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Abstract

We develop a scalable algorithm for posterior inference of overlapping communi-
ties in large networks. Our algorithm is based on stochastic variational inference
in the mixed-membership stochastic blockmodel (MMSB). It naturally interleaves
subsampling the network with estimating its community structure. We apply our
algorithm on ten large, real-world networks with up to 60,000 nodes. It converges
several orders of magnitude faster than the state-of-the-art algorithm for MMSB,
finds hundreds of communities in large real-world networks, and detects the true
communities in 280 benchmark networks with equal or better accuracy compared
to other scalable algorithms.

1 Introduction

A central problem in network analysis is to identify communities, groups of related nodes with
dense internal connections and few external connections [1, 2, 3]. Classical methods for community
detection assume that each node participates in a single community [4, 5, 6]. This assumption is
limiting, especially in large real-world networks. For example, a member of a large social network
might belong to overlapping communities of co-workers, neighbors, and school friends.

To address this problem, researchers have developed several methods for detecting overlapping com-
munities in observed networks. These methods include algorithmic approaches [7, 8] and probabilis-
tic models [2, 3, 9, 10]. In this paper, we focus on the mixed-membership stochastic blockmodel
(MMSB) [2], a probabilistic model that allows each node of a network to exhibit a mixture of
communities. The MMSB casts community detection as posterior inference: Given an observed
network, we estimate the posterior community memberships of its nodes.

The MMSB can capture complex community structure and has been adapted in several ways [11,
12]; however, its applications have been limited because its corresponding inference algorithms
have not scaled to large networks [2]. In this work, we develop algorithms for the MMSB that
scale, allowing us to study networks that were previously out of reach for this model. For example,
we analyzed social networks with as many as 60,000 nodes. With our method, we can use the
MMSB to analyze large networks, finding approximate posteriors in minutes with networks for
which the original algorithm takes hours. When compared to other scalable methods for overlapping
community detection, we found that the MMSB gives better predictions of new connections and
more closely recovers ground-truth communities. Further, we can now use the MMSB to compute
descriptive statistics at scale, such as which nodes bridge communities.

The original MMSB algorithm optimizes the variational objective by coordinate ascent, processing
every pair of nodes in each iteration [2]. This algorithm is inefficient, and it quickly becomes
intractable for large networks. In this paper, we develop stochastic optimization algorithms [13, 14]
to fit the variational distribution, where we obtain noisy estimates of the gradient by subsampling
the network.
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Figure 1: Figure 1(a) shows communities (see §2) discovered in a co-authorship network of 1,600 re-
searchers [16] by an a-MMSB model with 50 communities. The color of author nodes indicates their most
likely posterior community membership. The size of nodes indicates bridgeness [17], a measure of participa-
tion in multiple communities. Figure 1(b) shows a graphical model of the a-MMSB. The prior over multinomial
« is a symmetric Dirichlet distribution. Priors over Bernoulli 3 are Beta distributions.

Our algorithm alternates between subsampling from the network and adjusting its estimate of the
underlying communities. While this strategy has been used in topic modeling [15], the MMSB
introduces new challenges because the Markov blanket of each node is much larger than that of
a document. Our simple sampler usually selects unconnected nodes (due to sparse real-world net-
works). We develop better sampling methods that focus more on the informative data in the network,
e.g., the observed links, and thus make inference even faster.

2 Modeling overlapping communities

In this section, we introduce the assortative mixed-membership stochastic blockmodel (a-MMSB),
a statistical model of networks that models nodes participating in multiple communities. The a-
MMSB is a subclass of the mixed-membership stochastic blockmodel (MMSB) [2].!

Let y denote the observed links of an undirected network, where y,;, = 1 if nodes a and b are
linked and O otherwise. Let K denote the number of communities. Each node a is associated with
community memberships m,, a distribution over communities; each community is associated with a
community strength By, € (0, 1), which captures how tightly its members are linked. The probability
that two nodes are linked is governed by the similarity of their community memberships and the
strength of their shared communities.

We capture these assumptions in the following generative process of a network.

1. For each community %, draw community strength 3, ~ Beta(n).
2. For each node a, draw community memberships 7, ~ Dirichlet(c).
3. For each pair of nodes a and b,

(a) Draw interaction indicator z,_,; ~ 7.
(b) Draw interaction indicator z,, p ~ p.
(c) Draw link y,;, ~ Bernoulli(r), where
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"We use a subclass of the MMSB models that is appropriate for community detection in undirected net-
works. In particular, we assume assortativity, i.e., that links imply that nodes are similar. We call this special
case the assortative MMSB or a-MMSB. In §2 we argue why the a-MMSB is more appropriate for community
detection than the MMSB. We note that our algorithms are immediately applicable to the MMSB as well.



Figure 1(b) represents the corresponding joint distribution of hidden and observed variables. The a-
MMSB defines a single parameter € to govern inter-community links. This captures assortativity—if
two nodes are linked, it is likely that the latent community indicators were the same.

The full MMSB differs from the a-MMSB in that the former uses one parameter for each of the
K? ordered pairs of communities. When the full MMSB is applied to undirected networks, two
hypotheses compete to explain a link between each pair of nodes: either both nodes exhibit the same
community or they are in different communities that link to each other.

We analyze data with a-MMSB via the posterior distribution over latent variables
p(m1.n, 2, P1.x|Y, @, n). The posterior lets us form a predictive distribution of unseen links
and measure latent network properties of the observed data. The posterior over 7.y represents the
community memberships of the nodes, and the posterior over the interaction indicator variables
z identifies link communities in the network [8]. For example, in a social network one member’s
link to another might arise because they are from the same high school while another might arise
because they are co-workers. With an estimate of this latent structure, we can characterize the
network in interesting ways. In Figure 1(a), we sized author nodes according to their expected
posterior bridgeness [17], a measure of participation in multiple communities (see §5).

3 Stochastic variational inference

Our goal is to compute the posterior distribution p(m1.n, 2, 51.x |y, @, n). Exact inference is in-
tractable, so we use variational inference [18]. Traditional variational inference is a coordinate as-
cent algorithm. In the context of the MMSB (and the a-MMSB), coordinate ascent iterates between
analyzing all O(N?) node pairs and updating the community memberships of the N nodes [2].
In this section, we will derive a stochastic variational inference algorithm. Our algorithm iterates
between sampling random pairs of nodes and updating node memberships. This avoids the per-
iteration O(NN?) computation and allows us to scale to large networks.

3.1 Variational inference in a-MMSB

In variational inference, we define a family of distributions over the hidden variables ¢(3, 7, z) and
find the member of that family that is closest to the true posterior. (Closeness is measured with
KL divergence.) We use the mean-field family, under which each variable is endowed with its own
distribution and its own variational parameter. This allows us to tractably optimize the parameters
to find a local minimum of the KL divergence. For the a-MMSB, the variational distributions are

q(zast = k) = ¢asbk;  q(ma) = Dirichlet(ma;7,);  q(Br) = Beta(Bi; Ax)- (2)

The posterior over link community assignments z is parameterized by the per-interaction mem-
berships ¢, the node community distributions 7 by the community memberships =, and the link
probability 3 by the community strengths A. Notice that A is of dimension K x 2, and = is of
dimension N x K.

Minimizing the KL divergence between ¢ and the true posterior is equivalent to optimizing an ev-
idence lower bound (ELBO) L, a bound on the log likelihood of the observations. We obtain this
bound by applying Jensen’s inequality [18] to the data likelihood. The ELBO is

logp(yle, B) > L(y, .7, A) £ Eyllogp(y, 7, 2z, Bla,m)] — Egllogg(8, 7, 2)]. (3
The right side of Eq. 15 factorizes to
£ = 5, Eqllogp(Bilne)] — Xy Eqllog a(Belho)] + X2, Eyllog p(mala)] — X, Eqllog a(mal )]
+ 20 Bqllog p(za—sb|ma)] + Eqllog p(zacs|m)] )
- Za,b Eq[log q(2a—bl¢a—b)] — Eqllog q(zaeb|dass)]
+ 20 Bqllog p(Yab| 2a—b, Zaebs B)]

Notice the first line in Eq. 4 contains summations over communities and nodes; we call these global
terms. They relate to the global variables, which are the community strengths A and per-node
memberships . The remaining lines contain summations over all node pairs, which we call local
terms. They depend on both the global and local variables, the latter being the per-interaction
memberships ¢. This distinction is important in the stochastic optimization algorithm.



3.2 Stochastic optimization

Our goal is to develop a variational inference algorithm that scales to large networks. We will use
stochastic variational inference [14], which optimizes the ELBO with respect to the global vari-
ational parameters using stochastic gradient ascent. Stochastic gradient algorithms follow noisy
estimates of the gradient with a decreasing step-size. If the expectation of the noisy gradient is equal
to the gradient and if the step-size decreases according to a certain schedule, then we are guaranteed
convergence to a local optimum [13]. Subsampling the data to form noisy gradients scales inference
as we avoid the expensive all-pairs sums in Eq. 4.

Stochastic variational inference is a coordinate ascent algorithm that iteratively updates local and
global parameters. For each iteration, we first subsample the network and compute optimal local
parameters for the sample, given the current settings of the global parameters. We then update the
global parameters using a stochastic natural gradient> computed from the subsampled data and local
parameters. We call the first phase the local step and the second phase the global step [14].

The selection of subsamples in each iteration provides a way to plug in a variety of network subsam-
pling algorithms. However, to maintain a correct stochastic optimization algorithm of the variational
objective, the subsampling method must be valid. That is, the natural gradients estimated from the
subsample must be unbiased estimates of the true gradients.

The global step. The global step updates the global community strengths A and community mem-
berships « with a stochastic gradient of the ELBO in Eq. 4. Eq. 4 contains summations over all
O(N?) node pairs. Now consider drawing a node pair (a, b) at random from a population distribu-
tion g(a, b) over the M = N(N — 1)/2 node pairs. We can rewrite the ELBO as a random function
of the variational parameters that includes the global terms and the local terms associated only with
(a,b). The expectation of this random function is equal in objective to Eq. 4. For example, the
fourth term in Eq. 4 is rewritten as

Za’qu [1ng(yab‘za—>b7 Za+b, /6)] = IEg [mEq [Ing(yab|Za—>b7 Za<bs ﬂ)” 5

Evaluating the rewritten Eq. 4 for a node pair sampled from g gives a noisy but unbiased estimate of
the ELBO. Following [15], the stochastic natural gradients computed from a sample pair (a, b) are

ey, = + mqﬁ—m,k - %tﬁcl (6)
ONLi =M,i + m%—w,k “Qacbk * Yabi — /\}27_1-1, (N

where Yqp,0 = Yab, and Yap,1 = 1 —Yqp. In practice, we sample a “mini-batch” S of pairs per update,
to reduce noise.

The intuition behind the above update is analogous to Online LDA [15]. When a single pair (a, b) is

sampled, we are computing the setting of ~ that would be optimal (given ¢") if our entire network
were a multigraph consisting of the interaction between @ and b repeated 1/g(a, b) times.

Our algorithm has assumed that the subset of node pairs .S are sampled independently. We can relax
this assumption by defining a distribution over predefined sets of links. These sets can be defined
using prior information about the pairs, such as network topology, which lets us take advantage of
more sophisticated sampling strategies. For example, we can define a set for each node, with each
set consisting of the node’s adjacent links or non-links. Each iteration we set S to one of these sets
sampled at random from the N sets.

In order to ensure that set-based sampling results in unbiased gradients, we specify two constraints
on sets. First, we assume that the union of these sets s is the total set of all node pairs, U: U = U;s;.
Second, we assume that every pair (a, b) occurs in some constant number of sets ¢ and that ¢ > 1.
With these conditions satisfied, we can again rewrite Eq. 4 as the sum over its global terms and an
expectation over the local terms. Let h(t) be a distribution over predefined sets of node pairs. For
example, the fourth term in Eq. 4 can be rewritten using

> v Eqllog P(Yav|zasbs 2acv, B)] = Enlg 5y oy es, Eallog P(Yablza—sb, zacs B (8)

2Stochastic variational inference uses natural gradients [19] of the ELBO. Computing natural gradients
(along with subsampling) leads to scalable variational inference algorithms [14].



Algorithm 1 Stochastic a-MMSB

1: Initialize v = (7,)0_1, A = (\x)E_, randomly.
2: while convergence criteria is not met do
3:  Sample a subset S of node pairs.

4:  L-step: Optimize (¢q—p, Pacsp) V(a,b) € S

5. Compute the natural gradients 97, Vn, O\ Vk
6:  G-step: Update (v, A) using Eq. 9.

7: Setpr= (10 +t) "t t+1

8: end while

The natural gradient of the random functions in Eq. 5 and Eq. 8 with respect to the global variational
parameters (7, A) is a noisy but unbiased estimate of the natural gradient of the ELBO in Eq. 4.

However we subsample, the global step follows the noisy gradient with an appropriate step-size,
~ =y 4 pdvt A= A+ pOAL. )

We require that ), p? < oo and >+ p¢+ = oo for convergence to a local optimum [13]. We set
pt = (1o +1)7", where x € (0.5, 1] is the learning rate and 7o > 0 downweights early iterations.

The local step. The local step optimizes the interaction parameters ¢ with respect to a subsample
of the network. Recall that there is a per-interaction membership parameter for each node pair—
da—b and ¢, p—representing the posterior approximation of which communities are active in de-
termining whether there is a link. We optimize these parameters in parallel. The update for ¢,
given yq p is

O oy = 0 o< exp{Eq[log ma 1] + ¢4, 1 Eq[log(1 — )]
¢be,k|y =1lx eXp{Eq[IOg Ta k] + ¢a<—b7k q[lOg Br] + (1 - a(—b k) log e. (10)
The updates for ¢, are symmetric. This is natural gradient ascent with a step-size of one.

We present the full Stochastic a-MMSB algorithm in Algorithm 1. Each iteration subsamples the
network and computes the local and global updates. We have derived this algorithm with node pairs
sampled from arbitrary population distributions g(a,b) or h(t). One advantage of this approach
is that we can explore various subsampling techniques without compromising the correctness of
Algorithm 1. We will discuss and study sampling methods in §3.3 and §5. First, however, we
discuss convergence and complexity.

Held-out sets and convergence criteria. We stop training on a network (the training set) when the
average change in expected log likelihood on held-out data (the validation set) is less than 0.001%.
The test and validation sets used in §5 have equal parts links and non-links, selected randomly
from the network. A 50% links validation set poorly represents the severe class imbalance between
links and non-links in real-world networks. However, a validation set matching the network sparsity
would have too few links. Therefore, we compute the validation log likelihood at network sparsity by
reweighting the average link and non-link log likelihood (estimated from the 50% links validation
set) by their respective proportions in the network. We use a separate validation set to choose
learning parameters and study sensitivity to K.

Per-iteration complexity. Our L-step can be computed in O(nK), where n is the number of node
pairs sampled in each iteration. This is unlike MMSB, where the ¢ updates incur a cost quadratic
in K. Step 6 requires that all nodes must be updated in each iteration. The time for a G-step in
Algorithm 1 is O(/N K) and the total memory required is O(N K).

3.3 Sampling strategies

Our algorithm allows us flexibility around how the subset of pairs is sampled, as long as the expec-
tation of the stochastic gradient is equal to the true gradient. There are several ways we can take
advantage of this. We can sample based on informative pairs of nodes, i.e., ones that help us better
assess the community structure. We can also subsample to make data processing easier, for exam-
ple, to accomodate a stream of links. Finally, large, real-world networks are often sparse, with links



accounting for less than 0.1% of all node pairs (see Figure 2). While we should not ignore non-links,
it may help to give preferential attention to links. These intuitions are captured in the following four
subsampling methods.

Random pair sampling. The simplest method is to sample node pairs uniformly at random. This
method is an instance of independent pair sampling, with g(a, b) (used in Eq. 5) equal to m

Random node sampling. This method focuses on local neighborhoods of the network. A set
consists of all the pairs that involve one of the NV nodes. At each iteration, we sample a set uniformly
at random from the N sets, so h(t) (used in Eq. 8) is % Since each pair involves two nodes, each
link appears in two sets, so ¢ (also used in Eq. 8) is 2. By reweighting the terms corresponding to
pairs in the sampled set, we maintain a correct stochastic optimization.

Stratified random pair sampling. This method samples links independently, but focuses on ob-
served links. We divide the M node pairs into two strata: links and non-links. Each iteration
either samples a mini-batch of links or samples a mini-batch of non-links. If the non-link stratum is
sampled, and Ny is the estimated total number of non-links, then

< ifyb:()
b — No a ’ 11
9(a.0) {0 if oy = 1 (n

The population distribution when the link strata is sampled is symmetric.

Stratified random node sampling. This method combines set-based sampling and stratified sam-
pling to focus on observed links in local neighborhoods. For each node we define a “link set”
consisting of all its links, and m “non-link sets” that partition its non-links. Since the number of
non-links associated with each node is usually large, dividing them into many sets allows the com-
putation in each iteration to be fast. At each iteration, we first select a random node and either select
its link set or sample one of its m non-link sets, uniformly at random. To compute Eq. 8 we define
the number of sets that contain each pair, ¢ = 2, and the population distribution over sets

L . . .
h(t):{zN if ¢ is a link set, (12)

1 . . _ .
T if ¢ is a non-link set.

Stratified random node sampling gives the best gains in convergence speed (see §5).

4 Related work

Newman et al. [3] described a model of overlapping communities in networks (“the Poisson model”)
where the number of links between two nodes is a Poisson random variable. Recently, other re-
searchers have proposed latent feature network models [20, 21] that compute the probabilities of
links based on the interactions between binary features associated with each node. Efficient in-
ference algorithms for these models exploit model-specific approximations that allow scaling in the
number of links. These ideas do not extend to the MMSB. Further, these algorithms do not explicitly
leverage network sampling. In contrast, the ideas in Algorithm 1 apply to a number of models [14].
It subsamples both links and non-links in an inner loop for scalability.

Other scalable algorithms include Clique Percolation (CP) [7] and Link Clustering (LC) [8], which
are based on heuristic clique-finding and hierarchical clustering, respectively. These methods are
fast in practice, although the underlying problem is NP-complete. Further, because they are not
statistical models, there is no clear mechanism for predicting new observations or model checking.

In the next section we will compare our method to these alternative scalable methods. Compared
to the Poisson model, we will show that the MMSB gives better predictions. Compared to CP and
LC, which do not provide predictions, we will show that the MMSB more reliably recovers the true
community structure.

S Empirical study

In this section, we evaluate the efficiency and accuracy of Stochastic a-MMSB (AM). First, we
evaluate its efficiency on 10 real-world networks. Second, we demonstrate that stratified sampling



Figure 2: Network datasets. N is the number of nodes, K"™%" is the maximum number of communities
analyzed and d is the percent of node pairs that are links. The time until convergence for the different methods
are T35'°°" and T2***" | while the time required for 90% of the perplexity at a-MMSB’s convergence is Tgaos "

DATA SET N K™ d(%)  Tyiegeh Tsteeh Theteh TYPE SOURCE
US-AIR 1.1K 19 1.2 1.7m 3.4m 40.5m  TRANSP. [22]
NETSCIENCE 1.6K 100 0.3 T72m 11.7m 2.2h COLLAB. [16]
RELATIVITY 5.2K 300 0.1 2.3h 4h > 29h COLLAB. [23]
HEP-TH 9.9K 32 0.05 7.3h 8.7h > 6Th COLLAB. [23]
HEP-PH 12K 32 0.16 36m 2.8h > 67h COLLAB. [23]
ASTRO-PH 18.7K 32 0.11 13.8h  22.1h > 67Th cCoOLLAB. [23]
HEP-TH2 27.8K 512  0.09 8d 10.3d - CITE [23],[24]
ENRON 37K 158 0.03 1.5d 2.5d - EMAIL [25]
COND-MAT 40.4K 300 0.02 4.6d 5.2d - COLLAB. [26]
BRIGHTKITE 58.2K 64 0.01 8d 9.5d - SOCIAL  [27]
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Figure 3: Stochastic a-MMSB (with random pair sampling) scales better and finds communities as good as
batch a-MMSB on real networks (Top). Stratified random node sampling is an order of magnitude faster than
other sampling methods on the hep-ph, astro-ph and hep-th2 networks (Bottom).

significantly improves convergence speed on real networks. Third, we compare our algorithm with
leading algorithms in terms of accuracy on benchmark graphs and ability to predict links.

We measure convergence by computing the link prediction accuracy on a validation set. We set
aside a validation and a test set, each having 10% of the network links and an equal number of
non-links (see §3.2). We approximate the probability that a link exists between two nodes using
posterior expectations of 3 and 7w. We then calculate perplexity, which is the exponential of the
average predictive log likelihood of held-out node pairs.

For random pair and stratified random pair sampling, we use a mini-batch size S = N/2 for graphs
with N nodes. For the stratified random node sampling, we set the number of non-link sets m = 10.
Based on experiments, we set the parameters x = 0.5 and 79 = 1024. We set hyperparameters @ =
1/K and {n,no} proportional to the expected number of links and non-links in each community.
We implemented all algorithms in C++.

Comparing scalability to batch algorithms. AM is an order of magnitude faster than standard
batch inference for a-MMSB [2]. Figure 2 shows the time to convergence for four networks® of
varying types, node sizes N and sparsity d. Figure 3 shows test perplexity for batch vs. stochastic
inference. For many networks, AM learns rapidly during the early iterations, achieving 90% of the
converged perplexity in less than 70% of the full convergence time. For all but the two smallest
networks, batch inference did not converge within the allotted time. AM lets us efficiently fit a
mixed-membership model to large networks.

Comparing sampling methods. Figure 3 shows that stratified random node sampling converges an
order of magnitude faster than random node sampling. It is statistically more efficient because the
observations in each iteration include all the links of a node and a random sample of its non-links.

3Following [1], we treat the directed citation network hep-th2 as an undirected network.
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Figure 4: Figures (a) and (b) show that Stochastic a-MMSB (AM) outperforms the Poisson model (PM),
Clique Percolation (CP), and Link Clustering (LC) in accurately recovering overlapping communities in 280
benchmark networks [28]. Each figure shows results on a binary partition of the 280 networks. Accuracy
is measured using normalized mutual information (NMI) [28]; error bars denote the 95% confidence interval
around the mean NMI. Figures (c) and (d) show that a-MMSB generalizes to new data better than PM on the
netscience and us-air network, respectively. Each algorithm was run with 10 random initializations per K.

Figure 3 also shows that stratified random pair sampling converges ~1x—2x faster than random pair
sampling.

Comparing accuracy to scalable algorithms. AM can recover communities with equal or better
accuracy than the best scalable algorithms: the Poisson model (PM) [3], Clique percolation (CP) [7]
and Link clustering (LC) [8]. We measure the ability of algorithms to recover overlapping commu-
nities in synthetic networks generated by the benchmark tool [28].# Our synthetic networks reflect
real-world networks by modeling noisy links and by varying community densities from sparse to
dense. We evaluate using normalized mutual information (NMI) between discovered communities
and the ground truth communities [28]. We ran PM and a-MMSB until validation log likelihood
changed by less than 0.001%. CP and LC are deterministic, but results vary between parameter
settings. We report the best solution for each model.’

Figure 4 shows results for the 280 synthetic networks split in two ways. AM outperforms PM,
LC, and CP on noisy networks and networks with sparse communities, and it matches the best
performance in the noiseless case and the dense case. CP performs best on networks with dense
communities—they tend to have more k-cliques—but with a larger margin of error than AM.

Comparing predictive accuracy to PM. Stochastic a-MMSB also beats PM [3], the best scal-
able probabilistic model of overlapping communities, in predictive accuracy. On two networks, we
evaluated both algorithms’ ability to predict held out links and non-links. We ran both PM and a-
MMSB until their validation log likelihood changed less than 0.001%. Figures 4(c) and 4(d) show
training and testing likelihood. PM overfits, while the a-MMSB generalizes well.

Using the a-MMSB as an exploratory tool. AM opens the door to large-scale exploratory analysis
of real-world networks. In addition to the co-authorship network in Figure 1(a), we analyzed the
“cond-mat” collaboration network [26] with the number of communities set to 300. This network
contains 40,421 scientists and 175,693 links. In the supplement, we visualized the top authors in
the network by a measure of their participation in different communities (bridgeness [17]). Finding
such bridging nodes in a network is an important task in disease prevention and marketing.
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“We  generated 280 networks for combinations of these parameters:  #nodes€
{400}; #communities€{5,10}; #nodes with at least 3 overlapping communities€{100}; community

sizes€{equal, unequal}, when unequal, the community sizes are in the range [%, %], average node
degreee {0.1%, ().15%7 . 0.35%, 0.4%}, the maximum node degree=2 xaverage node degree; % links of a

node that are noisye {0, 0.1}; random runse€{1...,5}.

>CP finds a solution per clique size; LC finds a solution per threshold at which the dendrogram is cut [8] in
steps of 0.1 from 0 to 1; PM and a-MMSB find a solution VK € {k’, k' 4+ 10} where £’ is the true number
of communities—increasing by 10 allows for potentially a larger number of communities to be detected; a-
MMSB also finds a solution for each of random pair or stratified random pair sampling methods with the
hyperparameters 7 set to the default or set to fit dense clusters.
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A Supplement

A.1 Comparing batch a-MMSB to MMSB on undirected networks

In Table 1, we compared batch a-MMSB to batch MMSB on benchmark networks [28] to justify our modifica-
tion to MMSB. We found that a-MMSB converges much faster than MMSB, and achieves a better predictive
accuracy. We attribute this to the linear complexity of a-MMSB’s per-iteration L-step and the issues discussed
in §2.

Table 1: Batch a-MMSB converges faster and achieves a better predictive likelihood than batch MMSB using
benchmark networks with varying sparsity [1]. Each network has 400 nodes, 10 communities, 20 nodes with at
least 3 overlapping communities and an average degree of nodes, d.

Heldout log likelihood Time (mins)

[ d“ 5[ lO[ 15[ 20“5[10[15[ 20]
MMSB || -1.49 | -1.67 | -1.89 | -2.03 || 14 | 336 | 612 | 1128
a-MMSB || -1.06 | -1.19 | -1.16 | -1.67 1 6 12 13

A.2 Optimizing the local variational parameters

For the a-MMSB, optimizing the local variational parameters ¢ using coordinate ascent involves iteratively
updating ¢ holding ¢, and all other variational parameters fixed, and vice-versa. However, we find
that coordinate ascent results in poor predictive performance of fitted model. Instead, we use the algorithm
described in Figure 5, page 1990 of [2] to optimize the local parameters. This algorithm iteratively updates
qﬁ}ﬂb using ¢’ , and d)éﬁb using ¢’,_,, until convergence. This is a natural gradient ascent with a step-size
of one.

A.3 Comparing sampling methods
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Figure 5: Stratified random node sampling outperforms other sampling methods. Perplexity vs. number of
pairs processed on the “hep-ph” [23], “astro-ph” [23] and “hep-th2” [24] datasets.

A.4 Stochastic a-MMSB finds communities as good as batch a-MMSB
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Figure 6: Stochastic a-MMSB (with random pair sampling) scales better than batch a-MMSB on the
“netscience” [16] and the “us-air” [22] networks.



A.5 Determining the best number of communities

Figure 7 shows the validation perplexity results on the “relativity” [23] network. The lowest perplexity
is at K = 160. We analyzed 3 other networks. The best K for the “hep-th2” [24], “us-air” [22] and
“netscience” [16] networks is 256, 15 and 50, respectively.

18

ity

exi
14

Perpl

10

50 100 150 200 250 300
number of communities

Figure 7: Sensitivity of Stochastic a-MMSB validation perplexity to the number of communities K, on the
“relativity” [23] dataset. The best K is 160.
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Figure 8: The posterior bridgeness [17] and the posterior influence (centrality within a link community) of
top authors (top 20 by influence and top 20 by bridgeness) in the “cond-mat” [26] network is shown. We fit
the a-MMSB to the network using Algorithm 1. Each colored circle is the dominant link community of a
top author with its size indicating the number of nodes in that community. The names and h-index scores of
selected authors are shown.



A.6 Detailed derivation of Stochastic a-MMSB
The joint probability of the data and latent variables in a-MMSB is given by

p(y,m, 2 Blayn) = [ [ p(Bln) [ [ p(malc) [ [ P(Waslzasbs zacts B) P(2asblma) P(zacslms)  (13)
k

For the a-MMSB, the variational distributions are

q(2zasb = k) = dasv; q(ma) = Dirichlet(ma; vp);  q(Br) = Beta(Bik; Ax). (14)

The posterior over link community assignments z is parameterized by the per-interaction memberships ¢, the
node community distributions 7 by the community memberships ~y and the link probability 3 by the community
strengths A. Notice that A is of dimension K X 2, and -y is of dimension N x K.

Following [18], we bound the log likelihood of the network adjacency matrix.

log p(y|er, B) > L(y, d,7v,A) £ Eqllog p(y, 7, z, Bla,m)] — Eqllog ¢(8, 7, 2)]. (15)

Consider drawing a node pair (a, b) at random from a population distribution g(a, b) overthe M = N(N—1)/2
node pairs. We can rewrite Eq. 4 as the sum over its global terms and an expectation over the local terms.

L =73 Eqllog p(Brlnk)] — 325 Eq[log ¢(Bk|Ax)]
+Z Eq[log p(mn|a)] = 32, Eqllog q(mn|7n)]
Eyl-rasy (a b) [IOgP(yabVaﬁbvzaebuB)]]
Eq [ 5taz7Eallog p(za—b]ma)] + 5rag5Eallog p(zacs|m)]]
By [ Eallog a(zacssldamss)] — 5 Ballog a(zacsldacs)] (16)

Evaluating the rewritten Eq. 16 gives a noisy but unbiased estimate of the ELBO in Eq. 4. Expanding the terms
in Eq. 16 (see page 2008 of [2]) and taking the derivative with respect to the global variational parameters we
find the following noisy gradients for vy, ; and A, ;, where j = 0 or j = 1.

Following [2, 14], the stochastic gradients for the nodes memberships of a and b, and the community strengths
A are

oL i OEq[log 7ra7k]( 1

a - Ja 17
Naj = ey g(a,b)¢ bk F Ok = Ya.k) an
oL X OBg[logm], 1

q b,k
= a + — 18
0, ; 0, (g(a,b)d) <ok Ak = k) (18)

oL - OEq(log Br.i] 1

= - a a ab,i i — ki) 1

e Z v (g(a, b)d) b,k Pacb,kYab,i + Nk, ki) (19)

i=0
Note that for nodes x that have not been sampled during the iteration, we have the following gradient.

oL OEq[log 74 k]
0Va,j Z Ma,j

(ar = Ya,k)- (20)
k=1
We now substitute E,[log Bk.;], Eq[log 7 k] and E4[log 7, k] with the derivative of the log-normalizer of the

respective exponential distributions. For example, since ¢(3x|\x) is a Beta distribution and is in the exponential
family, we can write Eq[log Bk,;] as the derivative of the log partition function of ¢(8k| k), a(Ax).

da(A
Eq[log Br.i] = gﬁk‘“) @)
For any exponential family p(z|n),
paln) = h(z) exp{n”t(z) — a(n)}
log p(a|n) = log h(z) +n" t(z) — a(n)
(22)



Therefore, we have
0% logp(zln) _ 9%a(n)
onyni on;mi

Substituting the derivative of the log-normalizer of the exponential distributions in Eq. 17 and Eq. 19, we have

(23)

oL 9 1og q(7al7a)
Mayj 2.~ Praster  \glad) Tt Tk Tesk) 29
O log q(BelAk) , 1 _ _ _
8)\]w Z Doy s (g(a, b) Ga—sb,kPab,kYab,i + Mk,i — ki) (25)

Following [15], we multiply the gradients in Eq. 24 and Eq. 25 by the inverse of the Fisher information matrix
of the variational distribution ¢ which gives us the noisy natural gradients in Eq. 26 and Eq. 27.

A similar derivation gives us the noisy natural gradients in the case of set-based sampling (see §3).
Ma,k = + ﬁ 2 (abyess Dosve — Yoro (26)
8)\271- =Nk, + ﬁ Z(a,b)ESt Pa—sb,k * Pasb,k * Yab,i — )\Z’_il, 27

where Yap,0 = Yab, and Yap,1 = 1 — Yab.



