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Abstract

Variational autoencoders (VAES) learn distribu-
tions of high-dimensional data. They model data
with a deep latent-variable model and then fit the
model by maximizing a lower bound of the log
marginal likelihood. VAES can capture complex
distributions, but they can also suffer from an is-
sue known as "latent variable collapse," especially
if the likelihood model is powerful. Specifically,
the lower bound involves an approximate poste-
rior of the latent variables; this posterior "col-
lapses" when it is set equal to the prior, i.e., when
the approximate posterior is independent of the
data. While VAES learn good generative models, la-
tent variable collapse prevents them from learning
useful representations. In this paper, we propose a
simple new way to avoid latent variable collapse
by including skip connections in our generative
model; these connections enforce strong links be-
tween the latent variables and the likelihood func-
tion. We study generative skip models both theo-
retically and empirically. Theoretically, we prove
that skip models increase the mutual information
between the observations and the inferred latent
variables. Empirically, we study images (MNIST
and Omniglot) and text (Yahoo). Compared to ex-
isting VAE architectures, we show that generative
skip models maintain similar predictive perfor-
mance but lead to less collapse and provide more
meaningful representations of the data.

1 Introduction

Unsupervised representation learning aims to find good
low-dimensional representations of high-dimensional data.
One powerful method for representation learning is the
variational autoencoder (VAE) [Kingma and Welling, 2013,
Rezende et al., 2014]. vAEs have been studied for text anal-
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ysis [Bowman et al., 2015, Miao et al., 2016, Dieng et al.,
2016, Guu et al., 2017, Xu and Durrett, 2018], collaborative
filtering [Liang et al., 2018], dialog modeling [Zhao et al.,
2018], image analysis [Chen et al., 2016, van den Oord et al.,
2017], and many other applications.

A VAE binds together modeling and inference. The model is
a deep generative model, which defines a joint distribution
of latent variables z and observations x,
po(x, z) = po(x | 2)p(2).

A typical VAE uses a spherical Gaussian prior p(z) =
N(0, 1) and a likelihood parameterized by a deep neural
network. Specifically, the likelihood of observation x; is
an exponential family whose natural parameter 7(z;; 6) is
a deep network with the latent representation z; as input.
Inference in VAEs is performed with variational methods.
VAEs are powerful, but they can suffer from a phenomenon
known as latent variable collapse [Bowman et al., 2015,
Hoffman and Johnson, 2016, Sgnderby et al., 2016, Kingma
etal., 2016, Chen et al., 2016, Zhao et al., 2017, Yeung et al.,
2017, Alemi et al., 2018], in which the variational poste-
rior collapses to the prior. When this phenomenon occurs,
the VAE can learn a good generative model of the data but
still fail to learn good representations of the individual data
points. We propose a new way to avoid this issue.

Ideally the parameters of the deep generative model should
be fit by maximizing the marginal likelihood of the observa-
tions,
N

0* = arg mgzx;bg/pg(mi, z;)dz. (1)
However each term of this objective contains an intractable
integral. To this end, VAES rely on amortized variational in-
ference to approximate the posterior distribution. First posit
a variational approximation ¢, (z | «;). This is an amortized
family, a distribution over latent variables z; that takes the
observation x; as input and uses a deep neural network to
produce variational parameters. Using this family, the VAE
optimizes the evidence lower bound (ELBO),

N
ELBO = Z Eqy(z: | 2) log po(zi | 2;)]

KL (golz | 20) || (). @
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The ELBO is a lower bound on the log marginal likelihood
of Eq. 1. Thus the VAE optimizes Eq. 2 with respect to both
the generative model parameters 6 and the variational neural
network parameters ¢. Fitting 6 finds a good model; fitting
¢ finds a neural network that produces good approximate
posteriors.

This method is theoretically sound. Empirically, however, fit-
ting Eq. 2 often leads to a degenerate solution where

Q¢>(zi | z;) ~ p(zi),

i.e. the variational “posterior” does not depend on the data;
this is known as latent variable collapse. When the posterior
collapses, z and x are essentially independent and conse-
quently posterior estimates of the latent variable z do not
represent faithful summaries of their data x—the VAE has
not learned good representations. This issue is especially
a problem when the likelihood py(; | z;) has high capac-
ity [Bowman et al., 2015, Sgnderby et al., 2016, Kingma
etal., 2016, Chen et al., 2016, Zhao et al., 2017, Yeung et al.,
2017].

We propose a new method to alleviate latent variable col-
lapse. The idea is to add skip connections in the deep gener-
ative model that parameterizes the likelihood function. Skip
connections attach the latent input z; to multiple layers in
the model’s neural network. The resulting generative skip
model is at least as expressive as the original deep generative
model, but it forces the likelihood to maintain a strong con-
nection between the latent variables z; and the observations
x;. Consequently, as we show, posterior estimates of z;
provide good representations of the data.

VAES with generative skip models—which we call Skip Vari-
ational Autoencoders (SKIP-VAES)—produce both good gen-
erative models and good representations. Section 4 studies
the traditional VAE [Kingma and Welling, 2013, Rezende
et al., 2014] with PixelCNN/LSTM generative models an-
alyzing both text and image datasets. For similar levels of
model performance, as measured by the approximate likeli-
hood, SKIP-VAES promote more dependence between x and
z as measured by mutual information and other metrics in
Section 4. Moreover, the advantages of SKIP-VAES increase
as the generative model gets deeper.

Generative skip models can be used in concert with other
techniques. For example Section 4 also studies generative
skip models with the semi-amortized variational autoen-
coder (sa-vAE) [Kim et al., 2018]", which have also been
shown to mitigate posterior collapse. When used with the
SA-VAE, generative skip models further improve the learned
representations.

Related Work. Skip connections are widely used in deep
learning, for example, in designing residual, highway, and
attention networks [Fukushima, 1988, He et al., 2016b, Sri-
vastava et al., 2015, Bahdanau et al., 2014]. They have

'resulting in the SKIP-SA-VAE

not been studied for alleviating latent variable collapse in
VAES.

Many papers discuss latent variable collapse [Bowman et al.,
2015, Hoffman and Johnson, 2016, Sgnderby et al., 2016,
Kingma et al., 2016, Chen et al., 2016, Zhao et al., 2017, Ye-
ung et al., 2017, Alemi et al., 2018]. To address it, the most
common heuristic is to anneal the KL term in the VAE ob-
jective [Bowman et al., 2015, Sgnderby et al., 2016].

Several other solutions have also been proposed. One ap-
proach is to handicap the training of the generative model
[Bowman et al., 2015] or weaken its capacity [Gulrajani
etal., 2016, Yang et al., 2017], effectively encouraging bet-
ter representations by limiting the generative model. An-
other approach replaces the simple spherical Gaussian prior
with more sophisticated priors. For example van den Oord
et al. [2017] and Tomczak and Welling [2017] propose para-
metric priors, which are learned along with the generative
model. Still another approach uses richer variational distri-
butions [Rezende and Mohamed, 2015]. In another thread
of research, Makhzani et al. [2015] and Mescheder et al.
[2017] replace the KL regularization term in the VAE ob-
jective with adversarial regularizers. Higgins et al. [2017]
dampen the effect of the KL regularization term with La-
grange multipliers. Finally, one can appeal to new inference
algorithms. For example Hoffman [2017] uses Markov chain
Monte Carlo (McMc) instead of variational inference and
Kim et al. [2018] uses stochastic variational inference, ini-
tialized with the variational neural network parameters, to
iteratively refine the variational distribution.

A very recent approach to address posterior collapse relies
on ideas from directional statistics. Guu et al. [2017] and
Xu and Durrett [2018] use the Von Mises-Fisher distribution
for both the prior and the variational posterior and fixing the
dispersion parameter of the Von Mises-Fisher distribution
to make the KL term in the ELBO constant . We note this
practice might result in less expressive approximate posteri-
ors.

The generative skip models we propose differ from all of
these strategies and can potentially complement them. They
modify the generative model of the VAE using skip connec-
tions to enforce dependence between the observations and
their latent variables. They can be used with any prior and
variational distributions.

2 Latent variable collapse issue in VAES

As we said, the VAE binds a deep generative model and amor-
tized variational inference. The deep model generates data
through the following process. First draw a latent variable z
from a prior p(z); then draw an observation x is pg(x | 2),
the conditional distribution of & given z. This likelihood is
an exponential family distribution parameterized by a deep
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Figure 1: Left: The VAE and SKIP-VAE with a two-layer generative model. The function g4 denotes the variational neural
network (identical for VAE and sKIP-VAE). The difference is in the generative model class: the SKIP-VAE’s generative model
enforces residual paths to the latents at each layer. Right: The mutual information induced by the variational distribution
and KL from the variational distribution to the prior for the VAE and the SKIP-VAE on MNIST as we vary the number of
layers L. The SKIP-VAE leads to both higher KL and higher mutual information.

neural network,
po(x | z) = ExpFam (x;7 (2;0))
—v(@)exp {n(z:0) @~ A(n(z0)},

where A(-) is the log-normalizer of the exponential family.
The exponential family provides a compact notation for many
types of data, e.g., real-valued, count, binary, and categorical.
‘We use this notation to highlight that VAES can model many
types of data.

The natural parameter 7(z; ) is a hierarchical function of
z; see Figure 1 (left). Consider a function with L layers,
where h(®) is the hidden state in the {*" layer and h(1) is the
hidden state closest to z. The natural parameter 7(z; 0) is
computed as follows:

1. h(l) = f@o(z)
2 R =, (BO)
3. n(z0) = fo, (RP)).

The parameter 6 is the collection {6y, . .., 0 }. Given data,
it should ideally be fit to maximize the log marginal likeli-
hood; see Eq. 1.

l=1...L—-1

However the integrals in Eq. 1 are intractable. To circumvent
this issue, VAES maximize a lower bound of the log marginal
likelihood, also known as the ELBO; see Eq. 2. In the ELBO,
q(z | @; ¢) is an amortized variational distribution; its param-
eters are fit so that it approximates the intractable posterior
p(z | x;0). The ELBO is tight when ¢(z | z; ¢) = p(z | x; 0).
The objective targets both a good likelihood and a good ap-
proximate posterior distribution.

Unfortunately, if the likelihood py (| 2) is too flexible (e.g.

a recurrent neural network that fully conditions on all previ-
ous tokens), it is difficult to achieve this balance. Consider
an equivalent expression for the ELBO,

ELBO = Ey(2)Eq, (2| 2) [log po(x | 2)]
—KL(gs(2z|z) [ p(2)), 3)

where p(x) is the population distribution of «. The flexible
likelihood py( | z) in the first term allows the VAE to push
the KL term to zero (i.e. setting KL (¢4(z | ) || p(2)) ~ 0)
while still giving high probability to the data. This behav-
ior results in a generative model that gives a meaningless
approximate posteriors and thus poor latent representations.
Chen et al. [2016] theoretically justify latent variable col-
lapse via a “bits-back" argument: if the likelihood model is
flexible enough to model the data distribution p(x) with-
out using any information from z, then the global opti-
mum is indeed obtained by setting py(x | z) = p(x) and
4s(z | @) = p(2).

Let’s understand this phenomenon from another angle, which
will motivate our use of generative skip models. First we
define the variational joint distribution.

Definition 1 For any data x and variational posterior
44 (2 | ), the variational joint q4(x, z) is the joint distribu-
tion of © and z induced by q4(z | ). It induces a marginal
q¢(2) called the aggregated posterior [Makhzani et al., 2015,
Mescheder et al., 2017]

qs(x, z) = p(x) - qs(2 |T) and qy(2) = Ep@)qs(z | ).

With this definition in hand, consider a third form of the
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ELBO [Hoffman and Johnson, 2016],

ELBO = Fy(5) {Eq¢(z | ) [log po(z | Z)]}
—Zy(x, z) — KL(g4(2) [ p(2)) (4)

We expressed the KL (¢4(z | ) || p(z)) of Eq. 3 as a func-
tion of a mutual information

KL (g4(z[2) [ p(2))) = Zo(®, 2) + KL(g4(2) ||p(z)2§)

where Z,(x, z) is defined as

Iy(x,z) = Ep@)Eqy(z| ) log q6(z|x) — Ey,(z) log qs(2).

It is the mutual information between @ and z induced by the
variational joint and the aggregated posterior.

The ELBO in Eq. 4 reveals that setting the KL term to zero
is equivalent to setting

Zy(x, z) = KL(g4(2) [ p(2)) = 0.

This is true by non-negativity of KL and mutual information.
If z is a good representation of x, then the mutual informa-
tion will be high and thus the KL term will be nonzero. But
as can be seen from Eq. 4, the ELBO objective contains the
negative of the mutual information between z and x, and
thus high mutual information is in contention with maximiz-
ing the ELBO. Of course, our goal is not merely to prevent
the KL from being zero—a trivial way to prevent the KL
from being zero is by only maximizing

L= Eq¢(z|:'c) [logpg(:c | Z)] .

which essentially corresponds to an auto-encoding objective.
However maximizing this objective leads to poor generative
models since the variational distribution is unregularized
and distinct from the prior—the distribution used to generate
samples once training is finished.

We next propose a method that still optimizes the ELBO but
prevents the KL from collapsing to zero.

3 Generative skip models avoid latent
variable collapse

We now describe SKIP-VAES, a family of deep generative
models that extend VAES to promote high mutual informa-
tion between observations and their associated latent vari-
ables.

A SKIP-VAE is a modified version of the exponential family
model described in Section 2. The natural parameter 7(z; )
is now computed as:

1. h(l) = fgo(z)
2. b+ = gy, (fgl (h(l)) 7z) forl=1...L—1

Figure 2: Clustering of the latent variables learned by fitting
a VAE (left) and a SKIP-VAE (right) on MNIST and applying
T-SNE on the test set. The model is a 9-layer Pixel CNN
and the variational neural network is a 3-layer ResNet. The
colors represent digit labels. The SKIP-VAE clusters the latent
variables better than the VAE; it discovers 7 digit classes. The
remaining 3 classes are covered by the other classes. The
latent variables learned by the VAE are not meaningful as
they are spread out. The SKIP-VAE learns more useful latent
representations.

3. n(2:0) = gw,, (fo, (RD)),2) .

At each layer [ of the neural network producing 7(z; 6), the
hidden state h(") is a function of the latent variable z as
well as the previous hidden state. The functions fj, are
the same as in the non-skip generative model; the separately
parameterized skip functions gy, are nonlinear and combine
z with the previous hidden state. Figure 1 (left) illustrates
this process.

Any type of VAE can be turned into its SKIP-VAE coun-
terpart by adding skips/residual paths to its generative
model.

Our main result is that SKIP-VAES promote higher mutual
information between « and z when trained with the ELBO
objective in Eq. 2.

SKIP-VAES are amenable to any type of skip function g; in
this section we consider a simple subclass that empirically
works well, specifically,

aw, (fel ("), z) =0 (Wl(h)fol(h(l)) + Wl(z)z)

where o is a nonlinear function such as sigmoid or ReLU
(not used at the last layer), and Wl(h) # 0 and I/Vl(z) #0
are learned deterministic weights. Similar to other uses
of skip connections [Fukushima, 1988, He et al., 2016b,
Srivastava et al., 2015, Bahdanau et al., 2014] we do not
need to explicitly enforce the constraints Wl(h) # 0 and

I/Vl(z) # 0 in practice.

Theorem 1 Consider observation x from an L-layer deep
generative model. Denote by I3<""V**(zx, z) the mutual in-
formation between x and z induced by the generative skip
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model. Similarly denote by T,*"(x, z) the mutual informa-
tion between x and z induced by the counterpart generative
model (the one constructed from the generative skip model
by taking the skip connections out). Then

IZS)KIP_VAE(:U,Z) Z IZ\)/AE(:B7 Z)

Proof Sketch. The proof is based on several applications of
the data processing inequality of information theory [Cover
and Thomas, 2012] which states that the dependence of =
to any hidden state in the hierarchy becomes weaker as one
moves further away from  in that hierarchy. As a result x
will depend less on the lower layers than the layers near it.
Applying this inequality first in the generative skip model
yields ZoX"VA% (z, z) > I;K‘P‘VAE(:c,h(l)) vie{l,.., L}
In particular Z3¥"" VA% (z, z) > T)*"(z, h(D). Applying the
inequality again—this time in the generative model of the
vAE—we have Z)**(x, (V) > IY**(x, ). It then follows
that ZS<"VAF (x, z) > T (x, 2).

Theorem 1 says that for any VAE one can find a SKIP-VAE
with higher mutual information. We now use this result to
derive the implicit objective function optimized by a SKIP-
VAE.

Consider a VAE with mutual information § = Zy,g(x, 2).
We aim to learn the corresponding SKIP-VAE. Using the re-
sult of Theorem 1, rewrite the ELBO maximization problem
under the generative skip model as a constrained maximiza-
tion problem,

0*, ¢* = arg WaxELBO st L (e, 2) > 6

)

The equivalent Lagrange dual maximizes

L = ELBO + \L*" " (x, 2)

where A > 0 is the corresponding Lagrange multiplier. Us-
ing the expression of the ELBO in Eq. 2 and using the varia-
tional joint as defined in Definition 1, write the objective of
SKIP-VAE as

L =Hy(x) = NL}"V(x, 2) + KL(gg(2, 2) || po(x, 2)),
(6)

where H,(x) is the entropy of the data distribution.

Minimizing Eq. 6 with respect to # and ¢ is equiva-
lent to joint distribution matching? under the constraint
that the mutual information induced by the generative
model Z3¥"Y*¢(x, z) is maximized. Minimizing Eq. 6
brings p(x, z; ) closer to g(x, z; ¢) thus also increasing
I3XI"VAR (x, z)—the mutual information under the varia-
tional joint. Note the SKIP-VAE increases Z3*'"V%(x, z) by

?Joint distribution matching in the context of VAES means mak-
ing the model joint po(x, 2) = po(x | 2)p(2) close to the varia-
tional joint gy (, 2) = ¢o (2 | ) pdan(T).

acting on the generative model to increase Z3'""V**(x, z). In
doing so, it mitigates latent variable collapse. In experiments
we see that the SKIP-VAE indeed increases Z3*"VA*(x, 2) rel-
ative to the VAE.

4 Empirical study

We assess SKIP-VAES by applying skip connections to ex-
tend a standard VAE [Kingma and Welling, 2013, Rezende
et al., 2014] and to the recently introduced SA-VAE [Kim
et al., 2018]. We use benchmark datasets for images and
text: MNIST, Omniglot, and the Yahoo corpus. Text datasets
have been shown to be particularly sensitive to latent vari-
able collapse when the likelihood is parameterized as a fully
autoregressive model, such as a recurrent neural network
[Bowman et al., 2015]. Note that we are interested in learn-
ing both a good generative model (as measured by the ELBO)
and a good latent representation of the data (as measured
by mutual information and other metrics). The prior for all
studies is a spherical Gaussian, and the variational posterior
is a diagonal Gaussian. We compare the performance of
SKIP-VAE and the baselines when varying the dimensionality
of the latent variable and the complexity of the generative
model.

Evaluation We assess predictive performance—as given
by a measure of held-out log-likelihood—and latent variable
collapse. For image datasets we report the ELBO as a mea-
sure of log-likelihood; for text we report both the ELBO and
perplexity (estimated using importance sampling).

Assessing latent variable collapse is more difficult. We em-
ploy three metrics: the KL-divergence, mutual information
(MI), and number of active units (AU).

The first metric is the KL regularization term of the ELBO
as written in Eq. 2.

The second measure is the mutual information induced by
the variational joint Z,(x, z). Using the expression of the
KL in Eq. 5 we have

Z4(x,2) = KL (g4(2 | 2) [ p(2))) — KL(gs(2) || p(2))-

We follow Hoffman and Johnson [2016] and approximate
this mutual information using Monte Carlo estimates of the
two KL terms. In particular,

KL(g4(2) [| p(2)) = Eq, (2) [log 44 (2) — log p(z)]

S
1 S S
~ 5D logay(21) —logp(21")
s=1

where each aggregated posterior q¢(z(8)) is also approxi-
mated by Monte Carlo.

The third measure of latent variable collapse is the number
of "active" units of the latent variable z. This is defined in
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Table 1: Performance of SKIP-VAE vs VAE on MNIST as the dimensionality of the latent variable increases. SKIP-VAE
outperforms VAE on all collapse metrics while achieving similar ELBO values.

ELBO KL MI AU
Dim VAE SKIP-VAE VAE  SKIP-VAE VAE  SKIP-VAE VAE  SKIP-VAE
2 -84.27 -84.30 3.13 3.54 3.09 3.46 2 2
10 -83.01 -82.87 8.29 9.41 7.35 7.81 9 10
20 -83.06 -82.55 7.14 9.33 6.55 7.80 8 13
50 -83.31 -82.58 6.22 8.67 5.81 7.49 8 12
100 -83.41 -82.52 5.82 8.45 5.53 7.38 5 9

Table 2: Performance of SKIP-VAE vs VAE on MNIST (Top) and Omniglot (Bottom) as the complexity of the generative
model increases. The number of latent dimension is fixed at 20. Skip-VAE outperforms VAE on all collapse metrics while
achieving similar ELBO values, and the difference widens as layers increase.

ELBO KL MI AU
Layers VAE SKIP-VAE VAE  SKIP-VAE VAE  SKIP-VAE VAE  SKIP-VAE

1 -89.64 -89.22 13.31 13.40 8.56 8.56 20 20

MNIST 3 -84.38 -84.03 10.12 10.71 7.95 8.20 16 16
6 -83.19 -82.81 8.82 9.77 7.53 7.93 11 13

9 -83.06 -82.55 7.14 9.34 6.55 7.80 8 13

1 -97.69 -97.66 8.42 8.37 7.09 7.08 20 20

Omniglot 3 -93.95 -93.75 6.43 6.58 5.88 5.97 20 20
6 -93.23 -92.94 5.24 5.78 4.94 5.43 20 20

9 -92.79 -92.61 4.41 6.12 4.24 5.65 11 20

Burda et al. [2015] as

D
AU = " 1{CoV;) (Egy(z | [2al) = €}
d=1

where z, is the d*" dimension of z and € is a threshold.
(1{-} is an indicator giving 1 when its argument is true
and O otherwise.) We follow Burda et al. [2015] and use a
threshold of ¢ = 0.01. We observe the same phenomenon:
the histogram of the number of active dimensions of z is
bi-modal, which means that it is not highly sensitive to the
chosen threshold.

4.1 Images

Model We use a 3-layer ResNet [He et al., 2016a] (with 3 x
3 filters and 64 feature maps in each layer) as the variational
neural network and a 9-layer Gated PixelCNN [van den
Oord et al., 2016] (with 3 x 3 filters and 32 feature maps) as
the likelihood. The baseline model uses a linear map from
the sample (to project out to the image spatial resolution),
concatenated with the original image, which is fed to the
PixelCNN. This setup reflects the current state-of-the-art for
image VAES [Gulrajani et al., 2016, Chen et al., 2016].3 The
SKIP-VAE uses a linear map from the sample, concatenated
with the output from each layer of the PixelCNN (before
feeding it to the next layer). While this results in slightly

3While our model capacity is similar to these works, our per-
formance is slightly worse since we do not employ additional tech-
niques such as data-dependent initialization [Chen et al., 2016].

more parameters for the SKIP-VAE model, we found that the
baseline VAE’s performance on the collapse metrics actually
gets worse as the model size increases.

Results Table 1 shows the results on MNIST as we vary the
size of the latent dimension. In all scenarios, the generative
skip model yields higher KL between the variational poste-
rior and the prior, higher mutual information (confirming the
statement in Theorem 1), and uses more latent dimensions
(as measured by AU).

Table 2 shows experiments on both MNIST and Omniglot
as we vary the generative model’s complexity by increas-
ing its depth. We use a model with 20-dimensional latent
variables. For VAE, as the generative model becomes more
expressive the model becomes less reliant on z. We see
this in the poor performance on the collapse metrics. The
SKIP-VAE mitigates this issue and performs better on all
latent-variable collapse metrics. Note the ELBO is similar
for both models. These results indicate that the family of
generative skip models has a strong inductive bias to share
more mutual information between the observation and the
latent variable.

Similar results are observed when using weaker models. For
example in Table 3 we used multilayer perceptrons (MLPS)
for both the variational neural network and the generative
model, and we set the dimensionality of the latent variables
to 50. Even with this weaker setting the SK1IP-VAE leads to
less collapse than the VAE.
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Table 3: VAE and SKIP-VAE on MNIST using 50 latent dimensions with a simplified network. Here the encoder is a 2-layer
MLP with 512 units in each layer and the decoder is also an MLP. The results below correspond to different number of layers

for the decoder.

ELBO KL MI AU
Layers VAE SKIP-VAE VAE  SKIP-VAE VAE  SKIP-VAE VAE  SKIP-VAE
2 —94.88 -94.80 24.23 26.35 9.21 9.20 17 24
3 —95.38 -94.17 21.87 26.15 9.20 9.21 13 21
4 —97.09 -93.79 20.95 25.63 9.21 9.21 11 21

Table 4: skIP-VAE and SKIP-SA-VAE perform better than their counterparts (VAE, SA-VAE) on the Yahoo corpus under all
latent variable collapse metrics while achieving similar log-likelihoods. In particular, all latent dimensions are active when
using SKIP-SA-VAE. Perplexity (PPL) for the variational models is estimated by importance sampling of the log marginal

likelihood with 200 samples from g4 (z | x).

Model Dim PPL ELBO KL MI AU
LSTM LANGUAGE MODEL - 61.60 - - - -
VAE 32 62.38 —330.1 0.005 0.002 0
SKIP-VAE 32 61.71 —-330.5 0.34 0.31 1
SA-VAE 32 59.85 —327.5 5.47 4.98 14
SKIP-SA-VAE 32 60.87 —330.3 15.05 747 32
SA-VAE 64 60.20 —327.3 3.09 2.95 10
SKIP-SA-VAE 64 60.55 —330.8 22.54 9.15 64

Latent Representations. We find qualitatively that the 4.2 Text

latent representations learned by the SKIP-VAE better capture

the underlying structure. Figure 2 illustrates this. It showsa  Model For text modeling, we use the training setup from

much clearer separation of the MNIST digits with the latent
space learned by the SKIP-VAE compared to the latent space
of the VAE. *

Quantitatively we performed a classification study on
MNIST using the latent variables learned by the variational
neural networks of VAE and SKIP-VAE as features. This study
uses 50 latent dimensions, a 9-layer PixelCNN as the gen-
erative model, a 3-layer ResNet as the variational neural
network, and a simple 2-layer MLP over the posterior means
as the classifier. The MLP has 1024 hidden units, ReLLU
activations, and a dropout rate of 0.5. The classification
accuracy of the VAE is 97.19% which is lower than the accu-
racy of the SKIP-VAE which is 98.10%. We also studied this
classification performance on a weaker model. We replaced
the 9-layer PixelCNN and the 3-layer ResNet above by two
MLPS. The VAE achieved an accuracy of 97.70% whereas
the SKIP-VAE achieved an accuracy of 98.25%.

*Note we did not fit a VAE and a SKIP-VAE with 2-dimensional
latents for the visualization. Fitting 2-dimensional latents would
have led to much better learned representations for both the VAE
and the SKIP-VAE. However using 2-dimensional latents does not
correspond to a realistic setting in practice. Instead we fit the VAE
and the SKIP-VAE on 50-dimensional latents—as is usual in state-
of-the-art image modeling with vAEs—and used t-SNE to project
the learned latents on a 2-dimensional space.

Kimetal. [2018], a strong baseline that outperforms standard
LSTM language models. The variational neural network is
a 1-layer LSTM with 1024 hidden units, whose last hidden
state is used to predict the mean vector and the (log) variance
vector of the variational posterior. The generative model
is also a 1-layer LSTM with 1024 hidden units. We found
that the 1-layer model performed better than deeper models,
potentially due to overfitting. In the VAES the sample is used
to predict the initial hidden state of the decoder and also
fed as input at each time step. In the generative skip model
we also concatenate the sample with the decoder’s hidden
state.

We also study the semi-amortized variational autoencoder,
SA-VAE [Kim et al., 2018], which proposes a different
optimization-based strategy for targeting the latent variable
collapse issue when training VAES for text. SA-VAE combines
stochastic variational inference [Hoffman et al., 2013] with
amortized variational inference by first using an inference
network over x to predict the initial variational parameters
and then subsequently running iterative inference on the
ELBO to refine the initial variational parameters. We used
10 steps of iterative refinement for SA-VAE and SKIP-SA-
VAE.

Results We analyze the Yahoo Answers dataset from Yang
et al. [2017], a benchmark for deep generative models of text.
Table 4 shows the results. We first note that successfully
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training standard VAES for text with flexible autoregressive
likelihoods such as LSTMs remains a difficult problem. We
see that VAE by itself experiences latent variables collapse.
The skIP-VAE is slightly better than VAE at avoiding latent
variable collapse for similar log likelihoods, although the
KL is only marginally above zero and the model only has
one active unit.

When combining both approaches with the semi-amortized
training, we see better use of latent variables in SA-VAE and
SKIP-SA-VAE. While SA-VAE alone does mitigate collapse to
an extent, skip connections learn generative models where
the mutual information is even higher. Furthermore, the
trend changes when adding more latent dimension. For the
vanilla SA-VAE, the mutual information and active units are
actually lower for a model trained with 64-dimensional latent
variables than a model trained with 32-dimensional latent
variables. This is a common issue in VAES whereby simply
increasing the dimensionality of the latent space actually re-
sults in a worse model. In contrast, models trained with skip
connections make full use of the latent space and collapse
metrics improve as we increase the number of dimensions.
For example the SKIP-SA-VAE uses all the dimensions of the
latent variables.

5 Conclusion

We have proposed a method for reducing latent variable
collapse in VAES. The approach uses skip connections to
promote a stronger dependence between the observations
and their associated latent variables. The resulting family of
deep generative models (SKIP-VAES) learn useful summaries
of data. Theoretically we showed that SKIP-VAES yield higher
mutual information than their counterparts. We found that
SKIP-VAES—when used with more sophisticated VAES such
as the sA-vAE—Iead to a significant improvement in terms
of latent variable collapse.
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