Shortest Paths in a Dynamic Uncertain Domain

David Meir Blei
Artificial Intelligence Center
SRI International
333 Ravenswood Ave
Menlo Park, CA 94025

blei@ai.sri.com

Abstract

This paper describes solutions to finding
shortest paths in stochastic graphs with par-
tially unknown topologies. We consider graphs
which are both static and dynamic. We solve
the static problem by reduction to a Markov de-
cision process and solve the dynamic problem
by reduction to a partially observable Markov
decision process. We show these solutions to
be intractable and explore reinforcement learn-
ing as a method of approximation. Finally,
we present empirical results of a reinforcement
learning approach in this framework.

Suppose we are trying to deliver an important package
to a town in a cluster of small islands. These islands have
recently been struck by a terrible storm and we can’t be
sure of the status of each bridge. Some of them are
intact but many of them washed away or are otherwise
unusable. What can we do in such a situation?

Suppose now that there are efforts to fix some of the
bridges while other bridges continue to fall apart due to
additional rains. Now how can we plan to deliver the
package?

These planning problems are interesting and difficult.
We know something about the state of the world but
need to observe it to be sure of that state. Furthermore,
we want to deliver the package to the town as soon as
possible and avoid wasting valuable time and resources
on improbable and long paths through the islands.

1 Introduction

In this paper we explore algorithms for finding the short-
est path to the goal island in the kinds of stochastic dy-
namic environments described above. We refer to the
first kind of world as a bridge problem (BP). A BP is
an undirected graph of islands and bridges (nodes and
edges) where each bridge is assigned an initial probabil-
ity of being intact (figure 1). Additionally, one island
is considered the goal island and an agent traverses this
graph trying to reach that goal.

Note that the probabilities on the bridges represent
the agent’s prior belief that the bridge is intact. After
an agent tries to cross a bridge, it discovers the true state

Leslie Pack Kaelbling
Computer Science Department
Box 1910
Brown University
Providence, RI (02912
lpk@cs.brown.edu

Pr(b0)=0.9

Pr(b3)=0.5

@ Pr(b2)=0.01 i3

Figure 1: An example of a bridge problem. The goal
island is 2.

Pr(b1)=0.9

of that bridge. We assume all future attempts to cross
it will yield the same results.

A solution to the bridge problem is a behavior for the
agent that minimizes the expected path length to the
goal. The agent needs to consider its past discoveries
about bridges as well as its current position in determin-
ing its next action.

Since the agent’s current knowledge and position are
based on its previous knowledge and last action, this
problem lends itself to a solution using Markov decision
processes (MDP’s). We will show that this problem can
be solved with an MDP, though its size grows too quickly
with the size of the BP for this to be a practical solution.

The second scenario is represented as a dynamic bridge
problem (DBP) where the status of a bridge can fluctu-
ate even after an agent’s discovery of whether it is in-
tact. We will see that an MDP is no longer adequate to
model an agent in a DBP. However, we can represent a
DBP with a partially observable Markov decision process
(PoMDP). Unfortunately, exact solutions to POMDP’s are
intractable in this case. We use reinforcement learning
techniques to approximate a solution.

2 The Bridge Problem

A BP is represented as a tuple (Z, B3, g) where:

e 7 is a finite set of islands in the world.

e Bis a set of bridges. Fach bridge b is a tuple (4o, i1, p)
where ig, 21 € Z are the islands connected to the bridge
and 0 < p < 1 is the probability that the bridge is

intact. We write b;,,b;,, and b, for the different pa-
rameters of each bridge. The bridges in this case are
undirected. Note however that it is easy to extend the
model to the directed case.

e g € T is the goal island in the world.

Solving this problem means defining an agent that
acts to minimize the expected length of its path to the
goal. To find this behavior, we use an MDP to model
the agent’s movement between islands and discovery of
whether bridges are intact or not. Acting optimally in
such an MDP is the optimal behavior for an agent in the
BP.

2.1

MDP’s are well described by Puterman [1994]. Recall
that a finite MDP is represented by a tuple, (S, A, T, R)
where:

Overview of Markov decision processes

e S is a finite set of states in the world.

e A is a finite set of actions.

T :8xAxS8 — [0,1] is the state-transition func-
tion. For each state and action, T gives a probability
distribution over next states. T'(s,a,s’) represents the
probability of reaching state s’ given that the agent
began in state s and took action a. Since T is a prob-
ability distribution,), s T'(s,a,s") = 1 for any given
s€ 8 and a € A.

e R:S8x .A— R is the reward function. R(s,a) repre-
sents the expected reward the agent receives for taking
action a in state s.

A solution to an MDP is the policy 7%, a mapping
of states to actions, that maximizes the expected dis-
counted future reward,

oo

E[Y_~'r]

t=0

for every starting state. The discount factor v € [0, 1]
measures the degree to which long-term rewards are val-
ued and r; represents the given reward at time .

2.2 Converting a BP to an MDP

We can find an optimal policy for our agent in the BP by
reducing the problem to an MDP. We need a mapping
from (Z, B, g) to (S, A, T, R).

The BP can not be directly modeled as an MDP with
states corresponding to islands. If we expand the no-
tion of state however to include the agent’s unfolding
knowledge of the status of the bridges, then a BP can
be reduced to a finite-state MDP. Our optimal policy in
that MDP will combine directed movement to the goal
and information gain from attempting to cross bridges.

States and Actions

The agent’s state is a combination of its location in the
world and what it currently knows about the bridges.
Therefore, the state space of the MDP is the cross prod-
uct of the islands with all the possible knowledge states
about the bridges.

The set of knowledge states is all the possible instan-
tiations of bridge probabilities where each bridge can
have probability 1 (the bridge is intact), 0 (the bridge is
not intact), or b, (the agent does not know whether the
bridge is intact). Formally, we describe the MDP states
as

S =17 x [J{0,1,5,}.
beB
The actions of the MDP are the bridges of the BP, A =
B.

Transition Function

In building the transition function, we need to model
physical movement in the world and discovery about the
world from taking an action. For example, suppose an
agent in the BP in figure 1 is at 77 and is considering tak-
ing bridge b1. Tt thinks that b7 has probability 0.9 and
tries to cross it. Discovering that the bridge is not there,
it knows it has remained on ¢f and bridge 67 has proba-
bility 0. Similarly, if it successfully crosses the bridge, it
knows that it has changed location to i3 and the bridge
has probability 1. In both cases, the agent’s state, a com-
bination of location and knowledge state, has changed.
The probability of reaching the state where the bridge
is intact and the agent’s location has changed is 0.9 (the
probability of the bridge in the current knowledge state).
The probability of reaching the state where the agent’s
location remains the same and the bridge is damaged is
0.1.

We formally describe the transition function as

Sk.s(b) if 5; € {biuv bil}a
51 € {big, bi, },
s; # s}, and
5, (6) = 1.
no_
T(s,b,s) = 1_5ks(b) jfiISl,
s1 € {biy, bi, 1,
sy, (0) = 0.
a otherwise

where s; represents the location parameter in a state and
sks(b) is the probability of a bridge in the knowledge
state of state s. Note that when a bridge is unconnected
to the location of either state, T'(s,b,s’) = 0.

Reward Function

Finally, we calculate the reward function. For this func-
tion, we can disregard the knowledge states since we are
not concerned with how much the agent knows as long
as it somehow reaches the goal island. The states where
the agent is at the goal have reward 1 and all other states
have reward 0. Furthermore, we assume that the agent
enters a zero-cost absorbing state once it reaches the
goal. Formally,

1 ifsg=g¢g
0 otherwise.

R(s,b) = {

Analysis

Now, we can use a dynamic programming algorithm
called value iteration to find the optimal policy of this
MDP and compute a mapping from knowledge states and
locations to bridges. An agent, based on what it knows
about the bridges and where it is in the world, can at-
tempt to take the optimal bridge. Furthermore, the op-
timal policy takes into account both the value of gaining
information about uncertain bridges and the value of
moving closer to the goal.

Note that this solution is better then a simple greedy
method of repeatedly computing the most probable path
to the goal and taking the first step of that path. The
MDP agent has defined a policy for all contingencies in
the world and can choose its action in constant time. It
is faster than the greedy solution and implicitly takes
into account future options (or lack of them) in its plan.

Unfortunately, it is intractable to solve reasonably
sized bridge problems exactly. Though value iteration
runs in time polynomial in |S| and |A| [Littman et al.,
1995a), the states in the MDP grow exponentially with
the bridges in the BP. There are 37! knowledge states
in the BP since each bridge can have one of three values.
Therefore, there are |Z| * 317! states in the constructed
MDP and value iteration runs in time exponential in |B|.

3 The Dynamic Bridge Problem

The BP is limited to static worlds. The Dynamic Bridge
Problem (DBP) is similar to a BP except that the un-
derlying structure of the world can change. As a result
of this, the certainty of an agent’s knowledge about a
bridge diminishes as time passes since it last observed
that bridge. This aspect of the problem gives rise to a
continuous space of knowledge states, and finite MDP’s
are no longer sufficient to represent the problem.

We represent a DBP by a tuple (Z, B, g) where:

e 7, g are as in the BP.
e 3 is a set of dynamic bridges. Each bridge is a tuple

(0,71, p, [, ¢) where 19, i1 € T are the islands connected

to the bridge and 0 < p <1 is the probability that the
bridge is initially intact (as in the BP). At each time
step, f is the probability that the bridge is fixed and ¢
is the probability that the bridge breaks (c stands for

“crashes” or “crumbles”).

The solution to the BP hinges on there being a finite
number of knowledge states which we represent in the
states of a finite MDP. In the case of the DBP however,
each bridge can have an infinite number of values as its
probability. Therefore, there are infinitely many knowl-
edge states and it is no longer possible to solve using a
finite MDP. A DBP can be reduced to a more powerful
model, a partially observable Markov decision process
(POMDP).

3.1 Partially Observable Markov Decision
Processes

A PoMDP is a model in which the agent is not sure of
its state but makes observations as it acts in the world.

To act optimally in a POMDP, the agent needs to select
its action based its history of observations and actions
[Kaelbling et al., 1998].

Recall that a POMDP is a tuple (S, A, T, R, 2, O) where

e (S, A, T, R) is a Markov decision process.

e () is a set of observations. The agent can make one of
these observations each time it takes an action.

e :8x A — TI(Q) is the observation function. For
each action and state, O determines a probability dis-
tribution over all the observations. O(s',a,0) is the
probability of observing o given that we took action a
and ended up in state s’. Since O(s,a) is a probability
distribution, > . O(s’,a,0) = 1 for some s’ € § and
a€e A

Finding the optimal policy in a POMDP amounts to
solving a continuous MDP where the state is a belief state,
a probability distribution over §. Methods of solving
this MDP can be found in the overview by Kaelbling et
al. [1998].

3.2 Representing a DBP as a POMDP

In order to reduce a DBP to a POMDP, we describe a

mapping from (Z, B, g) to (S, A, T, R,,O).

States and Actions

In the bridge problem, we defined the knowledge state
to model the uncertainty about the world. In the reduc-
tion of the POMDP to a continuous MDP, the belief states
will implicitly model the agent’s uncertainty. Therefore,
the POMDP states simply need to model all the different
possible worlds the agent may be in. In a given instance
of the world, each bridge can either be intact or not. We
define a world configuration to be a vector of length |B|
of T’s and F’s. If the i'* element is T, the ** bridge is
intact and if the i** element is F, the i*” bridge is not in-
tact. The states of the POMDP are all the possible world
configurations coupled with the possible locations. For-
mally, we define the world configurations, and states in
the POoMDP as

w
S =

HbeB{T,F} and
xW.

As in the bridge problem, the set of actions is the set
of bridges, A = B.

Observations

The POMDP agent is not sure of its state but can make
observations on each action. In the DBP world, an agent
observes that the bridge it just took was in or out. There-
fore, O = {in, out}.

The observation function is deterministic because the
agent will never make a false observation about a bridge.
Assuming it is standing at one end of the bridge it wants
to try, it will always observe in if that bridge is intact
and out if it is not. Furthermore, the intactness of the
bridge in the current world configuration of the agent

should match the agent’s observatidthe Reward Function
The reward function, as in the BP, rewards only the set

1 if 53, (a) 57 Th6s Where the agent’s location is the goal island.
and s; # 5] € aio,ailt}

O(s,s',a,0)=¢ 1 ii(sl)_:/F, o = out, R(s,a) = 1 if s =g
and s; = s € {a;,,a;,} 0 otherwise.
otherwise.

Analysis
where s,,(a) is the status of bridge a ilNg# Whatdvediafg reduced a DBP to a POMDP, we can find
uration of s, s; is the location of the agentdntitned pohiest for this problem using known meth-
{a;,,a;, } are the islands that bridge wodémiesebyidg#iearnP’s. However, common methods for
that this observation function deviatesoltong #eMBRsghn only handle cases of up to about 30
definition of a POMDP since it takes intéfatemuln thercteduction, the number of states is expo-
rent state of the agent. We have destfiddl emihprsigg of the DBP so we cannot easily solve
from 8§ x § x A — T1(Q2). The PoMDP Probkimeqelitexons than 5 bridges.
observation function of the form & x A — I[(Q), If,we .
square the state space and consider gc?h p%s@l‘%)ﬁglﬂéﬁg the Belief State Space
(s, ') to be a state, we can easily redud¥oozobskevadiamtage of the nature of the DBP to reduce
function to the standard form. the size of the belief state MDP that we constructed in
. . the previous section. The state space of this MDP has
The Transition Function dimension |Z| % 2/P! but we can factor out unnecessary
To construct the transition functionjnferfistfioanalflzetwo insights.
which states are reachable from some st@lige ag@inh alemys knows its location in the DBP. Only
zero probabilities. If s; = a;, and s, (@ ket &f Wherlageshfigurations coupled with one location
can reach all those states where s; =can hade sa01€zHfe probabilities at one time. Therefore,
In other words, if the bridge is intact ienchabeitlietagenis a point in one of |Z| spaces of dimen-
is at one of the connecting islands of jg, btilge, it can
rgach any world cpnﬁguration (since theywesld &3oft in one of these spaces a world config-
bitrarily change without the agent’s kngwieslgelfe B]L‘?ﬁe; it essentially represents the agent’s
with the other connecting island of thatrbridgeticfdatlbut the status of each bridge. However,
other cases, t}}e agent can reth all wogld coedigutations distribution over all possible configu-
coupled with its current location. rations even though the bridges change independent of
The actual probability of reaching sta¢g éﬂf@ﬂh@%@t, we can compute the probability of an
s depends on how the world _Conﬁgura&iﬁrgwgéscfﬁ?ﬁguration as the product of the probabil-
the source state to the destination stafg oHtHO%¥®Cof the individual bridges. This allows
bridge, that bridge changes status fro@sﬂéq%f’%@éﬁ%@fe distribution with a single probability
in the probability that the bridge is figadealfy ib1$4808€8ucing the state space to dimension |B|
from T to F we factor in the probabilify thafighe bridge
b‘re‘aks. If it stay‘s the‘ same at T, we fac:u?ﬁ]fhé#&ilfféﬂ%?ﬂa belief state space, the resulting be-
?blllty that the bridge is intact and ‘doespletflg{g?{. B mes even more difficult to solve. The
if it st‘ays the same at F we factor in th\‘?al%lfé’ gAY iRkt ate ¥ is the sum of the values of the
the bridge is broken and is not fixed. F&H%M’tions weighted by their probabilities. In the un-
factored state space, each configuration was represented
if s # s € {aiy,ai,} and s, (a) =T ‘With its own dimeHSiOI‘l.‘ Thu‘s, ZSG:S P (s)V (s) is linear
orif s = 5 € {a;,,a;,} and s, (a) =1B, the space of probability distributions over configura-
tions. This property lets us solve the continuous MDP
by [ﬂf(@g}l }rgg gt al., 1998]. In the factored state space, how-
%‘q@g g probability of a given configuration is a product
of the components of s. Therefore, V is no longer linear
be if sy (159 ¢ amd we can no longer solve the POMDP using known

auftl) sexact methods.

1=b; +psb. ifs,(b)=% Reinforcement Learning in the DBP

aft) =T 1 previous sections, we showed exact solutions to the

. BP and DBP. These solutions are intractable for large
L—be+bgbe [if sy (b) =F problems and even for small problems in the case of the
) s= F DBP. In this section we will demonstrate one method of
approximating the optimal value function in reasonable
time.

T(s,a,s") =0.

There have been many applications of value-function
approximation to the solution of poMDPs [Hauskrecht,
1998; Littman et al., 1995b; Parr and Russell, 1995].
The most successful take direct advantage of the known
piecewise-linearity and convexity of the value function.
These methods are not applicable to our factored belief-
space representation so we use reinforcement learning
with a nearest-neighbor approximation method.

Reinforcement learning (RL) is a method of approxi-
mating good behavior in a unpredictable world. RL is
well described by Sutton and Barto [1998]. Using RL
to approximate solutions to continuous state MDP’s is
described by Bertsekas and Tsitsiklis [1996].

We use RL in the DBP framework as follows. The
learning agent uses a function approximator to estimate
the value function of the factored belief state space (sec-
tion 3.3). The agent simulates life in the bridge world
for a fixed number of steps, keeping a record of its states
and actions. At each step, the agent sometimes chooses
its current idea of the optimal action (using the value
function approximator) and sometimes chooses random
actions. At the end of each iteration, the agent updates
the function approximator with its new experiences and
repeats.

Algorithm LEARN-DBP

1. s ¢ DBPgtart

2. T «{}

3. fori+lton

4. if we want to explore

5. then a <choose a random bridge
6. from s

7. else a <approximate the best a
8. s «simulate taking action a from s
9. T «T U({s,a)

10. if s =DBPg,q or we choose to restart
11. then s <DBP,;4

12. for {s,a) in T

13. V(s,a) R(s,a)+

14. 723’65 T(S,a,s')V(s,a)

15. goto step 1

In the algorithm above, DBP is a dynamic bridge prob-
lem where DBP;;q,¢, DBPgoq are the starting and goal
islands respectively. The transition function 7', reward
function R, and discount factor v are as defined by the
reduction of DBP to a POMDP (section 3.2). Finally,
V is a value function approximation architecture and
V(s,a) + R notates updating that architecture for point
(s,a) with the given value.

Lines 1 and 2 initialize the agent to be in the starting
island with no current experience. 1In lines 3-11, the
agent chooses an action, executes it, and records the
result. Finally, the agent updates its value function in
lines 12-14 and repeats.

This algorithm works given a good function approxi-
mator but is very impractical. The agent starts out with
a completely blank slate in a possibly large and unpre-
dictable domain. It will eventually find its way to the
goal but there is little chance that it will learn such a

~—— mentor
algorithm

learning
agent s

e R,

)

S,

s,r S random
/\' (\‘(a\ exploration

value function
approximation
architecture

ar

Figure 2: Reinforcement learning architecture in the dy-
namic bridge world. Note that the learning agent gets
its next action from one of three sources.

route except after many trials of random actions. To re-
duce the agent’s ignorance, we introduce a third option
for selecting an action, a mentor algorithm. The men-
tor algorithm gives the agent an action which is the next
step in a reasonably good but suboptimal initial solution
to the problem. Initially, the agent relies heavily on its
mentor to lead it to the goal several times to learn a good
route. As it learns, it begins to use its value function and
exploration to eventually find a behavior which is better
than its mentor’s. The agent architecture is illustrated
in figure 2.

In testing RL in the DBP framework we construct our
agent as follows. The value function approximator is a
nearest neighbor architecture. The value of a given point
in the state space is simply the value of the closest point
in Euclidean distance for which we have information. For
a mentor algorithm, we use the next step on the currently
most probable path to the goal. This step is computable
in time |B| but is not optimal since it does not take
into account the dynamics of the bridges. The agent
reduces its use of this algorithm linearly over the course
of its learning. When not using the mentor algorithm,
it explores 20% of the time and uses the value function
approximator for the remaining 80%. Finally, we choose
~ to be 0.95.

Our simulated agent navigated in Venice, Ttaly (fig-
ure 3) from and to islands on opposite sides of the city.
There are 44 islands and 64 bridges and the parameters
of each bridge, {bp,bs,bc}, were determined randomly.
However, we fixed the mean values of these parameters

so the world was parameterized by {bp, bs,b.}.

We tested the agent in 81 worlds with b. and b; rang-
ing in values from 0.1 to 0.9. The agent trained by sim-
ulating 1000 steps as per the algorithm described above.
In each training episode, it restarted after reaching the
goal or 200 steps. The value function was updated with
these 1000 points and the agent repeated this training
200 times.

To evaluate the trained agent, we ran 100 trials
through the world. The agent stoped after reaching the
goal or 200 steps and we measured the discounted re-
inforcement for each trial. The score of an agent in a

D193 MATELLAN O

Figure 3: The testbed for the DBP learning agent:
Venice, Italy.

given trial is 22222 ~'r; where r; is the reward the agent
received at time i. The total score is the sum of the 100
individual trial scores.

To evaluate the results, the learning agent’s score is
compared with the mentor algorithm and a similar but
more naive algorithm. This naive algorithm works the
same way as the mentor algorithm but doesn’t take into
account the actual probabilities of the bridges. Instead,
each bridge can have one of three values: intact, not
intact, or unknown. The naive agent scores paths to the
goal based on these values and chooses the next step in
the path with the highest score.

Generally speaking, the learning agent performs better
than both algorithms. In figure 4, we present the perfor-
mance of the three algorithms in worlds where bridges

are often fixed (by = 0.7), seldom fixed (b; = 0.3), and
sometimes fixed (E = 0.5). Note that in the case where

b; = 0.3, the mentor algorithm and learning algorithm

are closer in performance. Furthermore, as b, increases
all three graphs, the learning algorithm decreases in per-
formance faster than the mentor algorithm.

5 Conclusions and Future Work

This work demonstrates a practical use of MDP’s and
POMDP’s in finding optimal behavior for an agent in a dy-
namic stochastic environment. Though exact solutions
are intractable, we show that approximation methods
such as reinforcement learning are effective.

There are three areas of future work. First, it would
be useful to find a different real-world domain, such as
network packet routing, in which to implement and test
this kind of reactive planning behavior. Second, it would
be interesting to explore the problem of building a BP
from experience in a stochastic world, computing an ex-
ploratory behavior to best induce the bridge probabil-

80 T

NN —~—
MA —+—
NA -8-- |

score

0.7 0.8 0.9

0.1 0.2 0.3 0.4 0.5 0.6
average broken probability
7 Lrd
bf = 0.7
T
NN —-—
MA -
NA -8--
o
<]
3
a
o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
average broken probability
T
NN —-—
MA -+
NA -8-- 7
o
5 4
3
a
P D \4“\‘
5 " I N
=i
0 . . [TR @ TS &
0.1 0.2 0.3 0.7 0.8 0.9

0. 0.5 [
average broken probability
by = 0.3

Figure 4: Results using RL in Venice. NN is the rein-
forcement learning score; MA is the mentor algorithm
score; and INA is the score for the naive algorithm.

ities. Finally, we can make the model more expressive
by removing the assumption that bridges are completely
independent of each other. Instead, we would like to con-
sider the case where sets of bridges are independent of
each other but the bridges themselves have some degree
of interdependence.

References

[Bertsekas and Tsitsiklis, 1996] Dimitri P. Bertsekas
and John N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scientific, 1996.

[Hauskrecht, 1998] Milos Hauskrecht. Planning and
Control in Stochastic Domains with Imperfect Infor-
mation. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, 1998.

[Kaelbling et al., 1998] Leslie Pack Kaelbling,
Michael L. Littman, and Anthony R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artificial Intelligence, 101, 1998.

[Littman et al., 1995a] Michael —Littman, Thomas
Dean, and Leslie Kaelbling. On the complexity of
solving markov decision problem. In Proceedings of
the Fleventh International Conference on Uncertainty
in Artificial Intelligence, 1995.

[Littman et al., 1995b] Michael L. Littman, An-
thony R. Cassandra, and Leslie Pack Kaelbling.
Learning policies for partially observable environ-
ments: Scaling up. In Proceedings of the Twelfth
International Conference on Machine Learning.
Morgan Kaufmann, 1995.

[Parr and Russell, 1995] Ron Parr and Stuart Russell.
Approximating optimal policies for partially observ-
able stochastic domains. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 1995.
[Puterman, 1994] Martin L. Puterman. Markov Deci-
sion Processes. John Wiley and Sons, 1994.

[Sutton and Barto, 1998] Richard S. Sutton and An-
drew T. Barto. Reinforcement Learning: An Intro-
duction. MIT Press, 1998.

