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Distance Dependent Infinite Latent
Feature Models

Samuel J. Gershman, Peter |. Frazier, and David M. Blei

Abstract—Latent feature models are widely used to decompose data into a small number of components. Bayesian nonparametric
variants of these models, which use the Indian buffet process (IBP) as a prior over latent features, allow the number of features to be
determined from the data. We present a generalization of the IBP, the distance dependent Indian buffet process (dd-IBP), for modeling
non-exchangeable data. It relies on distances defined between data points, biasing nearby data to share more features. The choice of
distance measure allows for many kinds of dependencies, including temporal and spatial. Further, the original IBP is a special case of
the dd-IBP. We develop the dd-IBP and theoretically characterize its feature-sharing properties. We derive a Markov chain Monte Carlo
sampler for a linear Gaussian model with a dd-IBP prior and study its performance on real-world non-exchangeable data.

Index Terms—Bayesian nonparametrics, dimensionality reduction, matrix factorization, Indian buffet process, distance functions

1 INTRODUCTION

MANY natural phenomena decompose into latent fea-
tures. For example, visual scenes can be decomposed
into objects; genetic regulatory networks can be decom-
posed into transcription factors; music can be decomposed
into spectral components. In these examples, multiple latent
features can be simultaneously active, and each can
influence the observed data. Dimensionality reduction
methods, such as principal component analysis, factor anal-
ysis, and probabilistic matrix factorization, provide a
statistical approach to inferring latent features [3]. These
methods characterize a small set of features (or dimensions)
and model each data point as a weighted combination of
them. Dimensionality reduction can improve predictions
and identify hidden structures in observed data.
Dimensionality reduction methods typically require
that the number of latent features be fixed in advance.
Researchers have recently proposed a more flexible
approach based on Bayesian nonparametric models, where
the number of features is inferred from the data through a
posterior distribution. These models are usually based on
the Indian buffet process (IBP; [16], [17]), a prior over
binary matrices with a finite number of rows (correspond-
ing to data points) and an infinite number of columns (cor-
responding to latent features). Using the IBP as a building
block, Bayesian nonparametric latent feature models have
been applied to several statistical problems (e.g., [18], [19],
[21], [22]). Since the number of features is effectively
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unbounded, these models are sometimes known as
“infinite” latent feature models.

The IBP assumes that data are exchangeable: permuting
the order of rows leaves the probability of an allocation
of latent features unchanged. This assumption may be
appropriate for some data sets, but for many others we
expect dependencies between data points and, conse-
quently, between their latent representations. As exam-
ples, the latent features describing human motion are
autocorrelated over time; the latent features describing
environmental risk factors are autocorrelated over space.
In this paper, we present a generalization of the IBP—the
distance dependent IBP (dd-IBP)—that addresses this limi-
tation. The dd-IBP allows infinite latent feature models to
capture non-exchangeable structure.

The problem of adapting nonparametric models to non-
exchangeable data has been studied extensively in the
mixture-modeling literature. In particular, variants of the
Dirichlet process mixture model allow dependencies
between data points (e.g., [1], [6], [8], [11], [15], [23]). These
dependencies may be spatial, temporal or more generally
covariate-dependent; the effect of such dependencies is to
induce sharing of latent features between nearby data points.

Among these methods is the distance dependent Chinese
restaurant process (dd-CRP; [5]). The dd-CRP is a non-
exchangeable generalization of the Chinese restaurant pro-
cess (CRP), the prior over partitions of data that emerges in
Bayesian nonparametric mixture modeling [4], [13], [24].
The dd-CRP models non-exchangeability by using distances
between data points—nearby data points (e.g., in time or
space) are more likely to be assigned to the same mixture
component. The dd-IBP extends these ideas to infinite latent
feature models, where distances between data points influ-
ence feature-sharing, and nearby data points are more likely
to share latent features.

We review the IBP in Section 2.1 and develop the dd-IBP
in Section 2.2. Like the dd-CRP, the dd-IBP lacks marginal
invariance, which means that removing one observation
changes the distribution over the other observations. We
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discuss this property further in Section 2.3. Although many
Bayesian nonparametric models have this property, it is a
particular modeling choice that may be appropriate for
some problems but not for others.

Several other infinite latent feature models have been
developed to capture dependencies between data in differ-
ent ways, for example using phylogenetic trees [20] or latent
Gaussian processes [28]. Of particular relevance to this
work is the dependent hierarchical Beta process (dHBP;
[301), which uses a hierarchical beta process (bp) to couple
data. These and other related models are discussed further
in Section 3. In Section 4, we characterize the feature-sharing
properties of the dd-IBP and compare it to those of the
dHBP [30]. We find that the different models capture quali-
tatively distinct dependency structures.

Exact posterior inference in the dd-IBP is intractable. We
present an approximate inference algorithm based on
Markov chain Monte Carlo (MCMC; [26]) in Section 5, and
we apply this algorithm in Section 6 to infer the latent fea-
tures in a linear-Gaussian model. We then use the dd-IBP to
model human brain imaging data in which age is predictive
of dependencies between data from different individuals
(Section 7). We show that the dd-IBP induces features that
are useful for a supervised classification task.

2 THE DISTANCE DEPENDENT INDIAN BUFFET
PROCESS

We first review the definition of the IBP and its role in
defining infinite latent feature models. We then introduce
the dd-IBP.

2.1 The Indian Buffet Process

The IBP is a prior over binary matrices Z with an infinite
number of columns [16], [17]. In the Indian buffet meta-
phor, rows of Z correspond to customers and columns cor-
respond to dishes (see Fig. 1). In data analysis, the
customers represent data points and the dishes represent
features. Let z;; denote the entry of Z at row ¢ and column
k. Whether customer ¢ has decided to sample dish & (that
is, whether z;; =1) corresponds to whether data point
i possesses feature k.

The IBP is defined as a sequential process. The first
customer enters the restaurant and samples the first
A1 ~ Poisson(e) number of dishes, where the hyperpara-
meter « is a scalar. In the binary matrix, this corresponds to
the first row being a contiguous block of ones, whose length
is the number of dishes sampled (),), followed by an infinite
block of zeros.

Subsequent customers i = 2,..., N enter, sampling each
previously sampled dish according to its popularity,

p(zir = 1] 21:6-1)) = mar/1, (1)

where m;, =5 j<i Zik is the number of customers that
sampled dish k prior to customer i. (We emphasize that
Eq. (1) applies only to dishes k that were previously sam-
pled, i.e., for which m;; > 0.) Then, each customer samples
Ai ~ Poisson(e/i) new dishes. Again these are represented
as a contiguous block of ones in the columns beyond the
last dish sampled by a previous customer.

Though described sequentially, Griffiths and Ghahramani
[16] showed that the IBP defines an allocation of dishes to
customers that is exchangeable. This means that the order of
the customers does not affect the probability of the resulting
allocation of dishes to customers.

To state this notion formally, define lof(Z) to be the left-
ordered binary matrix obtained from Z by sorting its col-
umns in decreasing order, interpreting each column as an
integer represented in binary with highest bit at row 1.
Then define [Z] to be the set of N x co binary matrices Z’
with the property that lof(Z') = lof(Z). This is an equiva-
lence class of binary matrices that imply the same alloca-
tions of features to customers, differing only in how these
features are labeled. Exchangeability of the IBP’s allocation
of dishes to customers means that the distribution of the
random equivalence class [Z] is the same as that of [Z7],
where Z” is obtained by permuting the rows of Z. In the
next section, we develop a generalization of the IBP that
relaxes this assumption.

2.2 The Distance Dependent Indian Buffet Process
Like the IBP, the dd-IBP is a distribution over binary latent
feature matrices with a finite number of rows and an infinite
number of columns. Each pair of customers has an associ-
ated distance, e.g., distance in time or space, or based on a
covariate. Two customers that are close together in this dis-
tance will be more likely to share the same dishes (that is,
features) than two customers that are far apart.

The dd-IBP can be understood in terms of the following
sequential construction. First, each customer selects a
Poisson-distributed number of dishes (feature columns).
The dishes selected by a customer in this phase of the con-
struction are said to be “owned” by this customer. A dish
is either unowned, or is owned by exactly one customer.
This step is akin to the selection of new dishes in the IBP.

Then, for each owned dish, customers connect to one
another. The probability that one customer connects to
another decreases with the distance between them. Note
that customers do not sample each dish, as in the IBP, but
rather connect to other customers. Thus, each dish is associ-
ated with a graph of connections between customers.

These per-dish graphs of customers determine dish
inheritance: A customer inherits a dish if its owner (from
the first step) is reachable in the connectivity graph for that
dish. This inheritance is computed deterministically from
the connections generated in the previous step.' The dishes
that each customer samples (i.e., the active features) are
those that he inherits or owns. Thus, distance-dependent
connection probabilities induce similarity of sampled dishes
between nearby customers.

An example of customer assignments sampled from the
dd-IBP is shown in Fig. 2. In this example, customer 1 owns
dish 1; customers 2-4 all reach customer 1 for dish 1, either
directly or through a chain, and thereby inherit the dish
(indicated by gray shading). Consequently, feature 1 is
active for customers 1-4. Dish 2 is owned by customer 2;
only customer 1 reaches customer 2 for dish 2, and hence

1. If one insists upon a complete gastronomical metaphor, customer
connectivity can be thought of as “I'll have what he’s having.”
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Fig. 1. Schematic of the IBP. An example of a latent feature matrix (Z)
generated by the IBP. Rows correspond to customers (data points) and
columns correspond to dishes (features). Gray shading indicates that a
feature is active for a given data point. The last row illustrates the assign-
ment process for a new customer; the counts for each feature (m;;) are
shown inside the circles for previously sampled features.

feature 2 is active for customers 1 and 2. Dish 3 is owned by
customer 2, but no other customers reach customer 2 for
dish 3, and hence feature 3 is active only for that customer.

We now more formally describe the probabilistic genera-
tive process of the binary matrix Z. First, we introduce
some notation and terminology.

e Dishes (columns of Z) are identified with the natural
numbers N ={1,2,...}. The number of dishes
owned by customer i is );, and dishes are labeled in
order, so that the set of dishes owned by this cus-
tomer is K; = (3_;_; Aj; >_,<; Ail- The total number of

owned dishes is K =Y.V \. The set of dishes
owned by customers excluding i is K_; = U;/C;.

e Each dish is associated with a set of customer-to-
customer assignments, specified by the N x K con-
nectivity matrix C, where ¢;; = j indicates that cus-
tomer i connects to customer j for dish k. Given C,
the customers form a set of (possibly cyclic) directed
graphs, one for each dish. The ownership vector is ¢
and has length K, where ¢; € {1,..., N} indicates
the customer who owns dish k, so ¢} = i<=k € K;.

e The N x N distance matrix between customers is D,
where the distance between customers ¢ and j is d;;.
A customer’s self-distance is 0: d;; = 0. We call the
distance matrix sequential when d;; = oo for j > 4. In
this special case, customers can only connect to pre-
vious customers.

e The decay function f:R +— [0,1] maps distance to a
quantity, which we call proximity, that controls the
probabilities of customer links. We require that
f(0)=1 and f(occ) =0. We obtain the normalized
proximity matrix A by applying the decay function to
each customer pair and normalizing by customer.
That iS, Qjj = f(d”)/h[, where hL = E}\Ll f(d“)

Using this notation, we generate the feature indicator

matrix Z as follows:

1. Assign dish ownership. For each customer i, let
Ai ~ Poisson(a/h;), and set K; = (E]‘@ Aj, E]‘gi Ail,

Dishes (features)

Customers (data points)

Fig. 2. Schematic of the dd-IBP. An example of a latent feature matrix
generated by the dd-IBP. Rows correspond to customers (data points)
and columns correspond to dishes (features). Customers connect to
each other, as indicated by arrows. Customers inherit a dish if the owner
of that dish (cj, indicated by stars) is reachable by a sequence of con-
nections. Gray shading indicates that a feature is active for a given data
point.

thus allocating A; dishes to this customer. For each
k € K;, set the ownership ¢} = i.

2. Assign customer connections. For each customer ¢ and
dish ke {1,...,K}, draw a customer assignment
according to P(ep=j7|D,f)=aj,j=1,...,N.
Note that customers can connect to themselves. In
this case, they do not inherit a dish unless they own
it (see the next step).

3. Compute dish inheritance. We say that customer j
inherits dish k if there exists a path along the
directed graph for dish %k from customer j to the
dish’s owner ¢, (i.e., if ¢} is reachable from j),
where the directed graph is defined by column k
of C. The owner of a dish automatically inherits
it.> We encode reachability with £. If customer j is
reachable from customer ¢ for dish k then L;;, = 1.
Otherwise L;j, = 0.

4. Compute the feature indicator matrix. For each cus-
tomer 7 and dish k£ < K we set z;. = 1 if ¢ inherits k,
otherwise z;, = 0. For k > K we set z;, = 0.

The generative process of the dd-IBP defines the following
joint distribution of the ownership vector and connectivity
matrix,

P(C,c"|D,a, f) = P(c"|a)P(C|c", D, f). (2)

Consider the first term. The probability of the ownership
vector is
N
=[P, (3)
i=1
where c¢* is a deterministic function of Ay, ..., Ay.

Consider the second term. The conditional distribution of
the connectivity matrix C depends on the total number of
owned dishes K and the normalized proximity matrix A
(derived from the distances and decay function),

N

pcl e, =[]

i=1 k=1

icyy.- (4)

The dependence on c* comes from K, which is determined
by the ownership vector c*.

2. Although customer 4 can link to other customers for dish & even if
k € K;, these connections are ignored in determining dish inheritance
when k € K;.



GERSHMAN ET AL.: DISTANCE DEPENDENT INFINITE LATENT FEATURE MODELS 337

Constant
25— ; ; ;
4
25 o5
r 0
S 1 2 4 6 8 10 12
(=)
101
n ]
m.
5 h 1 ]
1 L 1 - lI 1 L} 1 = . ‘. ] ]
10 20 30 40 50 60 70 80 90 100
Customer
Logistic

25F

]
2f 05 .ll"i
T

oL

Dish
B

101 l

10 20 30 40 50 60 70 80 90 100
Customer

Exponential
25— ; ; :
1
2p as\\\\\\\\\\\\\\
- 15t 0
@ 2 4 6 8 10 12 II
e 10 ] 1 1 " !
C ek Y
mj1 [ I ]
I e [ f
1 mna 1 1
I ‘.I I‘ ‘ I‘I ll‘Hl‘.I-‘--‘ I-‘
10 20 30 40 50 60 70 80 90 100
Customer

Window

25F

1
20 0.5
0

24681012I

" ||#l.
S iL-I
i

il
'.4' |

I

Dish

20 30 40 50 60 70 80 90 100
Customer

Fig. 3. Decay functions. Each panel presents a different latent feature matrix, sampled from the dd-IBP with sequential distances. Decay functions

are shown in the insets.

Random feature models (and the traditional IBP) operate
with a random binary matrix Z, and the feature allocation
that it induces. In the dd-IBP, Z is a (deterministic) many-
to-one function of the random variables C and c*, which we
denote by ¢. We compute the probability of a binary matrix
by marginalizing out the appropriate configurations of
these variables

P(Z|D,a, f) = P(c",C|D,a,f). (5

>

(c*,C):¢(c*,C)=2Z

The dd-IBP reduces to the standard IBP in the special case
when f(d) =1 for all d < oo and the distance matrix is
sequential. (Recall: D is sequential if d;; = oo for j > i.) To
see this, consider the probability that the kth dish is sam-
pled by the ith customer (that is, z;;, = 1), conditioned the
dish having been sampled by a previous customer (which
occurs iff ¢; < i when D is sequential). This probability is
the proportion of previous customers that already reach cj
because the probability of connecting to each customer is
proportional to one. This probability is my; /i, which is the
same as in the IBP. This is akin to the relationship between
the dd-CRP and the traditional CRP under the same condi-
tion [5].

Many different decay functions are possible within this
framework. Fig. 3 shows samples of Z using four decay
functions and a sequential distance defined by absolute
temporal distance (djj =i —j for i >j and d;; = oo for
Jj > ).

o Theconstant, f(d) =1if d < ocoand f(oo) = 0. This is

the standard IBP.

The exponential, f(d) = exp(—pd).

The logistic, f(d) = 1/(1 4 exp(Bd — v)).
The window, f(d) = 1[d < v].

Each decay function encourages the sharing of features
across nearby rows in a different way.

When combined with an observation model, which
specifies how the latent features give rise to observed data,
the dd-IBP functions as a prior over latent feature represen-
tations of a data set. In Section 6, we consider a specific
example of how the dd-IBP can be used to analyze data.

2.3 Marginal Invariance and Exchangeability

We now examine some of the theoretical differences
between the dd-IBP and the IBP. Unlike the traditional IBP,
the dd-IBP is not (in general) marginally invariant, the prop-
erty that removing a customer leaves the distribution over
latent features for the remaining customers unchanged.
(The dd-IBP builds on the dd-CRP, which is not marginally
invariant either.) In some circumstances, marginal invari-
ance is desirable for computational reasons. For example,
the conditional distributions over missing data for models
lacking marginal invariance require computing ratios of
normalization constants. In contrast, marginally invariant
models, due to their factorized structure, require less com-
putation for conditional distributions over missing data. In
other circumstances, such as exploratory analysis of fully
observed data sets, this computational concern is less
important.

Beyond computational considerations, in some situations
marginal invariance is an inappropriate assumption. For
example, imagine you are studying the spread of disease.
You believe that there are latent features which play a
causal role in disease transmission, such as certain genes in
the case of genetically transmitted diseases. In this case,
observations correspond to individuals, and distance is nat-
urally defined over a family tree. Removing an individual
from a family tree can dramatically alter the distribution
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over genes for other individuals in the same family tree.
This is an example where marginal invariance is an incor-
rect assumption. In contrast, the distance-dependent effect
of genes on individuals can be captured by an appropriate
distance function using the dd-IBP.

Also unlike the traditional IBP, the dd-IBP’s feature allo-
cations are not exchangeable in general (except in some spe-
cial cases). To state this formally, let Z be drawn from the
dd-IBP with distance matrix D, mass parameter « and
decay function f. Then, let = be a permutation of the inte-
gers {1,..., N}, and let Z" be the matrix created by permut-
ing the rows of Z according to w. Then, except in certain
special cases (such as when D recovers the traditional IBP),

P([z] = [Z]|D,a, f) # P(2"] = [Z]| D, «, f),

where Z' is a (non-random) N x co binary matrix. Permut-
ing the data changes its distribution, and so the dd-IBP’s
feature allocations are not exchangeable in general. This
property stems from the distance function, which induces
sequential dependencies between data points.

Although the dd-IBP does not induce an exchangeable
distribution over equivalence classes [Z], it does have a
related symmetry. Let D" be the N x N matrix D with both
its rows and its columns permuted according to 7. (We
retain the same values for « and f). Then, in general,

P(2" = [Z]|D,e, f) = P([Z] = [Z]| D", [).

Thus, if we permute both the data and the distance matrix,
probabilities remain unchanged. Permuting both the data
and the distance matrix is like first relabeling the data, and
then explicitly altering the probability distribution to
account for this relabeling. If the dd-IBP’s feature alloca-
tions were exchangeable, one would not need to alter the
probability distribution to account for relabeling.

3 RELATED WORK

In this section we describe related work on infinite latent
feature models that capture external dependence between
the data. We focus on the most closely related model, which
is the dependent hierarchical beta process [30]. As a prelude to
describing the dHBP, we review the connection between the
IBP and the beta process.

3.1 The Beta Process

Recall that the IBP induces an exchangeable distribution
over feature allocations. Thibaux and Jordan [27] showed
that the de Finetti mixing distribution underlying the IBP is
the beta process, parameterized by a positive concentration
parameter ¢ and a base measure By on €. A draw B~
BP(c, By) is defined by a countably infinite collection of
weighted atoms,

(o]
B=Y " pidu, (6)
k=1

where §,, is a probability distribution that places a single
atom at w € (), and the p;, € [0,1] are independent random
variables whose distribution is described as follows. If By is
continuous, then the atoms and their weights are drawn

from a nonhomogeneous Poisson process defined on the
space () x [0, 1] with rate measure

v(dw, dp) = ep (1 — p)* dpBy(dw). (7)

If B, is discrete and of the form By = >, Qeboyr @ € [0,1],
then B has atoms at the same locations as B;, with
pr, ~ Beta(cgy, ¢(1 — g;;)). Following Thibaux and Jordan
[27], we define the mass parameter as y = By({)). Note that
By is not necessarily a probability measure, and hence y can
take on non-negative values different from 1.

Conditional on a draw from the beta process, the feature
representation X; of data point i is generated by drawing
from the Bernoulli process (BeP) with base measure B:
X; | B~BeP(B). If B is discrete, then X; =>"", 254,
where z;; ~ Bernoulli(py). In other words, feature k is acti-
vated with probability p;, independently for all data points.
Sampling Z from the compound beta-Bernoulli process is
equivalent (in the sense of providing the same distribution
over equivalence classes [Z]) to sampling Z directly from
the IBP when ¢ = 1 and y = « [27].

3.2 Dependent Hierarchical Beta Processes
The dHBP [30] builds external dependence between data
points using the above BP construction. The dependencies
are induced by mixing independent BP random measures,
weighted by their proximities A.

The dHBP is based on the following generative process,

X | B;, ~ BeP(B),),
B | B~ BP(c1, B),

gi ~ Multinomial(a;),

(8)
B ~ BP(CQ, B()).

This is equivalent to drawing X; from a Bernoulli process
whose base measure is a linear combination of BP random
measures,

N
Xi|B; ~BeP(B;), Bi=)Y_ a;B; (9)
j=1

Dependencies between data points are captured in the
dHBP by the proximity matrix A, as in the dd-IBP.> This
allows proximal data points (e.g., in time or space) to share
more latent features than distant ones.

In Section 4, we compare the feature-sharing properties
of the dHBP and dd-IBP. Using an asymptotic analysis, we
show that the dd-IBP offers more flexibility in modeling the
proportion of features shared between data points, but less
flexibility in modeling uncertainty about these proportions.

3.3 Other Non-Exchangeable Variants

Several other non-exchangeable priors for infinite latent fea-
ture models have been proposed (see [14] for a comprehen-
sive review). Williamson et al. [28] used a hierarchical
Gaussian process to couple the latent features of data in a
covariate-dependent manner. They named this model the
dependent Indian buffet process (dIBP). Their framework is
flexible: It can couple columns of Z in addition to rows,

3. Zhou et al. [30] formalize dependencies in an equivalent manner
using a normalized kernel function defined over pairs of covariates
associated with the data points.
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while the dd-IBP cannot. However, this flexibility comes at
a computational cost during inference: Their algorithm
requires sampling an extra layer of variables.

Miller et al. [20] proposed a “phylogenetic IBP” that enco-
des tree-structured dependencies between data. Doshi-Velez
and Ghahramani [10] proposed a “correlated IBP” that cou-
ples data points and features through a set of latent clusters.
Both of these models relax exchangeability, but they do not
allow dependencies to be specified directly in terms of dis-
tances between data. Furthermore, inference for these mod-
els requires more intensive computation than does the
standard IBP. The MCMC algorithm presented by Miller
et al. [20] for the phylogenetic IBP involves both dynamic
programming and auxiliary variable sampling. Similarly,
the MCMC algorithm for the correlated IBP involves sam-
pling latent clusters in addition to latent features. Our model
also incurs extra computational cost relative to the tradi-
tional IBP due to the computation of reachability (quadratic
in the number of observations); however, it permits a richer
specification of the dependency structure between observa-
tions than either the phylogenetic or the correlated IBP.

Recently, Ren et al. [25] presented a novel way of intro-
ducing dependency into latent feature models based on
the beta process. Instead of defining distances between
customers, each dish is associated with a latent covariate
vector, and distances are defined between each custom-
er’s (observed) covariates and the dish-specific covariates.
Customers then choose dishes with probability propor-
tional to the customer-dish proximity. This construction
comes with a significant computational advantage for
data sets where the time complexity is tied predominantly
to the number of observations. The downside of this con-
struction is that the MCMC algorithm used for inference
must sample a separate covariate vector for each dish,
which may scale poorly if the covariate dimensionality is
high.

4 CHARACTERIZING FEATURE-SHARING

In this section, we compare the feature-sharing properties
of the dHBP and dd-IBP. Two data points share a feature if
that feature is active for both (i.e., z;, = zj; = 1 fori # jand
a given feature k). This analysis is useful for understanding
the types of dependencies induced by the different models,
and can help guide the choice of model and hyperpara-
meter settings for particular data analysis problems. We
consider an asymptotic regime in which the mass parame-
ter is large (« for the dd-IBP and y for the dHBP), which
simplifies feature-sharing properties. Proofs of all proposi-
tions in this section are contained in the Supplementary
Materials, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2014.2321387.

4.1 Feature-Sharing in the dd-IBP

We first characterize the limiting distributional proper-
ties of feature-sharing in the dd-IBP as o — co. We drop
the feature index k in the reachability indicator L;;;, writ-
ing it £;;. We do this because columns of the connectiv-
ity matrix C are identically distributed under the dd-IBP
and, consequently, the distribution of the random vector
(Lije :i,j=1,...,n) is invariant across k.

Let R, = > 1, zix denote the number of features held by
data point ¢, and let R;; = > ;7| zixz;x denote the number of
features shared by data points ¢ and j, where ¢ # j.

Proposition 1. Under the dd-IBP,

N
R; ~ Poisson (oc Z h'P(Liy = 1))7
n=1

(10)

N
R;; ~ Poisson (aZhnIP(ﬁm =1L = 1)) (11)

n=1

The probabilities P(L;, =1) and P(L;,, =1,Lj, =1)
depend strongly on the distribution of the connectivity
matrix C, but do not depend on the ownership vector c*,
since L is independent of dish ownership.

We then use this result to derive the limiting properties
of R; and R;; from properties of the Poisson distribution. In

this and following results, L, indicates convergence in

probability.

Proposition 2. Let i # j. R; and R;; converge in probability
under the dd-IBP to the following constants as o — oo:

R P

=N wP(L, =1 12

” ; . P(Li )s (12)
Rii p )

. h, P(Lin =1,Ly, = 1), 1
a—’; 2 P(Lin =1, L0 = 1) (13)

R S Bt P(Lin = 1)

This proposition shows that the limiting fraction of shared
features R;;j/R; in the dd-IBP is a constant that may be dif-
ferent for each pair of data points ¢ and j. In contrast, we
show below that the same limiting fraction under the dHBP
is random, and takes one of two values. These two values
are fixed, and do not depend upon the data points i and j.

4.2 Feature-Sharing in the dHBP

Here we characterize the limiting distributional properties
of feature sharing in the dHBP as I3, becomes infinitely con-
centrated (i.e., y — oo, analogous to o — c0). In this limit,
feature-sharing is primarily attributable to dependency
induced by the proximity matrix A.

Proposition 3. If By is continuous, then under the dHBP,

R; | g;.ny ~ Poisson(y), (15)
Poisson(y%) if 9i = gj,

Rij | g1.n ~ _ ) (16)
Pmsson(ycﬂﬁ) if i # 9j-

We derive the limiting properties of R; and R;; from proper-
ties of the Poisson distribution.

Proposition 4. Let i # j and assume By is continuous. Condi-
tional on g,.y, R; and R;; converge in probability under the
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dHBP to the following constants as y — oo:

R; P
——1, (17)
14
cotep+1 . o

Rij P | ety ¥ 9 =95 (18)
co+c1+1 .

Ry P | i 9= (19)

Thus, the expected fraction of object i’s features shared with

object j, R;;/R;, is a factor of ‘“fl%lﬂ bigger when g; = g;. As

¢y — 0o, this fraction goes to co. As ¢y — 0, it goes to 1. We

can obtain the unconditional fraction by marginalizing over

gi and g;:

Corollary 1. Let i # j and assume By is continuous. R;;/R; con-
verges in probability under the dHBP as y — oo to a random

variable M;; defined by

e (cocﬂ—)c(gi—l) with probability P(g; = gj)’ (20)
Y o with probability P(g; # g;),

where P(g, = 9]) = Zi‘v\,[:l a,;na‘,-n.

This corollary shows that as y grows large, the fraction of
shared features becomes one of two values (determined
by ¢y and ¢;), with a mixing probability determined by
the dependency structure. Thus, the dHBP affords sub-
stantial flexibility in specifying the mixing probability
(via A), but is constrained to two possible values of the
limiting fraction.

4.3 Feature-Sharing in the IBP
For comparison, we briefly describe the feature-sharing
properties under the traditional IBP.

Under the traditional IBP, by exchangeability of equiva-
lence classes of Z and the fact that R; and R;; are the same
for all Z in the same equivalence class, R; and R;; together
have the same joint distribution as R; and R;». The first cus-
tomer draws a Poisson(«) number of dishes. The second
customer then chooses whether to sample each of these
dishes independently and with probability 1/2. Thus, the
number of dishes sampled by both the first and second cus-
tomers is R ~ Poisson(a/2).

This shows (using argument similar to those used to
show Propositions 2 and 4) that, under the traditional IBP,
as o — oo with ¢ # j,

R; P R;P1

——1, ——, —
o o 2 R;

E

(21)

N | —

4.4 Discussion

Using an asymptotic analysis, the preceding theoretical
results show that the dd-IBP and dHBP provide different
forms of flexibility in specifying the way in which features
are shared between data points. This asymptotic analysis
takes the limit as the mass parameters o and y become large.
This limit is taken for theoretical tractability, and removes

much of the uncertainty that is otherwise present in these
models. While such limiting dd-IBP and dHBP models are
not intended for practical use, their simplicity provides
insight into behavior in non-asymptotic regimes.

Under the dd-IBP, Proposition 2 shows that the modeler
is allowed a great deal of flexibility in specifying the propor-
tions of features shared by data points. Given a matrix spec-
ifying the proportion of features that are believed to be
shared by pairs of data points, one can (if this matrix is suffi-
ciently well-behaved) design a distance matrix that causes
the dd-IBP to concentrate on the desired proportions. While
the dd-IBP cannot model an arbitrary modeler-specified
matrix of proportions, the set of matrices that can be mod-
eled is large.

In contrast, under the dHBP, Corollary 1 shows that the
modeler has less flexibility in specifying the proportions of
features shared. Under the dHBP, the modeler chooses two
values, (co+ ¢ +1)/(co+1)(¢; + 1) and 1/(¢o + 1), and the
proportion of features shared by any pair of data points in
the asymptotic regime must be one of these two values.

Section 4.3 shows that the traditional IBP has the least
flexibility. In the asymptotic regime, the proportion of fea-
tures shared by each pair of data points is a constant.

While the dd-IBP has more flexibility in specifying values
of the feature-sharing-proportions than the dHBP, it has less
flexibility (at least in this asymptotic regime) in modeling
uncertainty about these feature-sharing proportions. Under
the dd-IBP, the proportion of features shared by a pair of
data points in the asymptotic regime is a deterministic
quantity. Under the dHBP, the proportion of features
shared is a random quantity, even in the asymptotic regime.
One could extend the dd-IBP to allow uncertainty about the
feature-sharing-proportions by specifying a hyperprior
over distance matrices, but we do not consider this exten-
sion further.

Fig. 4 illustrates the difference in asymptotic feature-
sharing behavior between the dHBP and dd-IBP. Here we
use the exponential decay function with =1 and
dij = (i — j)*. Subfigures in the upper row are draws from
the dHBP, and subfigures in the bottom row are draws
from the dd-IBP. Within a single subfigure, the shade in the
cell (4,7) is the fraction R;;/R;. (The diagonals R;;/R; =1
have been set to 0 to bring out other aspects of the matrix.)
Each of the four columns represents a pair of independent
draws. To approximate the asymptotic regime considered
by the theory, the mass parameters for the two models are
set to large values of y = o = 1,000. The figure shows that,
in draws from the dHBP, off-diagonal cells have one of two
shades, corresponding to the two possible limiting values
for R;;/R;. In the different columns, corresponding to differ-
ent independent draws, the patterns are different, showing
that R;;/R; remains random under the dHBP, even in the
asymptotic regime. In contrast, in draws from the dd-IBP,
off-diagonal cells take a variety of different values, but
remain unchanged across independent draws.

Fig. 5 illustrates non-asymptotic feature-sharing behavior
in a simple setting with only two data points. The figure
shows the feature-sharing behavior of the dHBP (top) and
dd-IBP (bottom) at two values for the mass parameter:
a =y =15 (top row) and « =y = 30 (bottom row). Each
subfigure shows the probability mass function P(R;;) as a
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Fig. 4. Feature-sharing in the dHBP and dd-IBP, limiting case. Along the horizontal axis, we show four independent draws from the dHBP (Top) and
dd-IBP (Bottom). Within each subfigure, the shade of a cell (i, j) shows the fraction R;;/R;, where R; is the number of features held by data point i,
and R;; is the number held by both 7 and j. Diagonals R;;/R; = 1 have been set to 0 for clarity. Here, « = y = 1, 000. Limiting results from Section 4
explain the behavior for such large « and y: for the dHBP the feature-sharing proportion R;;/R; is random and equal to one of two constants; for the
dd-IBP the proportion is non-random and takes a range of values. The dd-IBP models feature-sharing proportions that differ across data points, but
does not model uncertainty about these proportions when mass parameters are large.

function of the proximity a;;, where a;; = 1/d;; for the dd-
IBP. Because there are only two data points, with a; =1
and a;; = aj, specifying a;; is sufficient for specifying the
full proximity matrix A. For the dHBP, we set ¢y = 10 and
¢1 = 1. Also facilitating comparison, E[R;] is the same
between both models (when « = y).

Fig. 5 shows that as the proximity a;; increases to 1, the
number of shared features R;; tends to increase under both
models. More precisely, P(R;;) concentrates on larger val-
ues of R;; as a;; increases. However, the way in which the

dHBP (y=15)

0 0.2 0.4 0.6 0.8 1

a.
ij
dd-IBP (0=15)

0 0.2 0.4 0.6 0.8 1
a.
1]

20

15

o 10
5
0

probability mass functions change with a;; differs between
the two models. In the dd-IBP, the most likely value of R;;
increases smoothly, while under the dHBP it remains
roughly constant and then jumps. As one varies a;; across
its full range, the set of most likely values for R;; under the
dd-IBP spans its full range from 0 to 20, while under the
dHBP the most likely value for R;; takes only a few values.
Instead, varying a;; under the dHBP allows a variety of
bimodal distributions centered near the values from the
asymptotic analysis.

dHBP (y=30)

0 0.2 0.4 0.6 0.8 1

a..
ij
dd-1BP (0:=30)

20
15

o 10
s
0

0 0.2 0.4 0.6 0.8 1
a.
1

Fig. 5. Feature-sharing in the dHBP and dd-IBP. Heatmaps of the probability mass function over the number of shared features R;; (y-axis) as a func-
tion of proximity a;; (x-axis) in a data set consisting of two data points. Black indicates a probability mass of 0, with lighter shades indicating larger val-
ues. For the dHBP, we set ¢, = 10 and ¢; = 1. Note that E[R;] is the same for both the dHBP and dd-IBP in these examples (when o = y).
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This difference in non-asymptotic behaviors mirrors the
difference between the two models in the asymptotic
regime, where the dd-IBP allows feature-sharing-propor-
tions to be specified almost arbitrarily but allows little flexi-
bility in modeling uncertainty about them, and the dHBP
limits the number of possible values for the feature-sharing
proportions, but allows uncertainty over these values. This
difference may have consequences for data analysis. For
example, latent features underlying preferences for movies
or music may be shared in highly predictable but diverse
ways across a set of individuals, in which case the dd-IBP
would be a more suitable model. In contrast, latent features
underlying disease may be shared in a smaller number of
ways but be highly unpredictable (e.g., two individuals
either share or don’t share a particular stochastically occur-
ring gene mutation), in which case the dHBP would be
more suitable.

5 INFERENCE USING MARKOV CHAIN MONTE
CARLO SAMPLING

Given a data set X = {x1}l\i1 and a latent feature model
P(X | Z,0) with parameter 6, the goal of inference is to com-
pute the joint posterior over the customer assignment
matrix C, the dd-IBP hyperparameter «, and likelihood
parameter 6, as given by Bayes’ rule:

P(C7C*707a ‘ X7D7f)

x P(X|C,c",6)P(O)P(C|D,f)P(c’ | a)P(a), (22)

where the first term is the likelihood (recall that Z is a deter-
ministic function of C and c*), the second term is the prior
over parameters, the third term is the dd-IBP prior over the
connectivity matrix C, the fourth term is the prior over the
ownership vector c*, and the last term is the prior over «.

Exact inference in this model is computationally intracta-
ble. We therefore use MCMC sampling [26] to approximate
the posterior with L samples. Details of this algorithm can
be found in the Supplementary Materials, available online.
The algorithm can be adapted to different data sets by
choosing an appropriate likelihood function. In the next sec-
tion, we present a simple linear-Gaussian model.*

6 A LINEAR-GAUSSIAN MODEL

As an example of how the dd-IBP can be used in data analy-
sis, we incorporate it into a linear-Gaussian latent feature
model (Fig. 6). This model was originally studied for the
IBP by Griffiths and Ghahramani [16], [17]. The observed
data X € RM*M consist of N objects, each of which is a
M-dimensional vector of real-valued object properties. We
model X as a linear combination of binary latent features
corrupted by Gaussian noise:

X =ZW +e, (23)

where W is a K x M matrix of real-valued weights, and € is
a N x M matrix of independent, zero-mean Gaussian noise
terms with standard deviation o,. We place a zero-mean

4. Matlab software implementing this algorithm is available at the
first author’s homepage: web.mit .edu/sjgershm/www.
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Fig. 6. Linear-Gaussian model. Matrix multiplication view of how latent
features (Z) combine with a weight matrix (W) and white noise (¢) to pro-
duce observed data (X).

N =

Gaussian prior on W with covariance o2 I. Intuitively, the
weights capture how the latent features interact to produce
the observed data. For example, if each latent feature corre-
sponds to a person in an image, then the weight wj,, cap-
tures the contribution of person k to pixel m. Algorithmic
details for performing inference in this model are provided
in the Supplementary Materials, available online.

7 EMPIRICAL STUDY

In this section we report experimental investigations of the
dd-IBP and comparisons with alternative models. We show
how the dd-IBP can be used as a dimensionality reduction
pre-processing technique for classification tasks when the
data points are non-exchangeable. In the Supplementary
Materials, available online, we present an example of a
situation in which a non-exchangeable model might be
expected to help, but does not.

The performance of supervised learning algorithms is
often enhanced by pre-processing the data to reduce its
dimensionality [3]. Classical techniques for dimensionality
reduction, such as principal components analysis and factor
analysis, assume exchangeability, as does the infinite latent
feature model based on the IBP [16]. For this reason, these
techniques may not work as well for pre-processing non-
exchangeable data, and this may adversely affect their per-
formance on supervised learning tasks.

We investigated this hypothesis using a magnetic reso-
nance imaging (MRI) data set collected from 27 patients
with Alzheimer’s disease and 35 healthy controls [7].° The
observed features consist of four structural summary statis-
tics measured in 56 brain regions of interest: (1) surface
area; (2) shape index; (3) curvedness; (4) fractal dimension.
The classification task is to sort individuals into Alzheimer’s
or control classes based on their observed features.

Age-related changes in brain structure produce natural
declines in cognitive function that make diagnosis of
Alzheimer’s disease difficult [12]. Thus, it is important to
take age into account when designing predictive models.
For the dd-IBP and dHBP, age is naturally incorporated as a
covariate over which we constructed a distance matrix. Spe-
cifically, we defined d;; as the absolute age difference
between subjects 7 and j, with d;; = oo for j > i (i.e., the dis-
tance matrix is sequential). This induces a prior belief that
individuals with similar ages tend to share more latent fea-
tures. In the MRI data set, ages ranged from 60 to 90
(median: 76.5).

5. Available at: http://wiki.stat.ucla.edu/socr/index.
php/SOCR_Data_July2009_ID_NI.
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Fig. 7. Trace plots. Representative traces of the log joint probability of
the Alzheimer’s data and latent variables for the dd-IBP (top) and dHBP
(bottom). Each iteration corresponds to a sweep over all the latent
variables.

In detail, we ran 1,500 iterations of MCMC sampling on
the entire data set using the linear-Gaussian observation
model, and then selected the latent features of the maximum
a posteriori sample as input to a supervised learning algo-
rithm (Ly-regularized logistic regression, with the regulari-
zation constant set to 1079). Training was performed on half
of the data, and testing on the other half.” The noise hyper-
parameters of the dd-IBP and dHBP (o, and o,) were
updated using Metropolis-Hastings proposals.

We monitored the log of the joint distribution
log P(X,a, C,c*). Visual inspection of the log joint probabil-
ity traces suggested that the sampler reaches a local maxi-
mum within 400-500 iterations (Fig. 7). This process was
repeated for a range of decay parameter (f) values, using the
exponential decay function. The same proximity matrix, A,
was used for both the dd-IBP and dHBP. We performed 10
random restarts of the sampler (initialized to draws from the
prior) and recomputed the classification measure for each
restart, averaging the resulting measures to reduce sampling
variability. For comparison, we also made predictions using
the standard IBP, the dIBP [28], and the raw observed fea-
tures (i.e., no pre-processing). The dIBP was fit using the
MCMC algorithm described in Williamson et al. [28], which
adaptively samples the parameters controlling dependencies
between observations (thus the results do not depend on f).

The inferred latent features are shown in Fig. 8, illustrat-
ing how the distribution of features shifts across values of
the covariate. In this case, the data from younger Alzheimer’s
patients are explained by a set of latent features that are
largely distinct from the latent features used to explain the
data from older patients.

Classification results are shown in Fig. 9 (left), where
performance is measured as the area under the receiver
operating characteristic curve (AUC). Chance perfor-
mance corresponds to an AUC of 0.5, perfect performance
to an AUC of 1. Using features from the non-exchangeable
models (dd-IBP, dHBP, dIBP) leads to better performance
than the raw and IBP features. For a range of g values, the

6. A few randomly chosen individuals were removed from the test
set to make it balanced.

Fig. 8. Inferred latent features for the Alzheimer’s data set. Hinton dia-
gram showing the posterior expected latent feature matrix. Rows corre-
spond to data points (ordered according to increasing age), columns
correspond to latent features. The size of the square indicates the mag-
nitude of the corresponding entry.

dd-IBP produces superior classification performance to
the alternative models, with the exception of the dIBP
(which outperformed the dd-IBP for some settings).

We also ran the dd-IBP sampler with g = 0 (in which case
the dd-IBP and IBP are equivalent) and found no significant
difference between it and the standard IBP sampler with
respect to performance on the Alzheimer’s classification.

8 CONCLUSIONS

By relaxing the exchangeability assumption for infinite
latent feature models, the dd-IBP extends their applicability

—-O-dd-1BP
1 —~dHBP
—1BP
== =Raw
i dIBP

Fig. 9. Classification results for the Alzheimer’s data set. Area under the
curve (AUC) for binary classification (Alzheimer’s versus normal control)
using L-regularized logistic regression and features learned from a
linear-Gaussian latent feature model. Each curve represents a different
choice of predictor variables (latent features) for logistic regression. The
x-axis corresponds to different settings of the exponential decay function
parameter, B. “Raw” refers to the original data features (see text for
details); the IBP, dd-IBP, dIBP and dHBP results were based on using
the latent features of the maximum a posteriori sample following 1,500
iterations of MCMC sampling. Error bars represent standard error of the
mean.



344

to a richer class of data. We have shown empirically that
this innovation fares better than the standard IBP on non-
exchangeable data (e.g., timeseries).

We note that the dd-IBP is not a standard Bayesian non-
parametric distribution, in the sense of arising from a de
Finetti mixing distribution. For the standard IBP, the de Finetti
mixing distribution is the beta process [27], but this result does
not generalize to the dd-IBP due to its non-exchangeability.
Nonetheless, this does not detract from our model’s ability to
let the data infer the number of latent features, a property that
it shares with other infinite latent feature models.

We can consider a number of possible future directions.
First, we may exploit distance dependence to derive more effi-
cient samplers. In particular, Doshi-Velez and Ghahramani
[9] have shown that partitioning the data into subsets enables
faster Gibbs sampling for the traditional IBP; the window
decay function imposes a natural partition of the data into
conditionally independent subsets.

Second, we can apply the dd-IBP to other likelihood
functions. For example, it could be applied to relational
data [19], [21] or text data [27]. As pointed out by Miller
et al. [21], covariates like age or location often play an
important role in link prediction. Whereas Miller et al. [21]
incorporated covariates into the likelihood function, one
could instead incorporate them into the prior by defining
covariate-based distances between data points (e.g., the age
difference between two people). A distinction of the latter
approach is that it would allow one to model dependencies
in terms of latent features. For instance, two people close in
age or geographic location may be more likely to share
latent interests, a pattern naturally captured by the dd-IBP.

Third, modeling shared dependency structure across
groups is important for several applications. In brain
imaging studies, for example, similar spatial and temporal
dependencies are frequently observed across subjects. Model-
ing shared structure without sacrificing intersubject variabil-
ity has been addressed with hierarchical models [2], [29]. One
way to extend the dd-IBP hierarchically would be to allow the
parameters of the decay function to vary across individuals
while being coupled together by higher-level variables.
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