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A. Redish et al. (2007) proposed a reinforcement learning model of context-dependent learning and extinction
in conditioning experiments, using the idea of “state classification” to categorize new observations into states.
In the current article, the authors propose an interpretation of this idea in terms of normative statistical
inference. They focus on renewal and latent inhibition, 2 conditioning paradigms in which contextual
manipulations have been studied extensively, and show that online Bayesian inference within a model that
assumes an unbounded number of latent causes can characterize a diverse set of behavioral results from such
manipulations, some of which pose problems for the model of Redish et al. Moreover, in both paradigms,
context dependence is absent in younger animals, or if hippocampal lesions are made prior to training. The
authors suggest an explanation in terms of a restricted capacity to infer new causes.
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An enduring problem in the study of classical conditioning is
how animals learn about the causal structure of their environment
(Blaisdell, Sawa, Leising, & Waldmann, 2006). Most theories
frame conditioning as the learning of associations between stimuli
and reinforcement (Pearce & Bouton, 2001; Rescorla & Wagner,
1972). Under a statistical interpretation, these associations are
parameters of a generative model in which stimuli cause reinforce-
ment (Kakade & Dayan, 2002). However, evidence suggests that
animals may employ more flexible models, learning, for example,
that some stimuli are causally unrelated to reinforcement (Dayan,
Kakade, & Montague, 2000; Dayan & Long, 1998). A more
radical departure are latent cause models (Courville, 2006; Cour-
ville, Daw, Gordon, & Touretzky, 2004; Courville, Daw, &
Touretzky, 2002), in which both stimuli and reinforcement are
attributed to causes that are hidden from observation. One moti-
vation for such models is the finding that learned relationships
between cues and reinforcement are not necessarily erased follow-
ing extinction: Returning the animal to the original training context
after extinction in a different context can lead to renewal of the
conditioned response (Bouton, 2004; Bouton & Bolles, 1979).
These and related data can be characterized by a latent cause
model in which different latent causes are associated with the
training and extinction contexts.

One problem with latent cause models is that the number of
different latent causes is in general unknown. The challenge, then, is
to formulate a learning algorithm that can infer new causes as it

gathers observations, as well as learn the statistical relationships
between causes and observations. Recently, Redish, Jensen, Johnson,
and Kurth-Nelson (2007) formulated such a theory of extinction
learning, combining the well-studied framework of temporal differ-
ence reinforcement learning (Schultz, Dayan, & Montague, 1997;
Sutton & Barto, 1998) with a state classification mechanism that
allows the state space to expand adaptively. In their model, states can
be loosely interpreted as latent causes, serving to explain both stimuli
and reinforcement in terms of an underlying discrete variable.

We suggest a new model of latent cause inference in animal
learning that is based in a normative statistical framework. With
this model, we address certain limitations of the theory of Redish
et al. (2007), while still capturing its essential insights. We agree
with their assertion that the computational problem the animal
must solve is one of structure learning. We posit that the compu-
tational principles at work in structure learning are based on a
generative model of the environment that specifies the animal’s a
priori beliefs about how its observations were generated by latent
causes. Given a set of observations, the problem facing the animal
is to combine its prior beliefs with the evidence provided by the
observations to infer which causes were in action. At the algorith-
mic level, we identify several features of Redish et al.’s model that
make it difficult to account for relevant data and show how these
are obviated in our model. Finally, drawing on a suggestion by
Redish et al., we make explicit the computational role played by
the hippocampus in our model and use this to explain develop-
mental changes in learning.

Redish et al.’s (2007) Model

The data motivating the model of Redish et al. (2007) came
from a conditioning procedure studied by Bouton and Bolles
(1979): In the conditioning phase, the animal is placed in Context
A and exposed in each trial to both a stimulus cue and a reinforcer;
eventually the cue comes to evoke a conditioned response. In the
extinction phase, the animal is then placed in a new context (B)
and exposed in each trial to the cue in the absence of reinforce-
ment, until the cue ceases to evoke the conditioned response. It
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would appear, at first glance, that the animal has “unlearned” its
response to the cue. However, if the animal is returned to the
original context (A) in a test phase and presented with the cue, the
response is restored, strongly suggesting otherwise. Rather, it
seems that the animal has learned a new relationship between the
cue and the reinforcer during extinction that was somewhat limited
to Context B.

This phenomenon, known as ABA renewal, is explained by
Redish et al.’s (2007) model in terms of two simultaneous pro-
cesses: a value-learning process and a state-classification process.
The first updates values associated with states (and potentially
actions), using a form of the temporal difference learning algo-
rithm (Sutton & Barto, 1998), which is closely related to the
Rescorla-Wagner update rule (Rescorla & Wagner, 1972). A
state’s value represents a prediction about future reinforcement in
that state. The temporal difference learning rule incrementally
updates values in proportion to the discrepancy between predicted
and received reinforcement (the prediction error). In the Pavlovian
version of the renewal paradigm described here, the animal’s
conditioned response is presumed to be proportional to the current
state’s value (see Dayan, Niv, Seymour, & Daw, 2006). In the
operant version modeled by Redish et al., the probability of the
animal taking a particular action (e.g., lever press) is proportional
to the state-action value.

The innovation of Redish et al. (2007) is to introduce a state-
classification process that determines what state the animal
is currently in and creates new states when the observation statis-
tics change. The observations, in this case, are defined to be tuples
consisting of {context, stimulus, immediate reinforcement, time
since last reinforcement}. The actual mechanics of the state clas-
sification are quite sophisticated, and we refer the reader to the
original article. In brief, a competitive learning model using radial
basis functions and classifier expansion (Grossberg, 1976; Hertz,
Krogh, & Palmer, 1991) partitions the input space into multivariate
Gaussian state prototypes; temporal difference learning then oper-
ates on these states. For our purposes, the important aspect of this
process is that each state is associated with an observation proto-
type, and a new observation is classified as a particular state on the
basis of its match to the state’s prototype. When the observation
fails to match any prototype (as determined by a threshold), a new
state/prototype is inferred. A local estimate of the average negative
prediction error modulates this process: When prediction errors are
tonically negative, a new state is more likely to be inferred.

According to this model, acquisition in the ABA renewal par-
adigm proceeds according to the value-learning process, with all
training observations being assigned to the same state (because
their statistics are homogeneous). During extinction, the absence
of the predicted reinforcement results in tonic negative prediction
errors. Combined with a context change, this results in the state-
classification process creating a new state. Thus, one state is
associated with reinforcement, and another state is associated with
no reinforcement. When the animal is returned to the training
context, it identifies its observations as belonging to the state
associated with reinforcement (on the basis of the contextual cue)
and therefore produces the conditioned response.

One implication of this model is that new states are unlikely to be
inferred when prediction errors are tonically positive. Evidence in
contradiction of this hypothesis comes from the context dependence
of latent inhibition (Hall & Honey, 1989). The latent inhibition

procedure is, in some sense, a concomitant manipulation to extinction:
An animal is first exposed to a stimulus in the absence of reinforce-
ment and is later conditioned with pairing of the stimulus and rein-
forcement. In this case, animals are slower to acquire a conditioned
response compared with animals that have not been pre-exposed.
However, if the pre-exposure and conditioning phases are conducted
in different contexts, the latent inhibition effect is diminished. Here
the conditioning phase is accompanied by positive prediction errors
(as the reinforcement is unexpected following the pre-exposure),
which, according to Redish et al.’s (2007) model, should not result in
the inference of a new state. Hence, their model mispredicts that a
shift in context will not affect latent inhibition.1 This problem was
also noted by Redish et al.

Another problem is that because the values associated with new
states are initialized to zero, Redish et al.’s (2007) model does not
predict ABC and AAB renewal (Bouton & Bolles, 1979; Bouton &
King, 1983), in which the test trials occur in a completely new
context. In both these cases, conditioned responding returns during
the test phase. This can be fairly easily accomodated by initializing
the values of new states to some prior belief about state values, as
we discuss here in connection with our model.

Apart from these problems, the idea of state classification on the
basis of observation statistics is a fundamental contribution. In for-
mulating a quantitative theory of how animals solve this problem, we
would like to understand the statistical principles underlying this
insight. To this end, we propose a new model that is conceptually
aligned with that of Redish et al. (2007) but more directly descended
from the latent cause theory of Courville (2006).

The rest of this article is organized as follows: We first describe
an infinite-capacity mixture model and a particle filter algorithm
for performing inference in this model. We then present the results
of simulations of latent inhibition and renewal paradigms, includ-
ing developmental and hippocampal manipulations. In the discus-
sion, we compare our model with that of Redish et al. (2007), as
well as several other models. Finally, we discuss some limitations
of our model and propose directions for its future development.

A New Model: Statistical Inference in an
Infinite-Capacity Mixture Model

The central claim of our account is that, to adaptively predict
events in their environment, animals attempt to partition observa-
tions into separate groups on the basis of their properties. This task
is known as clustering in computer science and statistics, and
hence, we call these groups clusters. We assume that the animal’s
goal is to assign observations to clusters such that the clusters
correspond to different latent causes. Renewal can then be under-
stood as the result of this clustering process. Specifically, we
suggest that the animal learns to partition its observations on the
basis of their features into two distinct clusters, corresponding to
the acquisition and extinction phases (which are implicitly the
causes of the animal’s observations).

1 Redish et al.’s (2007) model will demonstrate latent inhibition if the
modulation of state classification by tonic prediction error is weak. In this
case, state classification is driven primarily by the match between the
current observation and the prototypes. However, this scenario is at odds
with the central role played by tonic prediction error in Redish et al.’s
model.
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Our basic approach is to first formulate a set of assumptions that we
impute to the animal and then describe how, on the basis of these
assumptions, the animal can make rational inferences about latent
causes given a set of observations. The set of assumptions constitutes
the generative model, which represents the animal’s prior beliefs
about the statistical structure and probabilistic dependencies between
variables (both hidden and observed) in the environment. The gener-
ative model expresses the state of the animal’s beliefs prior to making
any observations. Given a set of observations, we expect the animal’s
beliefs (or inference) about the actual causes of these observations to
change. In particular, this new state of knowledge is expressed by a
posterior distribution over unobserved (hidden) variables given the
observed variables. We refer to this as the animal’s inference model.2

In the context of the classical conditioning data that we model, the
inference model represents the animal’s beliefs about the latent causes
of its observations.

Generative Model

We assume that the animal’s observation on trial t takes the
form of a discrete-valued multidimensional vector ft, with the
following dimensions: reinforcement (ft,1), cue (ft,2) and context
(ft,3). The reinforcement dimension represents a binary uncondi-
tioned stimulus delivered to the animal (e.g., ft,1 �{reinforcement,
no reinforcement}). The cue dimension represents a typical Pav-
lovian cue (or its absence; e.g., ft,2 � {tone, no tone}).3 The
context dimension is an abstraction of the context manipulations
typical in renewal paradigms (e.g., box color, shape, odor), which
we simplify into discrete values: ft,3 �{Context A, Context B,
Context C}.

The generative model we impute to the animal is one in which,
on each trial, a single latent cause is responsible for generating all
the observation features (reinforcement, cue, context). In such a
mixture model, each trial is assumed to be generated by first
sampling a cause ct (from a known set of causes) according to a
mixing distribution P(c) and then sampling observation features
conditioned on the cause from an observation distribution P(f|ct).
This type of generative model is a reasonable prior belief for many
environments. In fact, it correctly expresses, to a first approxima-
tion, the process by which many conditioning procedures are
generated: First a phase (e.g., conditioning, extinction, test) is
selected, and then a set of stimuli are selected conditioned on the
phase. If the animal assumes that each observation is probabilis-
tically generated by a single latent cause, then clustering is the
process of recovering these causes on the basis of its observations.4

The mixture model described so far implicitly assumes that the
animal knows how many possible causes there are in the environ-
ment. This seems an unreasonable assumption about the structure
of the animal’s environment, as well as the animal’s a priori
knowledge about its observations. Furthermore, as we discuss
later, there is evidence that animals can flexibly infer the existence
of new causes as more observations are made. We thus use a
generative model that allows for an unbounded (expanding) num-
ber of latent causes (an infinite capacity mixture model, as de-
scribed below). In this model, the animal prefers a small number of
causes but can, at any time, infer the occurrence of a new latent
cause when the data support its existence and thus decide to assign
its current observation to a completely new cluster.

Formally, let us denote a partition of observations (trials) 1, . . . , t
by the vector c1:t. A partition specifies which observations were
generated by which causes, such that ct � k indicates that the
observation t was assigned to cluster k. In our model, the animal’s
prior over partitions takes the form of a sequential stochastic
generative process (Aldous, 1985; Pitman, 2002) that generates
cause k with probability

P�ct � 1 � k�c1:t�

� �
Nk

t � �
if k � Kt �i.e., k is an old cause�

�

t � �
if k � Kt � 1 �i.e., k is a new cause�,

(1)

where Nk is the number of observations already generated by cause
k (by default it is assumed that c1 � 1) and Kt is the number of
unique causes generated for observations 1 to t. The number of
causes generating observations 1, . . . , t is now a random variable
and can be any number from 1 to t. The concentration parameter
� specifies the animal’s prior belief about the number of causes in
the environment. When � � 0, the animal assumes that all obser-
vations are generated by a single cause; when � approaches �, the
animal assumes that each observation is generated by a unique
cause. In general, for � � �, the animal assumes that observations
tend to be generated by a small number of causes.5

The animal further assumes that once a cause has been sampled
for a trial, an observation is sampled from an observation distri-
bution conditional on the cause. Each cause is associated with a
multinomial observation distribution over features, parameterized
by �, where �i,j,k is the probability of observing value j (e.g.,

2 This is also sometimes referred to as the recognition model (Dayan &
Abbott, 2001).

3 The choice of discrete-valued observations is not crucial to our for-
malism; we have used real-valued features and obtained essentially the
same results.

4 We use the term cause in connection with the generative model and the
term cluster in connection with the inference procedure. The clusters
inferred by the animal may not be identical to the true causes of its
observations.

5 This “infinite-capacity” distribution over causes is known in statistics
and machine learning as a Chinese restaurant process (Aldous, 1985;
Pitman, 2002). We use the Chinese restaurant process as an intra-agent
prior on the structure of the environment, which is the basis (and provides
the constraints) for the inference process once observations are seen. A
Chinese restaurant process is a probability distribution over partitions of
observations, where a partition is a vector indicating the latent cause of
each observation. Its name comes from the following metaphor: Imagine a
Chinese restaurant with an unbounded number of tables (causes). The first
customer (observation) enters and sits at the first table. Subsequent cus-
tomers sit at an occupied table with a probability proportional to how many
people are already sitting there, and at a new table with probability
proportional to alpha, a concentration parameter. Once all the customers
are seated, one has a partition of observations into causes. In a Chinese
restaurant process mixture model (also known as a Dirichlet process
mixture model), each cause is associated with a parameterized distribution
over features so that an observation’s feature properties are determined by
its latent cause (and its associated parameters). Observations generated by
the same cause will tend to have similar features by virtue of sharing these
parameters.
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reinforcement) for feature i, given latent cause k. A common
assumption in mixture models (which we adopt here) is that, in the
generative model, each feature is conditionally independent of all
the other features given a latent cause and the multinomial param-
eters. For instance, a latent cause that can be labeled as “training
trial” might generate a cue with probability �2,tone,k � “training” �
1 and, independently, generate reinforcement with some probabil-
ity �1,reinforcement,k � “training” (possibly less than 1), whereas a
latent cause labeled as “extinction trial” might generate a cue with
probability 1 and reinforcement with probability 0. The conditional
independence assumption expresses the idea that, given the iden-
tity of the latent cause, cues and reinforcement are separately
generated, each according to its associated probability �i,j,k.

We assume that the multinomial parameters themselves are
drawn from a Dirichlet distribution (the conjugate prior for the
multinomial distribution). This prior expresses the animal’s pre-
dictions about the experiment before it has made any observations.
Given that the animal is unlikely to have strong a priori predictions
about the experiment before it has begun, we chose the parameters
of the Dirichlet distribution so that all possible multinomial pa-
rameters have equal probability under the prior. Note that each
cause is endowed with its own multinomial distribution over
features; this allows different causes to be associated with different
observation statistics. Every time a new cause is created by Equa-
tion 1, the parameters of its corresponding multinomial distribution
are drawn from the Dirichlet prior.

It may at first appear odd that causes in Equation 1 are
generated purely on the basis of how many times a particular
cause was generated in the past and that features are generated
independently from one another given a cause and multinomial
parameters. Intuitively, one would expect that similar observa-
tions would be generated by the same cause. Indeed, this
intuition is faithfully embodied in the model. An important
point to keep in mind is that in the generative model, observa-
tions will be similar because they were generated by the same
cause. Similarly, features will exhibit correlations because they
are coupled by a common cause (e.g., the latent cause associ-
ated with the training phase of a conditioning experiment will
tend to generate both the cue and the reinforcement). When
faced with uncertainty about the latent causes of its observa-
tions, both of these properties will influence the animal’s be-
liefs in the inference model (described in the next section).
First, the animal will use the similarity between trials to infer
what latent cause they came from. As a result, the belief about
the causes of one trial will no longer be independent of the other
trials. Second, the animal’s beliefs about the future value of one
feature (e.g., reinforcement) will depend in the inference model
on its knowledge about other features (e.g., context and cue). In
other words, observation features will be conditionally depen-
dent when the latent cause is unknown (i.e., in all realistic
scenarios).

Inference Model

There are two components to the inference problem facing the
animal: identifying the latent causes of its observations and pre-
dicting reinforcement given a partial observation (context and
cues). Because in our model prediction depends on inferences
about latent causes, we address each of these in turn.

Denote the observations in trials 1, . . . , t by the vector F1:t.
Given a set of observations up to trial t, what are the animal’s
beliefs about the latent causes of these observations? According to
Bayesian statistical inference, these beliefs are represented by the
posterior distribution over partitions given the observations:

P�c1:t�F1:t� �
P�F1:t�c1:t�P�c1:t�

P�F1:t�
. (2)

Exact computation of the posterior in this model is computation-
ally demanding. Moreover, for such a model to be plausibly
realized by animals, learning and inference must be incremental
and online. One approximate inference algorithm which is both
tractable and incremental is the particle filter (Fearnhead, 2004).
This algorithm approximates the posterior distribution over parti-
tions with a set of weighted samples and has been used success-
fully to model a number of learning phenomena (Brown &
Steyvers, 2009; Daw & Courville, 2008; Sanborn, Griffiths, &
Navarro, 2006). The essential idea in particle filtering is to create
a set of m hypothetical particles, each of which is a specific
partition of all the trials into causes, and then weight these particles
by how likely they are to have generated the particular set of
observations that has been seen. The weights will depend on
factors such as whether similar observations are clustered together
in a particular particle and the number of latent causes in the
partition. They will also depend on multiplicative interactions
between features, such that a particle will receive larger weight to
the extent that it predicts consistent configurations of feature
values. A detailed description of the particle-filter algorithm can be
found in the Appendix.

We assume that the animal’s general goal in a classical condi-
tioning experiment is to predict the probability of reinforcement
when observing a “test” observation vector that lacks the first
feature (i.e., where it is not yet specified whether reinforcement
will or will not occur). This prediction can rely on the presence or
absence of the other features (context and cue) as well as all of the
animal’s previous experience. In our model, this prediction is
accomplished by augmenting each particle with a cluster assign-
ment of the test observation and then averaging the probability of
reinforcement over all the particles, weighted by the posterior
probability of the test cluster assignment (see the Appendix for the
corresponding equations). We assume that the animal’s condi-
tioned (Pavlovian) response is proportional to the predicted prob-
ability of reinforcement (Dayan et al., 2006) and so report the
reinforcement prediction in the results.

Results

Except where otherwise mentioned, for the simulations reported
here, we used uniform Dirichlet priors over all features and � � .1
as the concentration parameter.6 All the simulations used 3,000

6 Although alpha can be learned straightforwardly with the particle filter,
our simulations suggest that this added flexibility does not change the
results substantially, so we have fixed it to a constant value.
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particles.7 For each phase (pre-exposure, conditioning, extinction),
trials were identical replicas of each other (i.e., there was no noise
injected into the observations). Although the output of the particle
filter is stochastic (because of the sample-generating process), it
returns effectively the same results on multiple runs by averaging
over a large number of particles.

Acquisition and Extinction

As a preliminary illustration of the model’s basic behavior,
Figure 1 shows simulated conditioned responding before and after
a context change. The solid line represents conditioned responding
when the animal continues to be reinforced after the context
change. The dashed line represents conditioned responding when
the animal is no longer reinforced after the context change (i.e.,
extinction). As expected (and in agreement with most models of
conditioning), responding increased during the conditioning phase
and decreased during the extinction phase. Note that the condi-
tioned response began at 50%, which follows from the uniform
prior over the reinforcement feature. In other settings, a different
prior may be more suitable (e.g., to express the animal’s prior
expectation that it will not get reinforced).

Renewal

Figure 2a shows experimental data from a renewal paradigm
(Bouton & Bolles, 1979), in which rats were given training in
Context A and extinction in Context B and were then tested in
either the training context (A), extinction context (B) or a novel
context (C). The conditioned response measured at test was, in this
case, conditioned suppression (but similar results have been ob-
tained with many other preparations; see Bouton, 2004). Condi-
tioned responding was renewed both in the training context (ABA

renewal) and in the novel context (ABC renewal) but not in the
extinction context.

Figures 2c and 2d show the results of simulating our model with
conditioning in Context A (f � [reinforcement, tone, A] for 20
trials); extinction in Context B (f � [no reinforcement, tone, B] for
50 trials); and testing in either A (f � [?, tone, B]), B (f � [?, tone,
B]), or C (f � [?, tone, C]), demonstrating that our model repli-
cates the ABA and ABC renewal effects. Similar in spirit to Redish
et al.’s (2007) model, our model predicts ABA renewal as a
consequence of the animal’s inference that different latent causes
are active during conditioning and extinction. When the animal is
returned to the conditioning context in the test phase, it infers
(because of the presence of contextual cues) that the first latent
cause is once again active. Because trials with the same latent
cause have similar properties, the animal predicts that reinforce-
ment is likely to occur on the test trials and therefore emits the
conditioned behavior. Thus, the importance of context in our
theory derives from its usefulness in disambiguating the latent
causes of observations (see also Bouton, 1993).

ABA renewal is observed in our model to the extent that a test
trial matches (in its observation features) trials from the condition-
ing phase more than trials from the extinction phase. ABC renewal

7 We used a large number of particles to accurately approximate the
posterior. For this reason, other inference algorithms, such as Gibbs sam-
pling, will produce effectively the same predictions.
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Figure 2. Renewal. Experimental (a) and simulated (b) conditioned re-
sponding to a stimulus during a test phase after conditioning and extinction.
In all plots, experimentally observed conditioned responses are plotted
using their original measurement units. a. Both returning the subject to the
conditioning context and placing it in a novel context result in renewal of
conditioned responding. Data replotted from Bouton and Bolles (1979). b.
Simulated conditioned responding during test in the conditioning Context
A, extinction Context B and a novel Context C. c. Posterior distribution of
cluster assignments after conditioning in Context A and extinction in
Context B. Conditioning and extinction trials tended to be assigned to
different clusters, as evidenced by different modes of the posterior in the
two phases. d. Posterior distribution of cluster assignments on the first test
trial in Contexts A, B and C.
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may be observed in at least three different scenarios. If C is
substantially different from A or B, such that a new cluster is
created, ABC renewal will be observed to the extent that the prior
expectation of reinforcement in a new cluster is greater than zero.
If C is not different enough to warrant a new cluster, ABC renewal
may still be observed if C is equally similar to A and B, so that it
gets assigned in equal proportions to their associated clusters. Yet
another possibility8 is that when there are many more A trials than
B trials, the C observation will be assigned to the cluster associated
with A because of Equation 1 (which in the inference model will
tend to assign observations to more popular clusters). Although the
simulations presented here manifest the second scenario (in which
trials in C are associated equally with the training cluster and the
extinction cluster), we note that different parameterizations (par-
ticularly the value of alpha) or feature representations may result in
the first scenario, in which a new cluster is inferred, which would
also lead to renewal.

When the animal is tested in the same context as the extinction
phase, no renewal is observed (see Figure 2). Similarly, no renewal
is observed when all three phases take place in the same context
(results not shown). These results follow from the model’s predic-
tion that the same latent cause is active during extinction and test
and hence predicts the absence of reward. Further insight into the
mechanisms underlying renewal in our model can be gained by
examining the posterior distribution of clusters, shown in Figure 2c
for the conditioning phase and in Figure 2d for the extinction
phase. As predicted, our model tends to assign the conditioning
and extinction trials to different clusters. When the test trial occurs
in Context A, the observation is assigned to the conditioning
cluster, whereas when it occurs in Context B, it is assigned to the
extinction cluster. When the test trial occurs in a new Context C,
inference regarding its latent cause is divided between the condi-
tioning and extinction clusters (and to a lesser extent a new
cluster). This is due to the fact that as clusters accrue more
observations, they come to dominate the posterior.

Latent Inhibition

Our model similarly explains the context dependence of latent
inhibition in terms of the partition structure of the animal’s expe-
rience. We simulated latent inhibition with 15 pre-exposure trials
and 15 conditioning trials (Figures 3a and 3b). When the animal
receives pre-exposure (f � [no reinforcement, tone, A]) and con-
ditioning (f � [reinforcement, tone, A]) in the same context, it is
more likely to attribute a common latent cause to both phases, and
thus the properties of both pre-exposure and conditioning obser-
vations are averaged together in making predictions about rein-
forcement in the conditioning phase, leading to a lower prediction
and slower acquisition. In contrast, when the animal receives
pre-exposure (f � [no reinforcement, tone, A]) and conditioning
(f � [reinforcement, tone, B]) in different contexts, it is more
likely to assign observations from each phase to different clus-
ters—that is, to infer that different latent causes were active during
pre-exposure and conditioning. In this case, the reinforcement
statistics learned from the conditioning trials are segregated from
the reinforcement statistics of the pre-exposure trials, eliminating
the retarding effect of pre-exposure on learning, as can be seen in
Figures 3a and 3b.

Pathologies of the Model

Numerous studies have shown that damage to the hippocampus
disrupts the context dependence of learning and extinction (for a
review, see Ji & Maren, 2007). Animals with pretraining electro-
lytic lesions of the dorsal hippocampus fail to show renewal of
conditioned responding (Ji & Maren, 2005). Likewise, animals
with hippocampal lesions exhibit intact latent inhibition even when
pre-exposure and conditioning occur in different contexts (Honey
& Good, 1993). These findings are paralleled by a similar lack of
context dependence in the behavior of the developing rat: Before
the age of 	22 days, rats do not show renewal or the attenuation
of latent inhibition by conditioning in a new context (Yap &
Richardson, 2005, 2007). We propose a unified explanation for
these phenomena in terms of a pathology in our model’s capacity
to infer new latent causes. Our theory also suggests an explanation
for why the context dependence of renewal and latent inhibition is
only impaired when both the conditioning and extinction phases
(for renewal) or pre-exposure and conditioning phases (for latent
inhibition) occur before maturation (Yap & Richardson, 2005,
2007).

Hippocampal lesions. We propose that hippocampal lesions
disrupt the ability of the animal to infer new clusters, restricting its
inference to already-established clusters. We implemented this by

8 We thank an anonymous reviewer for pointing out this possibility.
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Figure 3. Latent inhibition. Experimental (a, c) and simulated (b, d)
acquisition curves of conditioned responding to a stimulus paired with
reinforcement as a function of whether unpaired stimulus pre-exposure
occurred in the same or in a different (Diff) context. a. Pre-exposure in the
same context as conditioning retards the acquisition of conditioned re-
sponding. This retarding effect is attenuated by pre-exposing the stimulus
in a different context. b. Simulated responding using the mixture model. c.
Subjects given hippocampal lesions before conditioning (HPC) show re-
tarded acquisition regardless of whether pre-exposure is performed in the
same or in a different context. Data replotted from Honey and Good
(1993). d. Simulated responding using the mixture model after hippocam-
pal lesions, which were simulated by restricting the model’s ability to infer
new clusters. Note that Same HPC is indistinguishable from Diff HPC.
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setting alpha to zero at the time of the lesion. In latent inhibition,
when this restriction was applied during pre-exposure, the pre-
exposure and conditioning observations were assigned to the same
cluster, regardless of the contexts that were in place for the two
phases (in other words, our model degenerated into a single dis-
tribution over observation features). The prediction of reinforce-
ment during conditioning was then based on an average of both
pre-exposure and prior conditioning trials, leading to slower ac-
quisition (see Figures 3c and 3d).

Although early studies reported intact ABA renewal with pre-
training electrolytic lesions of the fimbria/fornix (Wilson, Brooks,
& Bouton, 1995) or neurotoxic lesions of the entire hippocampus
(Frohardt, Guarraci, & Bouton, 2000), Ji and Maren (2005) found
that rats with pretraining electrolytic lesions of the dorsal hip-
pocampus showed impaired renewal in the ABA paradigm.9

Figure 4 shows these experimental data and simulated data from
our model, demonstrating impaired renewal in our model after
restricting the capacity to infer new clusters prior to training.

Developmental trajectories. Yap and Richardson (2005)
have reported that in young rats, latent inhibition is context inde-
pendent, with behavior being strikingly similar to that exhibited by
rats with pretraining hippocampal lesions. As shown in Figure 5a,
when rats were pre-exposed, conditioned and tested at 18 days
postnatal (PN18), they showed slow acquisition regardless of
whether pre-exposure and conditioning occurred in the same or
different contexts. In a second experiment, Yap and Richardson
(2005) found that if testing was conducted at PN25, the context
independence of latent inhibition was still observed. In a third
experiment, pre-exposure at PN18 with conditioning at PN24 and
testing at PN25 resulted in intact context-dependent latent inhibi-
tion. We simulated these different conditions by once again re-
stricting our model’s capacity to infer new clusters (setting � � 0)
during the phases when the animal is younger than PN22, and
instating this capacity (setting � � .1) when the animal reaches
PN22. Figure 5b shows that with this manipulation the mixture
model demonstrates a pattern of context dependence similar to that
observed experimentally. The explanation of these simulated re-
sults is the same as for the effects of pretraining hippocampal
lesions described above.

Renewal has also been systematically investigated by Yap and
Richardson (2007) in the developing rat. Figure 6a shows condi-

tioned responding in Contexts A and B after conditioning in A and
extinction in B at different ages, replotted from Yap and Richard-
son (2007). The main result is that if both conditioning and
extinction are performed before maturity, no ABA renewal is
observed, but if extinction is performed after maturity is reached,
ABA renewal is intact. Figure 6b shows simulations of these
experiments, demonstrating the same pattern of results. Only when
our model’s capacity for inferring new clusters is restricted during
both conditioning and extinction will they be assigned to the same
cluster. If extinction occurs after maturation, the animal can assign
extinction observations to a new cluster, preventing interference
between conditioning and extinction trials and thus enabling the
conditioned response in the conditioning context to be renewed
after extinction.

Discussion

Starting from a normative statistical framework, we formalized
a mixture model of animal learning in which context-dependent
behavior is the result of inference over the latent causal structure
of the environment. We showed that this model can explain several
behavioral phenomena in latent inhibition and renewal paradigms.
We also showed that restricting the model’s capacity to infer new
clusters can reproduce effects of hippocampal lesions and devel-
opmental changes in these paradigms.

9 As discussed by Ji and Maren (2005), electrolytic lesions both damage
neurons in the dorsal hippocampus and disrupt fibers of passage to sub-
cortical structures, whereas fornix lesions only disrupt fibers of passage
and neurotoxic lesions damage neurons, leaving fibers of passage intact.
Thus, it is conceivable that these procedures failed to find impairment in
renewal because it is necessary to damage both fibers of passage and
hippocampal neurons.
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Figure 4. Effect of hippocampal lesions on ABA renewal. a. Experimen-
tal conditioned responding to a cue during the test phase in control rats
(CON) and those that received pretraining electrolytic lesions of the dorsal
hippocampus (HPC). Data replotted from Ji and Maren (2005). b. Simu-
lated conditioned responding following restriction of the model’s capacity
to infer new clusters prior to training.
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Figure 5. Development of latent inhibition. Experimental (a) and simu-
lated (b) conditioned responding during the test phase following pre-
exposure and conditioning in the same or in a different (Diff) context.
Labels on the x-axis refer to the age (in days) at which each phase
(pre-exposure/conditioning/test) was conducted. a. Freezing to the stimulus
in the test context. Data replotted from Yap and Richardson (2005). b.
Simulated conditioned responding.
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Our model extends and lends statistical clarification to the
insights developed in the work of Redish et al. (2007). In addition,
we have addressed some specific shortcomings of their model. It is
important to note that the dependence of new state inference on
negative prediction errors, which prevented Redish et al.’s model
from explaining the context specificity of latent inhibition, is
wholly absent from our account. We have also made a specific
proposal regarding the role of the hippocampus in these tasks,
which was alluded to by Redish et al. and is discussed in more
detail to follow. But first, to understand the theoretical motivation
for a mixture model and its relationship with other models, it is
useful to consider a taxonomy of models organized along four
dimensions: computational problem, causal structure, capacity,
and inference algorithm. In the next four sections we detail each of
these dimensions; we then discuss the role of hippocampus in
learning and conclude with a discussion of limitations and possible
extensions of our model.

Computational Problem: Generative Versus
Discriminative

Marr (1980) argued that to understand an information-
processing system, one must understand the computational prob-
lem it was designed to solve. Most models of animal learning are
discriminative, implicitly or explicitly assuming that animals aim
to predict the probability of reinforcement given the rest of their
experience (Pearce & Bouton, 2001). Generative models, in con-
trast, assume that animals aim to learn the joint distribution over all
variables in their internal model of the environment, including but
not limited to reinforcement. Courville (2006) developed a gener-
ative model of animal learning using sigmoid belief nets that bears
many similarities to our mixture model; we discuss similarities and
differences in the following sections.

One might reasonably ask “Why favor a generative account over
a discriminative one?” One problem with discriminative models is
that they have no means of explaining behavioral phenomena in
which the animal appears to learn information about the environ-
ment independent of reinforcement. A classic example of this is
sensory preconditioning (Brogden, 1939): After initially pairing
two neutral stimuli, A and B, in the absence of reinforcement, A is
paired with reinforcement; subsequently, the animal exhibits sig-
nificant responding to B, suggesting that an association between A
and B was learned in the first phase, despite the absence of
reinforcement. Courville (2006) reviewed numerous other phe-
nomena that support a generative account.

Larrauri and Schmajuk (2008) proposed a discriminative con-
nectionist model to account for renewal and several other context-
dependent behaviors. They argued that a combination of atten-
tional, associative and configural mechanisms can collectively
account for these data. As pointed out by Courville and colleagues
(Courville et al., 2002; Courville, 2006), many of the ideas behind
configural mechanisms can be captured by latent variable models.
Whereas in connectionist models, observation features are coupled
via convergent projections to “configural” units, latent variable
models capture this coupling generatively by having observation
features share a common cause. Generalization between features is
then accomplished by learning about their latent causes. In mod-
eling the role of context in learning, we have adopted this same
insight, showing how context can affect learning about reinforcers
by means of a common latent cause.

A basic property of connectionist models, such as that of Lar-
rauri and Schmajuk (2008), is that they effectively transpose the
structure learning problem into a parameter learning problem by
encoding all possible structures within the network, allowing the
causal structure to be uncovered through experience-dependent
adjustment of the connection weights (see also Gluck & Myers,
1993). One problem with this approach is that it ignores prior
beliefs about the structure of the environment, which serve to
constrain the kinds of structures that can be learned (Kemp &
Tenenbaum, 2008; Courville et al., 2004). Our generative model is
a middle ground between connectionist models that assume no
prior structural beliefs and models that use hand-coded features for
particular tasks (e.g., Brandon, Vogel, & Wagner, 2000). In our
model, where exactly in this middle ground the animal’s structural
beliefs lie is determined both by its experience and its prior beliefs.
The animal may initially expect only a small number of latent
causes (specified by setting alpha close to zero), but its generative
model is flexible enough to allow revision of this belief to accom-
modate more causes in light of new observations.

Causal Structure: Products Versus Mixtures

Recall that in a mixture model, observations are assumed to be
caused by a generative model in which a single discrete cause is
sampled and then an observation is sampled conditional on this
cause. An alternative generative model, known as a product model,
assumes that observations are generated by a linear combination of
several latent causes, any number of which can be present at the
same time.

As far back as the influential model of Rescorla and Wagner
(1972), the predominant mathematical representation in models of
animal learning is the product. In discriminative models, for ex-
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Figure 6. Development of renewal. Experimental (a) and simulated (b)
conditioned responding during the test phase in Context A or B following
conditioning in A and extinction in B. Labels on the x-axis refer to the rat’s
age (in days) at each phase (conditioning/extinction/test). a. Freezing to the
cue in the test context. Data replotted from Yap and Richardson (2007). b.
Simulated conditioned responding.
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ample, the prediction of reinforcement is computed by taking a
linear combination of feature variables. This is true not just for the
Rescorla-Wagner model but for most models in the statistical and
connectionist traditions as well (Dayan & Long, 1998; Schmajuk,
Buhusi, & Gray, 1996). In Courville’s (2006) generative model,
the probability of each observed variable is a linear combination of
latent variables passed through a logistic sigmoid function.

An exception is the competitive mixture of experts model of
Dayan and colleagues (Dayan & Long, 1998; Dayan et al., 2000),
in which reinforcement is assumed to be generated by a single
observable cause. In that model, the probability of reinforcement is
the sum of conditioned probabilities of reinforcement given each
cause, weighted by the probability of observing that cause (its
“mixing probability”). One motivation for using mixtures rather
than products, articulated by Dayan et al. (2000), is that inference
within a mixture provides an elegant model of competitive atten-
tional allocation in animal learning (whereby stimulus features are
attended in proportion to the posterior probability that they caused
reinforcement) and may be necessary to explain effects like down-
ward unblocking (Holland, 1988). Our model, although consistent
with a competitive attentional account, puts mixtures to a different
use by assuming that reinforcement is generated by a latent cause.
There are many situations in which this assumption is reasonable.
Indeed, if one contemplates the designs of most conditioning
experiments (including those modeled by Dayan & Long, 1998),
the stimulus patterns presented to the animals are generated by
discrete, latent phases of the experiment (e.g., conditioning, ex-
tinction); the animal never directly observes these phases, but
inferring them is key to predicting reinforcement.

Fuhs and Touretzky (2007) proposed a latent cause theory to
explain hippocampal place cell remapping that is similar in spirit
to our mixture model. They defined context as a statistically
stationary distribution of observations and context learning as the
task of clustering observations together into groups with local
statistics that are stationary in time. In contrast with our static
mixture model, they used a dynamic mixture model and formalized
context learning in terms of Bayesian model selection, showing
that this can predict when place cells will remap in response to
environmental change. As with Courville’s (2006) model, they
selected the best finite-capacity mixture model (see the next sec-
tion), whereas we employ an infinite-capacity mixture model that
automatically selects the number of clusters on the basis of its
observations. Because they applied this model to neural data and
behavioral paradigms somewhat removed from our focus in this
article, a direct comparison between the two models is difficult.
Nonetheless, the idea that hippocampal place cells are important
for inferring latent causes is consonant with the general view of the
hippocampus set forth in this article (see The Hippocampus and
Context section).

Capacity: Finite Versus Infinite

A special problem vexes models with latent variables in which
the number of latent variables is unknown. One can almost always
increase the likelihood of the data under a model by increasing the
number of parameters in the model. The number of parameters, or
more generally the complexity of the model, is sometimes referred
to as its “capacity.” Increasing capacity can lead to a phenomenon
known as “overfitting,” wherein extra parameters are just captur-

ing noise, leading to poor predictive power. A principled statistical
approach to this problem is to represent uncertainty over the
model’s structure explicitly and infer both the structure and the
values of the latent variables. This was the approach adopted by
Courville (2006), who used a Markov chain Monte Carlo algo-
rithm to select the best finite capacity model (a model with a fixed
number of parameters) given the data.

An alternative to selecting between different finite capacity
models is to allow the number of parameters to grow with the data
(i.e., infinite capacity). This is, in fact, the spirit of Redish et al.’s
(2007) model, in which heuristic modifications to a reinforcement
learning algorithm allow it to increase its capacity (by expanding
the state space) during learning. To control overfitting, one can
place a prior distribution over parameters that expresses a prefer-
ence for simpler models. This approach, adopted in our model,
satisfies certain intuitions about an animal’s representation of its
environment. It seems unreasonable to assume that the animal
knows in advance how many hidden causes to which it might be
exposed. A more reasonable assumption is that it infers that a new
hidden cause is active when the statistics of its observations (e.g.,
lights, tones, odors) change, which is precisely the inference pro-
cedure imputed to the animal by the mixture model. Similar
arguments have also been made by Sanborn et al. (2006) in their
mixture model of human categorization.

Another aspect that our model shares with Redish et al.’s (2007)
model is that cluster assignment (state classification) and cluster
creation (expansion of the state space) are both determined by the
similarity between the current observation and the existing states.
A current observation is assigned to an existing cluster to the
extent that it is similar to the other observations assigned to that
cluster; if no cluster is sufficiently similar, a new cluster is created
for that observation. In essence, the particle-filter algorithm at-
tempts to create clusters with maximal within-cluster similarity
and minimal between-cluster similarity. The state-classification
mechanism in Redish et al.’s model also attempts to achieve this
goal, but it lacks a direct statistical interpretation in terms of a
well-defined inference procedure.

Redish et al.’s model does not represent uncertainty about the
state classifications, whereas the particle filter maintains an ap-
proximation of the full posterior distribution over clusters.10 This
is potentially important in cases where previous clustering needs to
be reevaluated in light of later information. For example, imagine
coming home and seeing the house flooded. You could classify
this as either resulting from the (latent) cause “it has rained” or the
a priori much less probable (latent) cause “there was a fire and fire
trucks sprayed my house.” Later hearing on the news that it had
been an exceptionally hot and dry day, you might reevaluate the
fire hypothesis. Such retrospective revaluation phenomena (in
which a previously disfavored interpretation becomes favored in
light of new information) support the idea that humans and animals
represent uncertainty about past interpretations, rather than making
hard assignments (Daw & Courville, 2008).

10 When the number of particles is small, particle filtering will behave
similarly to hard assignment (see Daw & Courville, 2008; Sanborn et al.,
2006).
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Inference Algorithm: Batch Versus Incremental

One of the reasons for appealing to statistical models of learning
is that they provide a formal description of the computational
problem that the learning system is designed to solve. However, a
complete analysis of an information processing system requires
descriptions at two other levels (Marr, 1980). The algorithmic
level specifies the operations and representations required to solve
the computational problem. In a statistical model, the representa-
tions are probability distributions and the operations are usually
some form of the product and sum rules from probability theory.
The implementational level specifies how these computations are
physically realized (e.g., in the brain). Statistical models of animal
learning vary in their plausibility at these two levels of analysis
(we discuss the implementational level in the next section).

At the algorithmic level, the main desideratum for plausibility is
that the inference procedure be able to incorporate new data
incrementally (Anderson, 1991; Sanborn et al., 2006). Reinforce-
ment learning and connectionist updates satisfy this desideratum.
The batch Markov chain Monte Carlo algorithm proposed by
Courville et al. (2002, 2004), which must be rerun on all past
observations after each trial, suffers in this regard, although later
work attempted to remedy this drawback (Courville, 2006; Daw &
Courville, 2008). We used the particle filter to perform inference
in our model because it provides a cognitively plausible incremen-
tal algorithm for animal learning. However, it would be premature
to commit to the particle filter as an algorithmic-level description
of the conditioning data that we model, because given the large
number of particles we use, this algorithm will make behavioral
predictions essentially identical to those made by any other algo-
rithm that adequately approximates the posterior (e.g., Markov
chain Monte Carlo sampling). With fewer samples, the particle
filter approximates the posterior only crudely. It has been argued
that this might be the reason for certain kinds of resource limita-
tions on behavior (Brown & Steyvers, 2009; Daw & Courville,
2008; Sanborn et al., 2006); it is an open question whether such
resource limitations are evident in the renewal or latent inhibition
data.

The Hippocampus and Context

The hippocampus has long been implicated in context learning,
but theories have differed in their formal characterization of this
role (Fuhs & Touretzky, 2007; Hasselmo & Eichenbaum, 2005;
Hirsh, 1974; Howard, Fotedar, Datey, & Hasselmo, 2005; Jarrard,
1993; Nadel, 1995; Nadel & MacDonald, 1980; O’Keefe & Nadel,
1978; Redish, 1999; Rudy & O’Reilly, 1999). Here we have
proposed one possible role for the hippocampus in inferring latent
causes. We showed that restricting our model’s ability to infer new
clusters results in behavior qualitatively similar to that observed in
rats with hippocampal lesions (see also Love & Gureckis, 2007,
for a similar interpretation of human data). We believe that the
hippocampus is suited for this role, with its ability to extract sparse
codes from sensory inputs, which could support the learning of
discrete latent causes (Doboli, Minai, & Best, 2000). In particular,
sparse projections from the dentate gyrus to CA3 are thought to be
crucial for pattern separation (Marr, 1971), an operation that could
serve to separate different observations (inputs) into distinct acti-
vation patterns in CA3. When a partial pattern (e.g., a stimulus and

context) is presented, the missing part of the pattern (e.g., rein-
forcer) is activated by means of recurrent connections in CA3,
which may function as an attractor network (McNaughton &
Morris, 1987). These attractors may thus correspond to inferred
clusters, with new attractors being formed when the input statistics
change dramatically.

Our model may also shed new light on a long-standing question
about the hippocampus and memory in general (Marr, 1971;
McNaughton & Morris, 1987): When a new observation is made,
under what circumstances is a new trace encoded or an old trace
retrieved? Our model frames this as a choice between assigning an
observation to an existing cluster or to a new cluster. O’Reilly and
McClelland (1994) extensively analyzed a model of the hippocam-
pus and argued that its anatomical and physiological properties
might serve to minimize the trade-off between pattern separation
(encoding) and pattern completion (retrieval). Our model offers a
normative motivation for how this trade-off should be balanced on
the basis of the animal’s observation statistics and prior beliefs,
and future work should be directed at connecting it to the under-
lying neurophysiological mechanisms identified by O’Reilly and
McClelland (1994), as well as the roles of theta oscillations and
cholinergic input discussed by Hasselmo, Bodelón, and Wyble
(2002).

We would like to emphasize that the ostensibly nonstatistical
functions of the hippocampus, such as rapid conjunctive encoding
(McClelland, McNaughton, & O’Reilly, 1995), are not incompat-
ible with a statistical account. Most distinctions of this sort have
identified statistical learning with extraction of the covariation
structure of sensory inputs by neocortex (cf. Gluck & Myers,
1993). In neural network models, this is implemented through
gradual synaptic weight change. Our model attempts to broaden
this view of statistical learning to include the learning of discrete
partition structure, a function that we argued fits with existing
computational models of the hippocampus.

The fact that infant rats show a lack of context dependence
similar to rats with hippocampal damage (Yap & Richardson,
2005, 2007) suggests that the same causal inference mechanism
may underlie both phenomena (Martin & Berthoz, 2002; Rudy,
1993), but more research on the behavioral consequences of hip-
pocampal maturation is needed to test this idea. Other brain struc-
tures, notably the prefrontal cortex, also undergo maturation dur-
ing this period, and it is unclear what specific contributions they
may make to context-dependent learning and extinction (Quirk,
Garcia, & Gonzàlez-Lima, 2005; Rhodes & Killcross, 2007).

We have also said little about one of the main motivations for
Redish et al.’s (2007) model, namely the role of the dopamine
system in learning. Evidence has begun to accumulate suggesting
that the hippocampal and dopamine systems are intricately inter-
twined (Lisman & Grace, 2005); however, the behavioral signifi-
cance of this relationship is poorly understood (but see Foster,
Morris, & Dayan, 2000; Johnson, van der Meer, & Redish, 2007).
Finally, it is important to note that we do not view the role of the
hippocampus in causal inference suggested here to be an all-
encompassing functional description of the hippocampus. The
hippocampus may perform several functions or some more general
function that includes causal inference as a subcomponent. Fur-
thermore, inference may rely on the interaction between the hip-
pocampus and other regions in the medial temporal lobe and
elsewhere (see Corbit & Balleine, 2000).
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Limitations and Extensions

In their article, Redish et al. (2007) also modeled the partial
reinforcement extinction effect, the observation that extinction
is slower when stimuli are only intermittently paired with
reinforcement during training (Capaldi, 1957, 1958). Our
model, without further assumptions, cannot demonstrate this
effect, which depends crucially on using reinforcement rate as
a contextual cue. Our model assumes that reinforcements across
trials are conditionally independent give their latent causes, and
thus it has no representation of reinforcement rate. The essential
explanation given by Redish et al. and others (e.g., Courville,
2006) is that the training and extinction contexts are harder to
discriminate in the partial reinforcement condition because of
smaller differences in reinforcement rate, and thus extinction
trials are less likely to be assigned to a new cluster. Redish et
al. were able to show this effect primarily because they included
the time since last reinforcement, which is inversely correlated
with reinforcement rate, in their prototype representation. We
have found in simulations (not shown here) that augmenting the
observation vector with an additional contextual feature that
differs between training and extinction (which could be inter-
preted as a reinforcement rate cue) is sufficient to produce the
partial reinforcement extinction effect. However, an alternative
approach to modeling this phenomenon is to incorporate an
explicit model of dynamics and change over time. Other ex-
tinction phenomena also depend on a richer representation of
time than we have employed here. For example, in spontaneous
recovery, simply waiting 48 hr after extinction is enough to
produce renewed responding to the cue. We leave development
of a temporally sophisticated mixture model to future work
(see, e.g., Ren, Dunson, & Carin, 2008).

Finally, we would like to note that although the formalism
employed here appears to be a substantial departure from the type
of reinforcement learning model used by Redish et al. (2007), the
difference is not so great at it seems. Note that learning about
reinforcement in our model essentially requires that the animal
maintain and update a set of sufficient statistics about its beliefs—
specifically, the average reinforcement in each cluster for each
feature value. We suspect that such sufficient statistics might be
learned by a mechanism similar to temporal difference learning
and, hence, may similarly rely on the dopamine system (see Daw,
Courville, & Touretzky, 2006, for related ideas). However, the
potentially rich connections between these formalisms remain to
be studied more thoroughly.

Conclusions

We have argued that a wealth of behavioral data are consis-
tent with an account of animal learning in which the animal
infers the latent causes of its observations. Drawing on insights
from Redish et al. (2007), we formalized this idea as a mixture
model and showed how a particle-filter algorithm can be used to
perform inference. Simulations show that this framework can
reproduce patterns of context-dependent behavior in latent in-
hibition and renewal paradigms. We also showed that restrict-
ing the model’s ability to infer new clusters can reproduce
patterns of hippocampal damage and developmental change.
Our model places context-dependent learning phenomena in a

normative statistical framework, which we see as providing a
computational-level analysis of the same problems addressed
by Redish et al. (2007).
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Appendix

Particle Filter Algorithm

Recall that for trials 1 . . . t, the vector c1:t denotes a partition of
the trials into clusters and the vector F1:t denotes the observations
for these trials. In our implementation, the particles are generated
by sampling from the generative model; this involves, for each
particle 1 . . . m, sequentially drawing a hypothetical set of cluster
assignments from Equation 1. The posterior is then approximated
by a weighted sum of delta functions placed at the particles:

P�c1:t � c�F1:t� � �
l�1

m

wt
�l�
�c1:t

�l� ,c�, (A1)

where ct
(l) is the partition in particle l and 
[ � , � ] is 1 when its

arguments are equal and 0 otherwise. The importance weight wt
(l)

is proportional to the likelihood of observation ft under the parti-
tion in particle l:

wt
�l�P�ft�c1:t

�l� ,F1:t�1� � �
i

P�ft,i�c1:t
�l� ,F1:t�1�. (A2)

Note that the weight depends only on the likelihood of the
current observation because the particles are resampled according
to their weights at the beginning of each trial (see below); after
resampling, the (unweighted) particles are distributed according to
the posterior. Using a standard calculation for the Dirichlet-
Multinomial model (Gelman, Carlin, Stern, & Rubin, 2003), we
can analytically integrate out the multinomial parameters �k asso-
ciated with each cause to obtain the following expression for the
likelihood:

P�ft,i � j�ct
�l� � k,c1:t�1

�l� ,F1:t�1� � �
�k

P�ft,i � j�ct
�l�

� k,c1:t�1
�l� ,F1:t�1,�k�P��k�d�k �

Ni,j,k
�l� � 1

�
j

�Ni,j,k
�l� � 1�

, (A3)

where Ni,j,k
(l) is the number of observations with feature value j on

dimension i that were generated by cause k in particle l. Note that
Ni,j,k

(l) depends on F1:t�1. Although not immediately evident in these
equations, learning occurs through maintaining and updating the

sufficient statistics of each cluster, namely the cluster-feature
co-occurrence counts (encoded by Ni,j,k

(l) ). As we show below, these
sufficient statistics can be used to predict reinforcement given a
subset of the observation features (i.e., a test observation).

The particle filter algorithm proceeds on each trial by

1. Sampling (with replacement) from the current set of
particles according to the importance weights.

2. For each particle, sampling a hypothetical cluster assign-
ment for the next observation using Equation 1.

3. Recomputing the weights given the next observation
using Equation A2.

Two things should be noted about this algorithm. First, particles
will receive higher weight to the extent that observations assigned
to the same cluster are similar; this can be seen in Equation A3.
Second, the features interact multiplicatively in Equation A2: A
particle will receive a large weight only if all the observed features
are likely under the particle’s partition.

The probability of reinforcement for a test observation is cal-
culated according to

P�ft,1 � reinforcement�ft,2:3,F1:t�1�

� �
c1:t

P�ft,1 � reinforcement�ft,2:3, F1:t�1, c1:t�

� �
l�1

m

rt
�l�P�ft,1 � reinforcement�F1:t�1,c1:t

�l� �, (A4)

where the predictive weight rt
(l) is proportional to the likelihood of

the observed features (context and cue):

rt
�l�  �

i��2,3�

P�ft,i�c1:t
�l� ,F1:t�1�. (A5)
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