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In Section 1, we present proofs of the propositions and lemmas that appeared in the main paper.
In Section 2, we present a Markov chain Monte Carlo algorithm for approximate inference. Finally,
in Section 3, we present analysis of data in which a non-exchangeable model might be expected to
help, but does not.

1 Proofs

Recall that Ri =
∑∞

k=1 zik is the number of features held by data point i, and Rij =
∑∞

k=1 zikzjk
is the number of features shared by data points i and j, where i 6= j.

Proposition 1

Under the dd-IBP,

Ri ∼ Poisson

(
α

N∑
n=1

h−1n P (Lin = 1)

)
, (1)

Rij ∼ Poisson

(
α

N∑
n=1

h−1n P (Lin = 1,Ljn = 1)

)
. (2)

Proof. Recall that the number of features owned by each customer is λn ∼ Poisson(µn), where
µn = αh−1n . The total number of features across all data points is K =

∑N
n=1 λn ∼ Poisson(µ),

where µ =
∑N

n=1 µn = α
∑N

n=1 h
−1
n .
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Let π be a uniform (conditioned on K) random permutation of {1, . . . ,K}. Then, since zik = 0 for
all k > K under the dd-IBP,

Ri =
K∑
k=1

zik =
K∑
k=1

zi,π(k), Rij =
K∑
k=1

zikzjk =
K∑
k=1

zi,π(k)zj,π(k).

Conditioned on K, for k ≤ K, the event {zi,π(k) = 1} can be rewritten

{zi,π(k) = 1} =

N⋃
n=1

(
{c∗π(k) = n} ∩ {Li,n,π(k) = 1}

)
, (3)

since feature π(k) is on for customer i if and only if customer i links to the owner of that feature.

Conditioned on K, the collection of random variables {c∗π(k) : k ≤ K} are iid (independent and

identically distributed), with P (c∗π(k) = n|K) = µn/µ = h−1n /
∑N

j=1 h
−1
j for k ≤ K. Conditioned on

K, the random variables Li,n,π(k) are also iid across k. Thus, by (3), and still conditioned on K,
the collection of Bernoulli random variables {zi,π(k) : k ≤ K} are iid with

P
(
zi,π(k) = 1

∣∣K) =
N∑
n=1

P
(
c∗π(k) = n|K

)
P
(
Li,n,π(k) = 1|K

)
=

N∑
n=1

(µn/µ)P (Lin = 1) = qi

for k ≤ K, where we have dropped the subscript π(k) in Li,n,π(k) in the last line because P
(
Li,n,π(k) = 1

)
does not depend on k, and we have dropped the conditioning on K because links are drawn inde-
pendenly of K. In the last line, we have defined a quantity qi, noting that this quantity does not
depend on K.

Thus, Ri is a sum of a Poisson(µ) number of conditionally independent Bernoulli(qi) random
variables, and so is itself Poisson distributed with mean

µqi =
N∑
n=1

µnP (Lin = 1) = α
N∑
n=1

h−1n P (Lin = 1) .

This shows the statement (1).

The proof of the statement (2) is similar. Conditioned on K,

{zi,π(k)zj,π(k) = 1} =

N⋃
n=1

(
{c∗π(k) = n} ∩ {Li,n,π(k) = 1,Lj,n,π(k) = 1}

)
and so the collection of Bernoulli random variables {zi,π(k)zj,π(k) : k ≤ K} are iid with

P
(
zi,π(k)zj,π(k) = 1

∣∣K) =
N∑
n=1

P
(
c∗π(k) = n|K

)
P
(
Li,n,π(k) = 1,Lj,n,π(k) = 1|K

)
=

N∑
n=1

(µn/µ)P (Lin = 1,Ljn = 1) = qij
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for k ≤ K. Thus, Rij is a sum of a Poisson(µ) number of conditionally independent Bernoulli(qij)
random variables, and so is itself Poisson distributed with mean

µqij =
N∑
n=1

µnP (Lin = 1,Ljn = 1) = α
N∑
n=1

h−1n P (Lin = 1,Ljn = 1) .

Lemma used in proofs of Propositions 2 and 4

The proofs of Propositions 2 and 4 rely on the following lemma.

Lemma 1. Let Xα ∼ Poisson(αλX) and Yα ∼ Poisson(αλY ) with λY > 0. Then, as α→∞,

Xα/α
P−→ λX ,

Yα/α
P−→ λY ,

Xα/Yα
P−→ λX/λY .

Proof. Pick any ε > 0. E[ 1αXα] = λX and so Chebyshev’s inequality implies

P

[∣∣∣∣ 1αXα − λX
∣∣∣∣ > ε

]
≤

Var[ 1αXα]

ε2
=

1

αε2
,

which converges to 0 as α → ∞. Thus, Xα/α converges in probability to λX . By a similar
argument, Yα/α converges in probability to λY .

Then, by the continuous mapping theorem, the supposition λY > 0, and the continuity of the
mapping (x, y) 7→ x/y over R × (0,∞), we have that Xα/Yα = (Xα/α)/(Yα/α) converges in
probability to λX/λY .

Proposition 2

Let i 6= j. Ri and Rij converge in probability under the dd-IBP to the following constants as
α→∞:

Ri
α

P−→
N∑
n=1

h−1n P (Lin = 1), (4)

Rij
α

P−→
N∑
n=1

h−1n P (Lin = 1,Ljn = 1), (5)

Rij
Ri

P−→
∑N

n=1 h
−1
n P (Lin = 1,Ljn = 1)∑N
n=1 h

−1
n P (Lin = 1)

. (6)
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Proof. The proof follows Proposition 1, Lemma 1, and the fact that

N∑
n=1

h−1n P (Lin = 1) ≥ h−1i P (Lii = 1) = h−1i > 0.

Proposition 3

If B0 is continuous, then under the dHBP,

Ri|g1:N ∼ Poisson (γ) , (7)

Rij |g1:N ∼

 Poisson
(
γ c0+c1+1
(c0+1)(c1+1)

)
if gi = gj ,

Poisson
(
γ 1
c0+1

)
if gi 6= gj.

(8)

Proof. We write the random measures B and B∗j in the generative model defining the dHBP in
Section 3.2 as the following mixtures over point masses.

B =
∞∑
k=1

pkδωk
, pk ∼ Beta(0, c0), ωk ∼ B0. (9)

B∗j =

∞∑
k=1

p∗jkδωk
, p∗jk ∼ Beta(c1pk, c1(1− pk)). (10)

Recall that Xi ∼ BeP(B∗gi) where gi ∼ Multinomial(ai).

Let zik be the random variable that is 1 if the Bernoulli process draw Xi has atom ωk, and 0 if
not. We have zik ∼ Bernoulli(p∗gik). Because B0 is continuous, P (ωk = ωk′) = 0 for k 6= k′ and the
random variables Ri and Rij satisfy

Ri =
∞∑
k=1

zik and Rij =
∞∑
k=1

zikzjk. (11)

We first show that Ri is Poisson distributed with mean γ.

Let qi(ε) denote the probability that Xi has atom ωk conditioned on pk > ε (this value does not
depend on k). That is, qi(ε) = P (zik = 1|pk > ε).

For a given ε, the density of pk conditioned on pk > ε is:

P (pk ∈ dp|pk > ε) =
c0p
−1(1− p)c0−1∫ 1

ε c0u
−1(1− u)c0−1du

dp, p ∈ (ε, 1). (12)
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We can use this density to calculate the success probability qi(ε):

qi(ε) = E[zik|pk > ε] = E[p∗gik|pk > ε] = E[pk|pk > ε] =

∫ 1
ε pc0p

−1(1− p)c0−1dp∫ 1
ε c0p

−1(1− p)c0−1dp
, (13)

where we have used the tower property of conditional expectation in the second and third equalities.

For a given ε > 0, let Nε denote the number of atoms in B with pk > ε. This number is Poisson-
distributed with mean λε = γ

∫ 1
ε c0p

−1(1− p)c0−1dp.

Let Ri(ε) be the number of such atoms that are also in Xi. Because Ri(ε) is the sum of Nε

independent Bernoulli trials that each have success probability qi(ε), it follows that Ri(ε)|Nε ∼
Binomial(Nε, qi(ε)) and

Ri(ε) ∼ Poisson(λεqi(ε)). (14)

Because Ri = limε→0Ri(ε), it follows that Ri ∼ Poisson(limε→0 λεqi(ε)), where

lim
ε→0

λεqi(ε) = lim
ε→0

[
γ

∫ 1

ε
c0p
−1(1− p)c0−1dp

][∫ 1
ε pc0p

−1(1− p)c0−1dp∫ 1
ε c0p

−1(1− p)c0−1dp

]

= lim
ε→0

γ

∫ 1

ε
pc0p

−1(1− p)c0−1dp = γc0

∫ 1

0
(1− p)c0−1dp = γ,

where we have used that
∫ 1
0 (1− p)c0−1dp = 1

c0
. Thus Ri ∼ Poisson(γ).

We perform a similar analysis to show the distribution of Rij . Let qij(ε) denote the probability
that Xi and Xj share atom ωk conditional on pk > ε, gi and gj . That is,

qij(ε) = P (zik = zij = 1|gi, gj , pk > ε). (15)

Although only ε appears in the argument of qij(ε), this quantity also implicitly depends on gi and
gj . We calculate qij(ε) explicitly below.

Let Rij(ε) be the number of atoms ωk for which pk > ε and ωk is in both Xi and Xj . We have
Rij(ε)|Nε, gi, gj ∼ Binomial(Nε, qij(ε)) and

Rij(ε)|gi, gj ∼ Poisson(λεqij(ε)). (16)

Because Rij = limε→0Rij(ε), it follows that Rij ∼ Poisson(limε→0 λεqij(ε)).

To calculate limε→0 λεqij(ε), we consider two cases. In each case, we first calculate qij(ε) and then
calculate the limit, showing that it is the same as the mean of Rij claimed in the statement of the
proposition.

• Case 1: gi = gj

qij(ε) = E[zikzjk|pk > ε, gi, gj ] = E[(p∗gik)
2|pk > ε, gi, gj ]

= E[E[(p∗gik)
2|pk, gi, gj ]|pk > ε, gi, gj ] = E[pk(c1pk + 1)/(c1 + 1)|pk > ε, gi, gj ]

=

∫ 1
ε
c1p+1
c1+1 pc0p

−1(1− p)c0−1dp∫ 1
ε c0p

−1(1− p)c0−1dp
= γ

c0
c1 + 1

∫ 1
ε (c1p+ 1)(1− p)c0−1dp

λε
. (17)
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Then the limit limε→0 λεqij(ε) can be written

lim
ε→0

λεqij(ε) = γ
c0

c1 + 1

∫ 1

0
(c1p+ 1)(1− p)c0−1dp

= γ
c0

c1 + 1

[
c1

∫ 1

0
p(1− p)c0−1dp+

∫ 1

0
(1− p)c0−1dp

]
= γ

c0
c1 + 1

[
c1

c0(c0 + 1)
+

1

c0

]
= γ

c0 + c1 + 1

(c0 + 1)(c1 + 1)
,

where we have used that
∫ 1
0 (1− p)c0−1dp = 1

c0
and

∫ 1
0 p(1− p)

c0−1dp = 1
c0(c0+1) .

• Case 2: gi 6= gj

qij(ε) = E[zikzjk|pk > ε, gi, gj ] = E[E[p∗gikp
∗
gjk
|pk, gi, gj ]|pk > ε, gi, gj ]

= E[p2k|pk > ε, gi, gj ] = γ

∫ 1
ε p

2c0p
−1(1− p)c0−1dp
λε

.

Then the limit limε→0 λεqij(ε) can be written

lim
ε→0

λεqij(ε) = γc0

∫ 1

0
p(1− p)c0−1dp = γ

1

c0 + 1
,

where we have used that
∫ 1
0 p(1− p)

c0−1dp = 1
c0(c0+1) .

Proposition 4

Let i 6= j and assume B0 is continuous. Conditional on g1:N , Ri and Rij converge in probability
under the dHBP to the following constants as γ →∞:

Ri
γ

P−→ 1, (18)

Rij
γ

P−→

{
c0+c1+1

(c0+1)(c1+1) if gi = gj ,
1

c0+1 if gi 6= gj ,
(19)

Rij
Ri

P−→

{
c0+c1+1

(c0+1)(c1+1) if gi = gj ,
1

c0+1 if gi 6= gj .
(20)

Proof. The proof follows from Proposition 3, Lemma 1, and by noting that both (c0 + c1 + 1)/(c0 +
1)(c1 + 1) and 1/(c0 + 1) are strictly positive.
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2 Inference using Markov chain Monte Carlo sampling

Our algorithm combines Gibbs and Metropolis updates. For Gibbs updates, we sample a variable
from its conditional distribution given the current states of all the other variables. Conjugacy allows
simple Gibbs updates for θ and α. Because the dd-IBP prior is not conjugate to the likelihood, we
use the Metropolis algorithm to sample C and c∗. We generate proposals for C and c∗, and then
accept or reject them based on the likelihood ratio. We further divide these updates into two cases:
updates for “owned” (active) dishes and updates of dish ownership.

In what follows, we assume that xi is conditionally independent of zj and xj for j 6= i given zi and
θ.

Sampling θ. To sample the likelihood parameter θ, we draw from the following conditional distri-
bution:

P (θ|X,C, c∗) ∝ P (X|C, c∗, θ)P (θ), (21)

where the prior and likelihood are problem-specific. To obtain a closed-form expression for this
conditional distribution, the prior and likelihood must be conjugate. For non-conjugate priors, one
can use alternative updates, such as Metropolis-Hastings or slice sampling [4]. Generally, updates
for θ will be decomposed into separate updates for each component of θ. In some cases (e.g., the
linear-Gaussian model), θ can be marginalized analytically.

Sampling α. To sample the hyperparameter α, we draw from the following conditional distribution:

P (α|c∗,D, f) ∝ P (α)

N∏
i=1

Poisson(λi;α/hi), (22)

where λi is determined by c∗ and the prior on α is a Gamma distribution with shape να and inverse
scale ηα. Using the conjugacy of the Gamma and Poisson distributions, the conditional distribution
over α is given by:

α|c∗,D, f ∼ Gamma

(
να +

N∑
i=1

λi, ηα +
N∑
i=1

h−1i

)
. (23)

Sampling assignments for owned dishes. We update customer assignments for owned dishes
(corresponding to “active” features) using Gibbs sampling. For n = 1, . . . , N , i = 1, . . . , N , and
k ∈ Kn, we draw a sample from the conditional distribution over cik given the current state of all
the other variables:

P (cik|C−i,xi, c∗, θ,D, f) ∝ P (xi|C, c∗, θ)P (cik|D, f), (24)

where xi is the ith row of X, ci is the ith row of C, and C−i is C excluding row i.1 The first factor
in Eq. 24 is the likelihood,2 and the second factor is the prior, given by P (cik = j|D, f) = aij . In

1We rely on several conditional independencies in this expression; for example, xi is conditionally independent of
X−i given C, c∗, and θ.

2In calculating the likelihood, we only include the active columns of Z (i.e., those for which
∑N

n=1 znk > 0).
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considering possible assignments of cik, one of two scenarios will occur: Either data point i reaches
the owner of k (in which case feature k becomes active for i as well as for all other data points that
reach i), or it does not (in which case feature k becomes inactive for i as well as for all other data
points that reach i). This means we only need to consider two different likelihoods when updating
cik.

Sampling dish ownership. We update dish ownership and customer assignments for newly
owned dishes (corresponding to features going from inactive to active in the sampling step) using
Metropolis sampling. Both a new ownership vector c∗

′
and the columns of newly allocated dishes

in a new connectivity matrix C′ are proposed by drawing from the prior, and then accepted or
rejected according to a likelihood ratio. In more detail, the update proceeds as follows.

1. Propose λ′i ∼ Poisson(α/hi) for each data point i = 1, . . . , N . Let K′i =
(∑

j<i λ
′
j ,
∑

j≤i λ
′
j

]
,

and let c∗
′
k = i for all k ∈ K′i.

2. Set C′ ← C. Then populate or depopulate it by performing, for each i = 1, . . . , N ,

(a) If λ′i > λi, allocate λ′i − λi new dishes to customer i.

To make room for these new dishes in C′, relabel dishes owned by later customers by
moving each column k >

∑
j<i λ

′
j + λi to column k + λ′i − λi in C′.

Then for each new dish k ∈
(∑

j<i λ
′
j + λi,

∑
j≤i λ

′
j

]
fill in the corresponding column of

C′ by sampling c′mk according to P (c′mk = j) = amj .

(b) If λ′i < λi, remove λi − λ′i randomly selected dishes from customer i.

Do this by first choosing λi−λ′i dishes uniformly at random (without replacement) from(∑
j<i λ

′
j ,
∑

j<i λ
′
j + λi

]
. Then remove these columns from C′, and relabel all dishes

after the first removed dish by moving the corresponding columns of C′.

3. Compute the acceptance ratio ζ. Because the prior (conditional on the current state of the
Markov chain) is being used as the proposal distribution, the acceptance ratio reduces to a
likelihood ratio (the prior and proposal terms cancel out):

ζ = min

[
1,
P (X|C′, c∗′ , θ)
P (X|C, c∗, θ)

]
. (25)

4. Draw r ∼ Bernoulli(ζ). Set C ← C′ and c∗ ← c∗
′

if r = 1, otherwise leave C and c∗

unchanged.

Iteratively applying these updates, the sampler will (after a burn-in period) draw samples from a
distribution that approaches the posterior as the burn-in period grows large. The time complex-
ity of this algorithm is dominated by the reachability computation, O(KN2), and the likelihood
computation, which is O(N3) if coded naively (see [1] for a more efficient implementation using
rank-one updates).

In simulation studies, we have found that the acceptance rate for the Metropolis-Hastings step is
typically high (≈ 0.9). The main computational bottleneck is the cubic scaling of time complexity
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with the number of data points. In future work, we intend to investigate alternative algorithms that
scale more favorably with the number of data points. In particular, recently developed stochastic
variational inference algorithms have shown great promise for fitting latent variable models to large
data sets [2].

For the linear-Gaussian model, θ = W. As a consequence of our Gaussian assumptions, W can be
marginalized analytically, yielding the likelihood:

P (X|Z) =

∫
W
P (X|Z,W)P (W)dW

=
exp

{
− 1

2σ2
x
tr
(
XT (I− ZH−1ZT )X

)}
(2π)NM/2σ

(N−K)M
x σKMw |H|M/2

, (26)

where tr(·) is the matrix trace, K is the number of active columns, and H = ZTZ+ σ2
x
σ2
w
I. In calcu-

lating the likelihood, we only include the “active” columns of Z (i.e., those for which
∑N

j=1 zjk > 0).

3 Additional experimental results: when non-exchangeability hurts

As an example of a missing data problem, we use latent feature models to reconstruct missing
observations in electroencephalography (EEG) time series. The EEG data3 are from a visual
detection experiment in which human subjects were asked to count how many times a particular
image appeared on the screen [3]. The data were collected as part of a larger effort to design
brain-computer interfaces to assist physically disabled subjects.

Distance between data points was defined using the absolute time-difference. Data were z-scored
prior to analysis. For 10 of the data points, we removed 2 of the observed features at random. We
then ran the MCMC sampler for 1500 iterations, adding Gibbs updates for the missing data by
sampling from the observation distribution conditional on the current values of the latent features
and hyperparameters. We then used the MAP sample for reconstruction, measuring performance
by the squared reconstruction error on the missing data. We repeated this procedure for 10 random
restarts. Figure 1 shows the reconstruction results; in this case, the covariate-dependence appears
to hurt reconstruction performance, with the IBP achieving the best performance. Thus, covariate-
dependent models can suffer when there are not strong dependencies in the data.
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Figure 1: Reconstruction of missing EEG data. Reconstruction error for latent feature models
as a function of the exponential decay function parameter, β. Results were based on the maximum
a posteriori sample following 1500 iterations of MCMC sampling. Lower values indicate better
performance. Error bars represent standard error of the mean.
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