inverse — Gamma(nyo, sy0),

B 05 ~ N(mo,U;V).

A-2 Proof of Theorem 1
Both Theorems 1 and 2 rely on a theorem by Schwartz (1965).

Theorem A-1 (Schwartz (1965)) Let II/ be a prior on F. Then, if II/ places positive
probability on all neighborhoods

{f [ oo ’;?((;’5)) dudy < 6}

for every 6 > 0, then I/ is weakly consistent at fj.

The proof for Theorem 1 follows closely both Ghosal et al. (1999) and Tokdar (2006).
Proof Without loss of generality, assume d = 1. Since fy has compact support, there
exists an xp and a yo such that fo(x,y) = 0 for |z| > z¢ or |y| > yo. Fix € > 0. Following
Remark 3 of Ghosal et al. (1999), there exist &, > 0 and &, > 0 such that

/:Eo vo fO(J:?y) <6/2

fo(w,y) log — e
—0 J-uo Joo I S5 6 (U5 fo(w, y)db,db,
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Let Py be a measure on R3 x Ri, that is, a measure for (y,, 8o, B1, 0z, 0y). Define it such that
dPy = fo X 6o X 05, X 05,. Fix a A >0 and k > 0. Choose a large compact set K such that
[—$0,$0] X [—yo,yo} X [—yo,yo] X {51«} X {5y} C K.Let B= {P : |P(K)/P0(K) — 1| < F{,}.
Since the support of G is R3 x Ri, I(B) > 0.

Following Ghosal et al. (1999) and Tokdar (2006), it can be shown that there exists a
set C such that II(BNC) > 0 and for every P € BNC,

Ji () (R Atyapy
/—zo/ fo(z,y)log de)(iE;H (= Bo 61w)dP < 1_,£—1-2;-$<e/2

Oy

x

for a suitable choice of k. Therefore, for f = ¢ x P for every P € BNC,

/fo:vylog

fO(x>y)
d dy
</_/ ol 9)1 T (55505 fol,y)d6.db,

—%o
zo ngb(x;MI)ﬁb(y Bo— le)dpo
1 xT
+/_x0 L P i i s 57 p

< €.

Therefore, II/ places positive measure on all weak neighborhoods of fy, and hence satisfies
Theorem A-1.

A-3 Proof of Theorem 2

Proof The proof of Theorem 2 follows along the same lines as the proof for Theorem 1.
Instead of the continuous response, however, there is a categorical response. The continuity
condition on the response probabilities ensures that there exists a yg > 0 such that there
are m continuous functions by (z),. .., by (z) with |b;(z)| < yo and

exp(b;(x))
>t exp(b;(x))

Pfo[Y:i’X:x]:

Using arguments similar to those in the previous proof, there exists 6, > 0 such that,

" o, i) los ot

I, (5520 fo(a) sl g,

exp(b

< €/2.

Define Py such that dPy = fo(z) X {G,} X b1(x) X -+ - X by, (x). The rest of the proof follows
as previously, with small modifications. |
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A-4 Proof of Theorem 3

We now show pointwise convergence of the conditional densities. The following propositions
will be used to prove Theorems 3 and 4.Let f,(z,y) be the Bayes estimate of the density
under II/ after n observations,

fulz,y) = /f F )T (df | (X, Vi)

Proposition A-2 Weak consistency of 11/ at fy for the Gaussian model and the multino-
mial model implies that f,(x,y) converges pointwise to fo(z,y) and fn(z) converges point-
wise to fo(x) for (x,y) in the compact support of fo.

Proof Both f,(z,y) and f,,(z) can be written as expectations of bounded functions with re-
spect to the posterior measure. In the Gaussian case, both f,(z,y) and f,(x) are absolutely
continuous; in the multinomial case, f,(z) is absolutely continuous while the probability
P¢.[Y = k|z] is absolutely continuous in z for K = 1,..., K. Due to absolute continuity,
the result holds. |

This can be used to show that the conditional density estimate converges pointwise to the
true conditional density.

Proposition A-3 Let f,(x,y) an f,(x) be as in Proposition A-2. Then f,(y|x) converges
pointwise to fo(y|x) for any (x,y) in the compact support of fo.

Proof From Proposition A-2, f,(x,y) converges pointwise to fo(z,y) and f,(z) converges
pointwise to fo(x). Then,

im 2) = lim fn(l'ay) _ fO(l'ay) — I~
AU = T @) T TR W)

The denominator value, f,(z), is greater than 0 almost surely because it is a mixture of
Gaussian densities. |

Now we proceed to the proof of Theorem 3.
Proof The conditions for Theorem 3 assure that Propositions A-2 and A-3 hold. Because of
this and the fact that G places positive measure only on densities with a finite expectation,
the results hold. |

A-5 Proof of Theorem 4

The proof follows in the same manner as that for Theorem 3.

A-6 CMB Computational Details

The DP-GLM was run on the largest data size tested several times; log posterior probabil-
ities were evaluated graphically, and in each case the posterior probabilities seem to have
stabilized well before 1,000 iterations. Therefore, all runs for each sample size were given a
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1,000 iteration burn-in with samples taken every 5 iterations until 2,000 iterations had been
observed. The scaling parameter o was given a Gamma prior with shape and scale set to
1. The means and variances of each component and all GLM parameters were also given a
log-normal hyper distribution. The model was most sensitive to the hyper-distribution on
oy, the GLM variance. Small values were used (log(my) ~ N(—3,2)) to place greater em-
phasis on response fit. The non-conjugate parameters were updated using the Hamiltonian
dynamics method of Neal (2010). Hyperparameters were chosen based on performance on a
subset of 100 data points; values were then held fixed all other datasets. This may produce
an overly confident error assessment, but the limited size of the dataset did not allow a pure
training-validation-testing three way partition.

A non-conjugate base measure was used on this dataset due to small sample sizes and
heteroscedasticity. The conjugate measure, a normal-inverse-gamma, assumes a relationship
between the variance and the mean,

pwlo?, \ v~ N o?/v).

Therefore, smaller variances greatly encourage the mean g to remain in a small neighbor-
hood around around the prior value, A. Naturally, this property can be overcome with
many observations, but it makes strong statements about the mean in situations with few
total samples or few samples per cluster due to heteroscedasticity.

This model was implemented in Matlab; a run on the largest dataset took about 500
seconds.

A-7 CCS Computational Details

Again, the DP-GLM was run on the largest data size tested several times; log posterior
probabilities were evaluated graphically, and in each case the posterior probabilities seem
to have stabilized well before 1,000 iterations. Therefore, all runs for each sample size were
given a 1,000 iteration burn-in with samples taken every 5 iterations until 2,000 iterations
had been observed. The scaling parameter « was given a Gamma prior with shape and
scale set to 1. The hyperparameters of the conjugate base measure were set manually
by trying different settings over four orders of magnitude for each parameter on a single
subset of training data. Again, this may produce an overly confident error assessment, but
the limited size of the dataset did not allow a pure training-validation-testing three way
partition.

All base measures were conjugate, so the sampler was fully collapsed. o was updated
using Hamiltonian dynamics (Neal, 2010). Original results were generated by Matlab; the
longest run times were about 1000 seconds. This method has been re-implemented in Java in
a highly efficient manner; the longest run times are now under about 10 seconds. Run times
would likely be even faster if variational methods were used for posterior sampling (Blei
and Jordan, 2005).

A-8 Solar Computational Details

Again, the DP-GLM was run on the largest dataset size tested several times; log posterior
probabilities were evaluated graphically, and in each case the posterior probabilities seem
to have stabilized well before 1,000 iterations. Therefore, all runs for each sample size were
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given a 1,000 iteration burn-in with samples taken every 5 iterations until 2,000 iterations
had been observed. The scaling parameter o was set to 1 and the Dirichlet priors to
Dir(1,1,...,1). The response parameters were given a Gaussian base distribution with a
mean set to 0 and a variance chosen after trying parameters with four orders of magnitude
on a fixed training dataset. This may produce an overly confident error assessment, but
the limited size of the dataset did not allow a pure training-validation-testing three way
partition.

All covariate base measures were conjugate and the 5 base measure was Gaussian, so the
sampler was collapsed along the covariate dimensions and used in the auxiliary component
setting of Algorithm 8 of Neal (2000). The 5 parameters were updated using Metropolis-
Hastings. Results were in generated by Matlab; run times were substantially faster than
the other methods implemented in Matlab (under 200 seconds).
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