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HIERARCHICAL RELATIONAL MODELS
FOR DOCUMENT NETWORKS

BY JONATHAN CHANG1 AND DAVID M. BLEI2

Facebook and Princeton University

We develop the relational topic model (RTM), a hierarchical model of
both network structure and node attributes. We focus on document networks,
where the attributes of each document are its words, that is, discrete obser-
vations taken from a fixed vocabulary. For each pair of documents, the RTM
models their link as a binary random variable that is conditioned on their
contents. The model can be used to summarize a network of documents, pre-
dict links between them, and predict words within them. We derive efficient
inference and estimation algorithms based on variational methods that take
advantage of sparsity and scale with the number of links. We evaluate the
predictive performance of the RTM for large networks of scientific abstracts,
web documents, and geographically tagged news.

1. Introduction. Network data, such as citation networks of documents, hy-
perlinked networks of web pages, and social networks of friends, are pervasive in
applied statistics and machine learning. The statistical analysis of network data can
provide both useful predictive models and descriptive statistics. Predictive models
can point social network members toward new friends, scientific papers toward
relevant citations, and web pages toward other related pages. Descriptive statistics
can uncover the hidden community structure underlying a network data set.

Recent research in this field has focused on latent variable models of link struc-
ture, models that decompose a network according to hidden patterns of connections
between its nodes [Kemp, Griffiths and Tenenbaum (2004); Hofman and Wiggins
(2007); Airoldi et al. (2008)]. These models represent a significant departure from
statistical models of networks, which explain network data in terms of observed
sufficient statistics [Fienberg, Meyer and Wasserman (1985); Wasserman and Pat-
tison (1996); Getoor et al. (2001); Newman (2002); Taskar et al. (2004)].

While powerful, current latent variable models account only for the structure
of the network, ignoring additional attributes of the nodes that might be available.
For example, a citation network of articles also contains text and abstracts of the
documents, a linked set of web-pages also contains the text for those pages, and
an on-line social network also contains profile descriptions and other information
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about its members. This type of information about the nodes, along with the links
between them, should be used for uncovering, understanding, and exploiting the
latent structure in the data.

To this end, we develop a new model of network data that accounts for both
links and attributes. While a traditional network model requires some observed
links to provide a predictive distribution of links for a node, our model can predict
links using only a new node’s attributes. Thus, we can suggest citations of newly
written papers, predict the likely hyperlinks of a web page in development, or sug-
gest friendships in a social network based only on a new user’s profile of interests.
Moreover, given a new node and its links, our model provides a predictive distri-
bution of node attributes. This mechanism can be used to predict keywords from
citations or a user’s interests from his or her social connections. Such prediction
problems are out of reach for traditional network models.

Here we focus on document networks. The attributes of each document are its
text, that is, discrete observations taken from a fixed vocabulary, and the links
between documents are connections such as friendships, hyperlinks, citations, or
adjacency. To model the text, we build on previous research in mixed-membership
document models, where each document exhibits a latent mixture of multinomial
distributions or “topics” [Blei, Ng and Jordan (2003); Erosheva, Fienberg and Laf-
ferty (2004); Steyvers and Griffiths (2007)]. The links are then modeled dependent
on this latent representation. We call our model, which explicitly ties the content
of the documents with the connections between them, the relational topic model
(RTM).

The RTM affords a significant improvement over previously developed models
of document networks. Because the RTM jointly models node attributes and link
structure, it can be used to make predictions about one given the other. Previous
work tends to explore one or the other of these two prediction problems. Some
previous work uses link structure to make attribute predictions [Chakrabarti, Dom
and Indyk (1998); Kleinberg (1999)], including several topic models [McCallum,
Corrada-Emmanuel and Wang (2005); Wang, Mohanty and McCallum (2005);
Dietz, Bickel and Scheffer (2007)]. However, none of these methods can make
predictions about links given words.

Other models use node attributes to predict links [Hoff, Raftery and Handcock
(2002)]. However, these models condition on the attributes but do not model them.
While this may be effective for small numbers of attributes of low dimension,
these models cannot make meaningful predictions about or using high-dimensional
attributes such as text data. As our empirical study in Section 4 illustrates, the
mixed-membership component provides dimensionality reduction that is essential
for effective prediction.

In addition to being able to make predictions about links given words and words
given links, the RTM is able to do so for new documents—documents outside of
the training data. Approaches which generate document links through topic models
treat links as discrete “terms” from a separate vocabulary that essentially indexes



126 J. CHANG AND D. M. BLEI

the observed documents [Cohn and Hofmann (2001); Erosheva, Fienberg and Laf-
ferty (2004); Gruber, Rosen-Zvi and Weiss (2008); Nallapati and Cohen (2008);
Sinkkonen, Aukia and Kaski (2008)]. Through this index, such approaches encode
the observed training data into the model and thus cannot generalize to observa-
tions outside of them. Link and word predictions for new documents, of the kind
we evaluate in Section 4.1, are ill defined.

Xu et al. (2006, 2008) have jointly modeled links and document content using
nonparametric Bayesian techniques so as to avoid these problems. However, their
work does not assume mixed-memberships, which have been shown to be useful
for both document modeling [Blei, Ng and Jordan (2003)] and network modeling
[Airoldi et al. (2008)]. Recent work from Nallapati et al. (2008) has also jointly
modeled links and document content. We elucidate the subtle but important differ-
ences between their model and the RTM in Section 2.2. We then demonstrate in
Section 4.1 that the RTM makes modeling assumptions that lead to significantly
better predictive performance.

The remainder of this paper is organized as follows. First, we describe the sta-
tistical assumptions behind the relational topic model. Then, we derive efficient
algorithms based on variational methods for approximate posterior inference, pa-
rameter estimation, and prediction. Finally, we study the performance of the RTM
on scientific citation networks, hyperlinked web pages, and geographically tagged
news articles. The RTM provides better word prediction and link prediction than
natural alternatives and the current state of the art.

2. Relational topic models. The relational topic model (RTM) is a hierarchi-
cal probabilistic model of networks, where each node is endowed with attribute
information. We will focus on text data, where the attributes are the words of the
documents (see Figure 1). The RTM embeds this data in a latent space that explains
both the words of the documents and how they are connected.

2.1. Modeling assumptions. The RTM builds on previous work in mixed-
membership document models. Mixed-membership models are latent variable
models of heterogeneous data, where each data point can exhibit multiple la-
tent components. Mixed-membership models have been successfully applied in
many domains, including survey data [Erosheva, Fienberg and Joutard (2007)],
image data [Barnard et al. (2003); Fei-Fei and Perona (2005)], rank data [Gormley
and Murphy (2009)], network data [Airoldi et al. (2008)] and document mod-
eling [Blei, Ng and Jordan (2003); Steyvers and Griffiths (2007)]. Mixed-
membership models were independently developed in the field of population ge-
netics [Pritchard, Stephens and Donnelly (2000)].

To model node attributes, the RTM reuses the statistical assumptions behind la-
tent Dirichlet allocation (LDA) [Blei, Ng and Jordan (2003)], a mixed-membership
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FIG. 1. Example data appropriate for the relational topic model. Each document is represented as
a bag of words and linked to other documents via citation. The RTM defines a joint distribution over
the words in each document and the citation links between them.

model of documents.3 Specifically, LDA is a hierarchical probabilistic model that
uses a set of “topics,” distributions over a fixed vocabulary, to describe a corpus of
documents. In its generative process, each document is endowed with a Dirichlet-
distributed vector of topic proportions, and each word of the document is assumed
drawn by first drawing a topic assignment from those proportions and then draw-
ing the word from the corresponding topic distribution. While a traditional mixture
model of documents assumes that every word of a document arises from a single
mixture component, LDA allows each document to exhibit multiple components
via the latent topic proportions vector.

In the RTM, each document is first generated from topics as in LDA. The links
between documents are then modeled as binary variables, one for each pair of
documents. These binary variables are distributed according to a distribution that
depends on the topics used to generate each of the constituent documents. Because
of this dependence, the content of the documents is statistically connected to the
link structure between them. Thus, each document’s mixed-membership depends
both on the content of the document as well as the pattern of its links. In turn,
documents whose memberships are similar will be more likely to be connected
under the model.

The parameters of the RTM are as follows: the topics β1:K , K multinomial
parameters each describing a distribution on words; a K-dimensional Dirichlet
parameter α; and a function ψ that provides binary probabilities. (This function is
explained in detail below.) We denote a set of observed documents by w1:D,1:N ,

3A general mixed-membership model can accommodate any kind of grouped data paired with an
appropriate observation model [Erosheva, Fienberg and Lafferty (2004)].



128 J. CHANG AND D. M. BLEI

where wi,1:N are the words of the ith document. (Words are assumed to be discrete
observations from a fixed vocabulary.) We denote the links between the documents
as binary variables y1:D,1:D , where yi,j is one if there is a link between the ith and
j th document. The RTM assumes that a set of observed documents w1:D,1:N and
binary links between them y1:D,1:D are generated by the following process:

1. For each document d:
(a) Draw topic proportions θd |α ∼ Dir(α).

(b) For each word wd,n:
i. Draw assignment zd,n|θd ∼ Mult(θd).

ii. Draw word wd,n|zd,n,β1:K ∼ Mult(βzd,n
).

2. For each pair of documents d , d ′:
(a) Draw binary link indicator

yd,d ′ |zd, zd ′ ∼ ψ(·|zd, zd ′,η),

where zd = {zd,1, zd,2, . . . , zd,n}.
Figure 2 illustrates the graphical model for this process for a single pair of docu-
ments. The full model, which is difficult to illustrate in a small graphical model,
contains the observed words from all D documents, and D2 link variables for each
possible connection between them.

2.2. Link probability function. The function ψ is the link probability function
that defines a distribution over the link between two documents. This function is
dependent on the two vectors of topic assignments that generated their words, zd

and zd ′ .

FIG. 2. A two-document segment of the RTM. The variable yd,d ′ indicates whether the two doc-
uments are linked. The complete model contains this variable for each pair of documents. This bi-
nary variable is generated contingent on the topic assignments for the participating documents,
zd and zd ′ , and global regression parameters η. The plates indicate replication. This model captures
both the words and the link structure of the data shown in Figure 1.
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This modeling decision is important. A natural alternative is to model links as
a function of the topic proportions vectors θd and θd ′ . One such model is that of
Nallapati et al. (2008), which extends the mixed-membership stochastic block-
model [Airoldi et al. (2008)] to generate node attributes. Similar in spirit is the
nongenerative model of Mei et al. (2008) which “regularizes” topic models with
graph information. The issue with these formulations is that the links and words
of a single document are possibly explained by disparate sets of topics, thereby
hindering their ability to make predictions about words from links and vice versa.

In enforcing that the link probability function depends on the latent topic as-
signments zd and zd ′ , we enforce that the specific topics used to generate the links
are those used to generate the words. A similar mechanism is employed in Blei and
McAuliffe (2007) for nonpair-wise response variables. In estimating parameters,
this means that the same topic indices describe both patterns of recurring words
and patterns in the links. The results in Section 4.1 show that this provides a supe-
rior prediction mechanism.

We explore four specific possibilities for the link probability function. First, we
consider

ψσ (y = 1) = σ
(
ηT(zd ◦ zd ′) + ν

)
,(2.1)

where zd = 1
Nd

∑
n zd,n, the ◦ notation denotes the Hadamard (element-wise) prod-

uct, and the function σ is the sigmoid. This link function models each per-pair
binary variable as a logistic regression with hidden covariates. It is parameterized
by coefficients η and intercept ν. The covariates are constructed by the Hadamard
product of zd and zd ′ , which captures similarity between the hidden topic repre-
sentations of the two documents.

Second, we consider

ψe(y = 1) = exp
(
ηT(zd ◦ zd ′) + ν

)
.(2.2)

Here, ψe uses the same covariates as ψσ , but has an exponential mean function in-
stead. Rather than tapering off when zd and zd ′ are close (i.e., when their weighted
inner product, ηT(zd ◦ zd ′), is large), the probabilities returned by this function
continue to increase exponentially. With some algebraic manipulation, the func-
tion ψe can be viewed as an approximate variant of the modeling methodology
presented in Blei and Jordan (2003).

Third, we consider

ψ�(y = 1) = �
(
ηT(zd ◦ zd ′) + ν

)
,(2.3)

where � represents the cumulative distribution function of the Normal distribu-
tion. Like ψσ , this link function models the link response as a regression parame-
terized by coefficients η and intercept ν. The covariates are also constructed by the
Hadamard product of zd and zd ′ , but instead of the logit model hypothesized by
ψσ , ψ� models the link probability with a probit model.



130 J. CHANG AND D. M. BLEI

FIG. 3. A comparison of different link probability functions. The plot shows the probability of two
documents being linked as a function of their similarity (as measured by the inner product of the two
documents’ latent topic assignments). All link probability functions were parameterized so as to have
the same endpoints.

Finally, we consider

ψN(y = 1) = exp
(−ηT(zd − zd ′) ◦ (zd − zd ′) − ν

)
.(2.4)

Note that ψN is the only one of the link probability functions which is not a func-
tion of zd ◦ zd ′ . Instead, it depends on a weighted squared Euclidean difference
between the two latent topic assignment distributions. Specifically, it is the multi-
variate Gaussian density function, with mean 0 and diagonal covariance character-
ized by η, applied to zd −zd ′ . Because the range of zd −zd ′ is finite, the probability
of a link, ψN(y = 1), is also finite. We constrain the parameters η and ν to ensure
that it is between zero and one.

All four of the ψ functions we consider are plotted in Figure 3. The link like-
lihoods suggested by the link probability functions are plotted against the inner
product of zd and zd ′ . The parameters of the link probability functions were cho-
sen to ensure that all curves have the same endpoints. Both ψσ and ψ� have similar
sigmoidal shapes. In contrast, the ψe is exponential in shape and its slope remains
large at the right limit. The one-sided Gaussian form of ψN is also apparent.

3. Inference, estimation and prediction. With the model defined, we turn
to approximate posterior inference, parameter estimation, and prediction. We de-
velop a variational inference procedure for approximating the posterior. We use
this procedure in a variational expectation-maximization (EM) algorithm for pa-
rameter estimation. Finally, we show how a model whose parameters have been
estimated can be used as a predictive model of words and links.

3.1. Inference. The goal of posterior inference is to compute the posterior dis-
tribution of the latent variables conditioned on the observations. As with many
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hierarchical Bayesian models of interest, exact posterior inference is intractable
and we appeal to approximate inference methods. Most previous work on latent
variable network modeling has employed Markov Chain Monte Carlo (MCMC)
sampling methods to approximate the posterior of interest [Hoff, Raftery and
Handcock (2002); Kemp, Griffiths and Tenenbaum (2004)]. Here, we employ vari-
ational inference [Jordan et al. (1999); Wainwright and Jordan (2005)], a deter-
ministic alternative to MCMC sampling that has been shown to give compara-
tive accuracy to MCMC with improved computational efficiency [Blei and Jordan
(2006); Braun and McAuliffe (2007)]. Wainwright and Jordan (2008) investigate
the properties of variational approximations in detail. Recently, variational meth-
ods have been employed in other latent variable network models [Hofman and
Wiggins (2007); Airoldi et al. (2008)].

In variational methods, we posit a family of distributions over the latent vari-
ables, indexed by free variational parameters. Those parameters are then fit to be
close to the true posterior, where closeness is measured by relative entropy. For the
RTM, we use the fully-factorized family, where the topic proportions and all topic
assignments are considered independent,

q(�,Z|γ ,�) = ∏
d

[
qθ (θd |γd)

∏
n

qz(zd,n|φd,n)

]
.(3.1)

The parameters γ are variational Dirichlet parameters, one for each document,
and � are variational multinomial parameters, one for each word in each docu-
ment. Note that Eq[zd,n] = φd,n.

Minimizing the relative entropy is equivalent to maximizing the Jensen’s lower
bound on the marginal probability of the observations, that is, the evidence lower
bound (ELBO),

L = ∑
(d1,d2)

Eq[logp(yd1,d2 |zd1, zd2,η, ν)] + ∑
d

∑
n

Eq[logp(zd,n|θd)]
(3.2)

+ ∑
d

∑
n

Eq[logp(wd,n|β1:K, zd,n)] + ∑
d

Eq[logp(θd |α)] + H(q),

where (d1, d2) denotes all document pairs and H(q) denotes the entropy of the
distribution q . The first term of the ELBO differentiates the RTM from LDA [Blei,
Ng and Jordan (2003)]. The connections between documents affect the objective
in approximate posterior inference (and, below, in parameter estimation).

We develop the inference procedure below under the assumption that only ob-
served links will be modeled (i.e., yd1,d2 is either 1 or unobserved).4 We do this for
both methodological and computational reasons.

4Sums over document pairs (d1, d2) are understood to range over pairs for which a link has been
observed.
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First, while one can fix yd1,d2 = 1 whenever a link is observed between d1 and d2

and set yd1,d2 = 0 otherwise, this approach is inappropriate in corpora where the
absence of a link cannot be construed as evidence for yd1,d2 = 0. In these cases,
treating these links as unobserved variables is more faithful to the underlying se-
mantics of the data. For example, in large social networks such as Facebook the
absence of a link between two people does not necessarily mean that they are not
friends; they may be real friends who are unaware of each other’s existence in the
network. Treating this link as unobserved better respects our lack of knowledge
about the status of their relationship.

Second, treating nonlinks links as hidden decreases the computational cost of
inference; since the link variables are leaves in the graphical model, they can be re-
moved whenever they are unobserved. Thus, the complexity of computation scales
linearly with the number of observed links rather than the number of document
pairs. When the number of true observations is sparse relative to the number of
document pairs, as is typical, this provides a significant computational advantage.
For example, on the Cora data set described in Section 4, there are 3,665,278
unique document pairs but only 5278 observed links. Treating nonlinks as hidden
in this case leads to an inference procedure which is nearly 700 times faster.

Our aim now is to compute each term of the objective function given in equa-
tion (3.2). The first term,

∑
(d1,d2)

Ld1,d2 ≡ ∑
(d1,d2)

Eq[logp(yd1,d2 |zd1, zd2,η, ν)],(3.3)

depends on our choice of link probability function. For many link probability func-
tions, this term cannot be expanded analytically. However, if the link probability
function depends only on zd1 ◦ zd2 , we can expand the expectation using the fol-
lowing first-order approximation [Braun and McAuliffe (2007)]5:

L(d1,d2) = Eq[logψ(zd1 ◦ zd2)] ≈ logψ(Eq[zd1 ◦ zd2]) = logψ(πd1,d2),

where πd1,d2 = φd1
◦φd2

and φd = Eq[zd ] = 1
Nd

∑
n φd,n. In this work, we explore

three functions which can be written in this form,

Eq[logψσ (zd1 ◦ zd2)] ≈ logσ(ηTπd1,d2 + ν),

Eq[logψ�(zd1 ◦ zd2)] ≈ log�(ηTπd1,d2 + ν),(3.4)

Eq[logψe(zd1 ◦ zd2)] = ηTπd1,d2 + ν.

5While we do not give a detailed proof here, the error of a first-order approximation is closely
related to the probability mass in the tails of the distribution on zd1 and zd2 . Because the number
of words in a document is typically large, the variance of zd1 and zd2 tends to be small, making the
first-order approximation a good one.
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Note that for ψe the expression is exact. The likelihood when ψN is chosen as the
link probability function can also be computed exactly,

Eq[logψN(zd1, zd2)] = −ν − ∑
i

ηi

(
(φd1,i

− φd2,i
)2 + Var(zd1,i) + Var(zd2,i)

)
,

where zd,i denotes the ith element of the mean topic assignment vector, zd ,
and Var(zd,i) = 1

N2
d

∑
n φd,n,i(1 − φd,n,i), where φd,n,i is the ith element of the

multinomial parameter φd,n. (See Appendix A.)
Leveraging these expanded expectations, we then use coordinate ascent to op-

timize the ELBO with respect to the variational parameters γ ,�. This yields an
approximation to the true posterior. The update for the variational multinomial
φd,j is

φd,j ∝ exp
{ ∑

d ′ �=d

∇φd,n
Ld,d ′ + Eq[log θd |γd ] + logβ ·,wd,j

}
.(3.5)

The contribution to the update from link information, ∇φd,n
Ld,d ′ , depends on the

choice of link probability function. For the link probability functions expanded in
equation (3.4), this term can be written as

∇φd,n
Ld,d ′ = (∇πd1,d2

Ld,d ′) ◦ φd ′

Nd

.(3.6)

Intuitively, equation (3.6) will cause a document’s latent topic assignments to
be nudged in the direction of neighboring documents’ latent topic assignments.
The magnitude of this pull depends only on πd,d ′ , that is, some measure of how
close they are already. The corresponding gradients for the functions in equa-
tion (3.4) are

∇πd,d′ L
σ
d,d ′ ≈ (

1 − σ(ηTπd,d ′ + ν)
)
η,

∇πd,d′ L
�
d,d ′ ≈ �′(ηTπd,d ′ + ν)

�(ηTπd,d ′ + ν)
η,

∇πd,d′ L
e
d,d ′ = η.

The gradient when ψN is the link probability function is

∇φd,n
L N

d,d ′ = 2

Nd

η ◦
(
φd ′ − φd,−n − 1

Nd

)
,(3.7)

where φd,−n = φd − 1
Nd

φd,n. Similar in spirit to equation (3.6), equation (3.7)
will cause a document’s latent topic assignments to be drawn toward those of its
neighbors. This draw is tempered by φd,−n, a measure of how similar the current
document is to its neighbors.

The contribution to the update in equation (3.5) from the word evidence
logβ ·,wd,j

can be computed by taking the element-wise logarithm of the wd,j th
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column of the topic matrix β . The contribution to the update from the document’s
latent topic proportions is given by

Eq[log θd |γ d ] = �(γ d) − �
(∑

γd,i

)
,

where � is the digamma function. (A digamma of a vector is the vector of digam-
mas.) The update for γ is identical to that in variational inference for LDA [Blei,
Ng and Jordan (2003)],

γd ← α + ∑
n

φd,n.

These updates are fully derived in Appendix A.

3.2. Parameter estimation. We fit the model by finding maximum likelihood
estimates for each of the parameters: multinomial topic vectors β1:K and link func-
tion parameters η, ν. Once again, this is intractable so we turn to an approximation.
We employ variational expectation-maximization, where we iterate between opti-
mizing the ELBO of equation (3.2) with respect to the variational distribution and
with respect to the model parameters. This is equivalent to the usual expectation-
maximization algorithm [Dempster, Laird and Rubin (1977)], except that the com-
putation of the posterior is replaced by variational inference.

Optimizing with respect to the variational distribution is described in Sec-
tion 3.1. Optimizing with respect to the model parameters is equivalent to max-
imum likelihood estimation with expected sufficient statistics, where the expecta-
tion is taken with respect to the variational distribution.

The update for the topics matrix β is

βk,w ∝ ∑
d

∑
n

1(wd,n = w)φd,n,k.(3.8)

This is the same as the variational EM update for LDA [Blei, Ng and Jordan
(2003)]. In practice, we smooth our estimates of βk,w using pseudocount smooth-
ing [Jurafsky and Martin (2008)] which helps to prevent overfitting by positing a
Dirichlet prior on βk .

In order to fit the parameters η, ν of the logistic function of equation (2.1), we
employ gradient-based optimization. Using the approximation described in equa-
tion (3.4), we compute the gradient of the objective given in equation (3.2) with
respect to these parameters,

∇ηL ≈ ∑
(d1,d2)

[yd1,d2 − σ(ηTπd1,d2 + ν)]πd1,d2,

∂

∂ν
L ≈ ∑

(d1,d2)

[yd1,d2 − σ(ηTπd1,d2 + ν)].

Note that these gradients cannot be used to directly optimize the parameters
of the link probability function without negative observations (i.e., yd1,d2 = 0). We
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address this by applying a regularization penalty. This regularization penalty along
with parameter update procedures for the other link probability functions are given
in Appendix B.

3.3. Prediction. With a fitted model, our ultimate goal is to make predictions
about new data. We describe two kinds of prediction: link prediction from words
and word prediction from links.

In link prediction, we are given a new document (i.e., a document which is not
in the training set) and its words. We are asked to predict its links to the other
documents. This requires computing

p(yd,d ′ |wd,wd′) = ∑
zd ,zd′

p(yd,d ′ |zd, zd ′)p(zd, zd ′ |wd,wd′),

an expectation with respect to a posterior that we cannot compute. Using the infer-
ence algorithm from Section 3.1, we find variational parameters which optimize
the ELBO for the given evidence, that is, the words and links for the training
documents and the words in the test document. Replacing the posterior with this
approximation q(�,Z), the predictive probability is approximated with

p(yd,d ′ |wd,wd′) ≈ Eq[p(yd,d ′ |zd, zd ′)].(3.9)

In a variant of link prediction, we are given a new set of documents (documents not
in the training set) along with their words and asked to select the links most likely
to exist. The predictive probability for this task is proportional to equation (3.9).

The second predictive task is word prediction, where we predict the words of a
new document based only on its links. As with link prediction, p(wd,i |yd) cannot
be computed. Using the same technique, a variational distribution can approximate
this posterior. This yields the predictive probability

p(wd,i |yd) ≈ Eq[p(wd,i |zd,i)].
Note that models which treat the endpoints of links as discrete observations of

data indices cannot participate in the two tasks presented here. They cannot make
meaningful predictions for documents that do not appear in the training set [Cohn
and Hofmann (2001); Erosheva, Fienberg and Lafferty (2004); Nallapati and Co-
hen (2008); Sinkkonen, Aukia and Kaski (2008)]. By modeling both documents
and links generatively, our model is able to give predictive distributions for words
given links, links given words, or any mixture thereof.

4. Empirical results. We examined the RTM on four data sets.6 Words were
stemmed; stop words, that is, words like “and,” “of,” or “but,” and infrequently

6An implementation of the RTM with accompanying data can be found at http://cran.r-project.org/
web/packages/lda/.

http://cran.r-project.org/web/packages/lda/
http://cran.r-project.org/web/packages/lda/
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TABLE 1
Summary statistics for the four data sets after processing

Data set # of documents # of words Number of links Lexicon size

Cora 2708 49216 5278 1433
WebKB 877 79365 1388 1703
PNAS 2218 11,9162 1577 2239
LocalNews 51 93765 107 1242

occurring words were removed. Directed links were converted to undirected links7

and documents with no links were removed. The Cora data [McCallum et al.
(2000)] contains abstracts from the Cora computer science research paper search
engine, with links between documents that cite each other. The WebKB data
[Craven et al. (1998)] contains web pages from the computer science departments
of different universities, with links determined from the hyperlinks on each page.
The PNAS data contains recent abstracts from the Proceedings of the National
Academy of Sciences. The links between documents are intra-PNAS citations.
The LocalNews data set is a corpus of local news culled from various media mar-
kets throughout the United States. We create one bag-of-words document associ-
ated with each state (including the District of Columbia); each state’s “document”
consists of headlines and summaries from local news in that state’s media mar-
kets. Links between states were determined by geographical adjacency. Summary
statistics for these data sets are given in Table 1.

4.1. Evaluating the predictive distribution. As with any probabilistic model,
the RTM defines a probability distribution over unseen data. After inferring the
latent variables from data (as described in Section 3.1), we ask how well the model
predicts the links and words of unseen nodes. Models that give higher probability
to the unseen documents better capture the joint structure of words and links.

We study the RTM with three link probability functions discussed above: the
logistic link probability function, ψσ , of equation (2.1); the exponential link prob-
ability function, ψe, of equation (2.2); and the probit link probability function,
ψ�, of equation (2.3). We compare these models against two alternative ap-
proaches.

The first (“Pairwise Link-LDA”) is the model proposed by Nallapati et al.
(2008), which is an extension of the mixed membership stochastic block model
[Airoldi et al. (2008)] to model network structure and node attributes. This model
posits that each link is generated as a function of two individual topics, drawn

7The RTM can be extended to accommodate directed connections. Here we modeled undirected
links.
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from the topic proportions vectors associated with the endpoints of the link. Be-
cause latent topics for words and links are drawn independently in this model, it
cannot ensure that the discovered topics are representative of both words and links
simultaneously. Additionally, this model introduces additional variational parame-
ters for every link which adds computational complexity.

The second (“LDA + Regression”) first fits an LDA model to the documents
and then fits a logistic regression model to the observed links, with input given by
the Hadamard product of the latent class distributions of each pair of documents.
Rather than performing dimensionality reduction and regression simultaneously,
this method performs unsupervised dimensionality reduction first, and then re-
gresses to understand the relationship between the latent space and underlying link
structure. All models were fit such that the total mass of the Dirichlet hyperpara-
meter α was 1.0. (While we omit a full sensitivity study here, we observed that the
performance of the models was similar for α within a factor of 2 above and below
the value we chose.)

We measured the performance of these models on link prediction and word pre-
diction (see Section 3.3). We divided the Cora, WebKB and PNAS data sets each
into five folds. For each fold and for each model, we ask two predictive queries:
given the words of a new document, how probable are its links; and given the links
of a new document, how probable are its words? Again, the predictive queries are
for completely new test documents that are not observed in training. During train-
ing the test documents are removed along with their attendant links. We show the
results for both tasks in terms of predictive rank as a function of the number of
topics in Figure 4. (See Section 5 for a discussion on potential approaches for se-
lecting the number of topics and the Dirichlet hyperparameter α.) Here we follow
the convention that lower predictive rank is better.

In predicting links, the three variants of the RTM perform better than all of
the alternative models for all of the data sets (see Figure 4, left column). Cora is
paradigmatic, showing a nearly 40% improvement in predictive rank over baseline
and 25% improvement over LDA + Regression. The performance for the RTM on
this task is similar for all three link probability functions. We emphasize that the
links are predicted to documents seen in the training set from documents which
were held out. By incorporating link and node information in a joint fashion, the
model is able to generalize to new documents for which no link information was
previously known.

Note that the performance of the RTM on link prediction generally increases
as the number of topics is increased (there is a slight decrease on WebKB). In
contrast, the performance of the Pairwise Link-LDA worsens as the number of
topics is increased. This is most evident on Cora, where Pairwise Link-LDA is
competitive with RTM at five topics, but the predictive link rank monotonically in-
creases after that despite its increased dimensionality (and commensurate increase
in computational difficulty). We hypothesize that Pairwise Link-LDA exhibits this
behavior because it uses some topics to explain the words observed in the training
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FIG. 4. Average held-out predictive link rank (left) and word rank (right) as a function of the
number of topics. Lower is better. For all three corpora, RTMs outperform baseline unigram, LDA
and “Pairwise Link-LDA” Nallapati et al. (2008).

set, and other topics to explain the links observed in the training set. This prob-
lem is exacerbated as the number of topics is increased, making it less effective at
predicting links from word observations.

In predicting words, the three variants of the RTM again outperform all of the
alternative models (see Figure 4, right column). This is because the RTM uses
link information to influence the predictive distribution of words. In contrast, the
predictions of LDA + Regression and Pairwise Link-LDA barely use link infor-
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mation; thus, they give predictions independent of the number of topics similar to
those made by a simple unigram model.

4.2. Automatic link suggestion. A natural real-world application of link pre-
diction is to suggest links to a user based on the text of a document. One might
suggest citations for an abstract or friends for a user in a social network.

As a complement to the quantitative evaluation of link prediction given in the
previous section, Table 2 illustrates suggested citations using RTM (ψe) and LDA
+ Regression as predictive models. These suggestions were computed from a
model fit on one of the folds of the Cora data using 10 topics. (Results are quali-
tatively similar for models fit using different numbers of topics; see Section 5 for
strategies for choosing the number of topics.) The top results illustrate suggested
links for “Markov chain Monte Carlo convergence diagnostics: A comparative re-
view,” which occurs in this fold’s training set. The bottom results illustrate sug-
gested links for “Competitive environments evolve better solutions for complex
tasks,” which is in the test set.

RTM outperforms LDA + Regression in being able to identify more true con-
nections. For the first document, RTM finds 3 of the connected documents versus 1
for LDA + Regression. For the second document, RTM finds 3 while LDA + Re-
gression does not find any. This qualitative behavior is borne out quantitatively
over the entire corpus. Considering the precision of the first 20 documents re-
trieved by the models, RTM improves precision over LDA + Regression by 80%.
(Twenty is a reasonable number of documents for a user to examine.)

While both models found several connections which were not observed in the
data, those found by the RTM are qualitatively different. In the first document, both
sets of suggested links are about Markov chain Monte Carlo. However, the RTM
finds more documents relating specifically to convergence and stationary behav-
ior of Monte Carlo methods. LDA + Regression finds connections to documents
in the milieu of MCMC, but many are only indirectly related to the input docu-
ment. The RTM is able to capture that the notion of “convergence” is an important
predictor for citations, and has adjusted the topic distribution and predictors corre-
spondingly. For the second document, the documents found by the RTM are also
of a different nature than those found by LDA + Regression. All of the documents
suggested by RTM relate to genetic algorithms. LDA + Regression, however, sug-
gests some documents which are about genomics. By relying only on words, LDA
+ Regression conflates two “genetic” topics which are similar in vocabulary but
different in citation structure. In contrast, the RTM partitions the latent space dif-
ferently, recognizing that papers about DNA sequencing are unlikely to cite papers
about genetic algorithms, and vice versa. Better modeling the properties of the net-
work jointly with the content of the documents, the model is able to better tease
apart the community structure.
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TABLE 2
Top eight link predictions made by RTM (ψe) and LDA + Regression for two documents (italicized)
from Cora. The models were fit with 10 topics. Boldfaced titles indicate actual documents cited by
or citing each document. Over the whole corpus, RTM improves precision over LDA + Regression

by 80% when evaluated on the first 20 documents retrieved

Markov chain Monte Carlo convergence diagnostics: A comparative review

R
T

M
(ψ

e
)

Minorization conditions and convergence rates for Markov chain Monte Carlo
Rates of convergence of the Hastings and Metropolis algorithms
Possible biases induced by MCMC convergence diagnostics
Bounding convergence time of the Gibbs sampler in Bayesian image restoration
Self regenerative Markov chain Monte Carlo
Auxiliary variable methods for Markov chain Monte Carlo with applications
Rate of Convergence of the Gibbs Sampler by Gaussian Approximation
Diagnosing convergence of Markov chain Monte Carlo algorithms

L
D

A
+

R
eg

re
ss

io
n

Exact Bound for the Convergence of Metropolis Chains
Self regenerative Markov chain Monte Carlo
Minorization conditions and convergence rates for Markov chain Monte Carlo
Gibbs–Markov models
Auxiliary variable methods for Markov chain Monte Carlo with applications
Markov Chain Monte Carlo Model Determination for Hierarchical and Graphical Models
Mediating instrumental variables
A qualitative framework for probabilistic inference
Adaptation for Self Regenerative MCMC

Competitive environments evolve better solutions for complex tasks

R
T

M
(ψ

e
)

Coevolving High Level Representations
A Survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning
Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms
A promising genetic algorithm approach to job-shop scheduling. . .
Evolutionary Module Acquisition
An Empirical Investigation of Multi-Parent Recombination Operators. . .

L
D

A
+

R
eg

re
ss

io
n A New Algorithm for DNA Sequence Assembly

Identification of protein coding regions in genomic DNA
Solving combinatorial problems using evolutionary algorithms
A promising genetic algorithm approach to job-shop scheduling. . .
A genetic algorithm for passive management
The Performance of a Genetic Algorithm on a Chaotic Objective Function
Adaptive global optimization with local search
Mutation rates as adaptations
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4.3. Modeling spatial data. While explicitly linked structures like citation
networks offer one sort of connectivity, data with spatial or temporal informa-
tion offer another sort of connectivity. In this section we show how RTMs can be
used to model spatially connected data by applying it to the LocalNews data set, a
corpus of news headlines and summaries from each state, with document linkage
determined by spatial adjacency.

Figure 5 shows the per state topic distributions inferred by RTM (left) and LDA
(right). Both models were fit with five topics using the same initialization. (We re-
strict the discussion here to five topics for expositional convenience. See Section 5
for a discussion on potential approaches for selecting the number of topics.) While
topics are, strictly speaking, exchangeable and therefore not comparable between
models, using the same initialization typically yields topics which are amenable to
comparison. Each row of Figure 5 shows a single component of each state’s topic
proportion for RTM and LDA. That is, if θs is the latent topic proportions vector
for state s, then θs1 governs the intensity of that state’s color in the first row, θs2 the
second, and so on.

While both RTM and LDA model the words in each state’s local news corpus,
LDA ignores geographical information. Hence, it finds topics which are distributed
over a wide swath of states which are often not contiguous. For example, LDA’s
topic 1 is strongly expressed by Maine and Illinois, along with Texas and other
states in the South and West. In contrast, RTM only assigns nontrivial mass to
topic 1 in Southern states. Similarly, LDA finds that topic 5 is expressed by several
states in the Northeast and the West. The RTM, however, concentrates topic 4’s
mass on the Northeastern states.

The RTM does so by finding different topic assignments for each state and,
commensurately, different distributions over words for each topic. Table 3 shows
the top words in each RTM topic and each LDA topic. Words are ranked by the
following score:

scorek,w ≡ βk,w

(
logβk,w − 1

K

∑
k′

logβk′,w

)
.

The score finds words which are likely to appear in a topic, but also corrects for
frequent words. The score therefore puts greater weight on words which more
easily characterize a topic. Table 3 shows that RTM finds words more geograph-
ically indicative. While LDA provides one way of analyzing this collection of
documents, the RTM enables a different approach which is geographically cog-
nizant. For example, LDA’s topic 3 is an assortment of themes associated with
California (e.g., “marriage”) as well as others (“scores,” “registration,” “schools”).
The RTM, on the other hand, discovers words thematically related to a single news
item (“measure,” “protesters,” “appeals”) local to California. The RTM typically
finds groups of words associated with specific news stories, since they are easily
localized, while LDA finds words which cut broadly across news stories in many
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FIG. 5. A comparison between RTM (left) and LDA (right) of topic distributions on local news
data. Each color/row depicts a single topic. Each state’s color intensity indicates the magnitude of
that topic’s component. The corresponding words associated with each topic are given in Table 3.
Whereas LDA finds geographically diffuse topics, RTM, by modeling spatial connectivity, finds co-
herent regions.

states. Thus, on topic 5, the RTM discovers key words associated with news sto-
ries local to the Northeast such as “manslaughter” and “developer.” On topic 5, the
RTM also discovers a peculiarity of the Northeastern dialect: that roads are given
the appellation “route” more frequently than elsewhere in the country.
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TABLE 3
The top eight words in each RTM (left) and LDA (right) topic shown in Figure 5 ranked by score

(defined below). RTM finds words which are predictive of both a state’s geography and its local news

By combining textual information along with geographical information, the
RTM provides a novel exploratory tool for identifying clusters of words that are
driven by both word co-occurrence and geographic proximity. Note that the RTM
finds regions in the United States which correspond to typical clusterings of states:
the South, the Northeast, the Midwest, etc. Further, the soft clusterings found by
RTM confirm many of our cultural intuitions—while New York is definitively a
Northeastern state, Virginia occupies a liminal space between the MidAtlantic and
the South.
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5. Discussion. There are many avenues for future work on relational topic
models. Applying the RTM to diverse types of “documents” such as protein-
interaction networks or social networks, whose node attributes are governed by
rich internal structure, is one direction. Even the text documents which we have
focused on in this paper have internal structure such as syntax [Boyd-Graber and
Blei (2008)] which we are discarding in the bag-of-words model. Augmenting and
specializing the RTM to these cases may yield better models for many application
domains.

As with any parametric mixed-membership model, the number of latent compo-
nents in the RTM must be chosen using either prior knowledge or model-selection
techniques such as cross-validation. Incorporating non-parametric Bayesian priors
such as the Dirichlet process into the model would allow it to flexibly adapt the
number of topics to the data [Ferguson (1973); Antoniak (1974); Kemp, Griffiths
and Tenenbaum (2004); Teh et al. (2007)]. This, in turn, may give researchers new
insights into the latent membership structure of networks.

In sum, the RTM is a hierarchical model of networks and per-node attribute
data. The RTM is used to analyze linked corpora such as citation networks, linked
web pages, social networks with user profiles, and geographically tagged news.
We have demonstrated qualitatively and quantitatively that the RTM provides an
effective and useful mechanism for analyzing and using such data. It significantly
improves on previous models, integrating both node-specific information and link
structure to give better predictions.

APPENDIX A: DERIVATION OF COORDINATE ASCENT UPDATES

Inference under the variational method amounts to finding values of the vari-
ational parameters γ ,� which optimize the evidence lower bound, L , given in
equation (3.2). To do so, we first expand the expectations in these terms:

L = ∑
(d1,d2)

Ld1,d2 + ∑
d

∑
n

φd,n
T logβ·,wd,n

+ ∑
d

∑
n

φd,n
T(

�(γd) − 1�(1Tγd)
)

+ ∑
d

(α − 1)T(
�(γd) − 1�(1Tγd)

)
(A.1)

+ ∑
d

∑
n

φd,n
T logφd,n

− ∑
d

(γd − 1)T(
�(γd) − 1�(1Tγd)

)

+ ∑
d

1T log�(γd) − log�(1Tγd),



HIERARCHICAL RELATIONAL MODELS FOR DOCUMENT NETWORKS 145

where Ld1,d2 is defined as in equation (3.3). Since Ld1,d2 is independent of γ , we
can collect all of the terms associated with γd into

Lγd
=

(
α + ∑

n

φd,n − γd

)T(
�(γd) − 1�(1Tγd)

)

+ 1T log�(γd) − log�(1Tγd).

Taking the derivatives and setting equal to zero leads to the following optimality
condition:

(
α + ∑

n

φd,n − γd

)T(
� ′(γd) − 1� ′(1Tγd)

) = 0,

which is satisfied by the update

γd ← α + ∑
n

φd,n.(A.2)

In order to derive the update for φd,n, we also collect its associated terms,

Lφd,n
= φd,n

T(
logφd,n + logβ·,wd,n

+ �(γd) − 1�(1Tγd)
) + ∑

d ′ �=d

Ld,d ′ .

Adding a Lagrange multiplier to ensure that φd,n normalizes and setting the deriv-
ative equal to zero leads to the following condition:

φd,n ∝ exp{logβ·,wd,n
+ �(γd) − 1�(1Tγd) + ∇φd,n

Ld,d ′ }.(A.3)

The exact form of ∇φd,n
Ld,d ′ will depend on the link probability function cho-

sen. If the expected log link probability depends only on πd1,d2 = φd1
◦ φd2

, the
gradients are given by equation (3.6). When ψN is chosen as the link probability
function, we expand the expectation,

Eq[logψN(zd, zd ′)] = −ηT
Eq[(zd − zd ′) ◦ (zd − zd ′)] − ν

(A.4)
= −ν − ∑

i

ηi(Eq[z2
d,i] + Eq[z2

d ′,i] − 2φd,iφd ′,i).

Because each word is independent under the variational distribution, Eq[z2
d,i] =

Var(zd,i) + φ
2
d,i , where Var(zd,i) = 1

N2
d

∑
n φd,n,i(1 − φd,n,i). The gradient of this

expression is given by equation (3.7).

APPENDIX B: DERIVATION OF PARAMETER ESTIMATES

In order to estimate the parameters of our model, we find values of the topic
multinomial parameters β and link probability parameters η, ν which maximize
the variational objective, L , given in equation (3.2).
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To optimize β , it suffices to take the derivative of the expanded objective given
in equation (A.1) along with a Lagrange multiplier to enforce normalization:

∂βk,w
L = ∑

d

∑
n

φd,n,k1(w = wd,n)
1

βk,wd,n

+ λk.

Setting this quantity equal to zero and solving yields the update given in equa-
tion (3.8).

By taking the gradient of equation (A.1) with respect to η and ν, we can also
derive updates for the link probability parameters. When the expectation of the
logarithm of the link probability function depends only on ηTπd,d ′ + ν, as with all
the link functions given in equation (3.4), then these derivatives take a convenient
form. For notational expedience, denote η+ = 〈η, ν〉 and π+

d,d ′ = 〈πd,d ′,1〉. Then
the derivatives can be written as

∇η+L σ
d,d ′ ≈ (

1 − σ(η+Tπ+
d,d ′)

)
π+

d,d ′,

∇η+L �
d,d ′ ≈ �′(η+Tπ+

d,d ′)

�(η+Tπ+
d,d ′)

π+
d,d ′,(B.1)

∇η+L e
d,d ′ = π+

d,d ′ .

Note that all of these gradients are positive because we are faced with a one-class
estimation problem. Unchecked, the parameter estimates will diverge. While a va-
riety of techniques exist to address this problem, one set of strategies is to add
regularization.

A common regularization for regression problems is the �2 regularizer. This
penalizes the objective L with the term λ‖η‖2, where λ is a free parameter. This
penalization has a Bayesian interpretation as a Gaussian prior on η.

In lieu of or in conjunction with �2 regularization, one can also employ regu-
larization which in effect injects some number of observations, ρ, for which the
link variable y = 0. We associate with these observations a document similarity
of πα = α

1Tα
◦ α

1Tα
, the expected Hadamard product of any two documents given

the Dirichlet prior of the model. Because both ψσ and ψ� are symmetric, these
gradients of these regularization terms can be written as

∇η+Rσ = −ρσ(η+Tπ+
α )π+

α ,

∇η+R� = −ρ
�′(−η+Tπ+

α )

�(−η+Tπ+
α )

π+
α .

While this approach could also be applied to ψe, here we use a different approx-
imation. We do this for two reasons. First, we cannot optimize the parameters of
ψe in an unconstrained fashion since this may lead to link functions which are not
probabilities. Second, the approximation we propose will lead to explicit updates.
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Because Eq[logψe(zd ◦ zd ′)] is linear in πd,d ′ by equation (3.4), this suggests a
linear approximation of Eq[log(1 − ψe(zd ◦ zd ′))]. Namely, we let

Eq

[
log

(
1 − ψe(zd ◦ zd ′)

)] ≈ η′Tπd,d ′ + ν′.

This leads to a penalty term of the form

Re = ρ(η′Tπα + ν′).

We fit the parameters of the approximation, η′, ν′, by making the approximation
exact whenever πd,d ′ = 0 or maxπd,d ′ = 1. This yields the following K + 1 equa-
tions for the K + 1 parameters of the approximation:

ν′ = log
(
1 − exp(ν)

)
,

η′
i = log

(
1 − exp(ηi + ν)

) − ν′.

Combining the gradient of the likelihood of the observations given in equa-
tion (B.1) with the gradient of the penalty Re and solving leads to the following
updates:

ν ← log(M − 1T�̄) − log
(
ρ(1 − 1Tπα) + M − 1T�̄

)
,

η ← log(�̄) − log(�̄ + ρπα) − 1ν,

where M = ∑
(d1,d2)

1 and �̄ = ∑
(d1,d2)

πd1,d2 . Note that because of the con-
straints on our approximation, these updates are guaranteed to yield parameters
for which 0 ≤ ψe ≤ 1.

Finally, in order to fit parameters for ψN , we begin by assuming the variance
terms of equation (A.4) are small. equation (A.4) can then be written as

Eq[logψN(zd, zd ′)] = −ν − ηT(φd − φd ′) ◦ (φd − φd ′),

which is the log likelihood of a Gaussian distribution where φd − φd ′ is random
with mean 0 and diagonal variance 1

2η . This suggests fitting η using the empirically
observed variance:

η ← M

2
∑

d,d ′(φd − φd ′) ◦ (φd − φd ′)
.

ν acts as a scaling factor for the Gaussian distribution; here we want only to ensure
that the total probability mass respects the frequency of observed links to regular-
ization “observations.” Equating the normalization constant of the distribution with
the desired probability mass yields the update

ν ← log 1
2πK/2 + log(ρ + M) − logM − 1

21T logη,

guarding against values of ν which would make ψN inadmissable as a probability.
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