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collections. SpeciÞcally, we present an application to information retrieval in which documents are
modeled as paths down a random tree, and the preferential attachment dynamics of the nCRP leads
to clustering of documents according to sharing of topics at multiple levels of abstraction. Given a
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7:2 D. M. BLEI ET AL.

1. Introduction
For much of its history, computer science has focused on deductive formal methods,
allying itself with deductive traditions in areas of mathematics such as set theory,
logic, algebra, and combinatorics. There has been accordingly less focus on efforts
to develop inductive, empirically based formalisms in computer science, a gap that
became increasingly visible over the years as computers have been required to
interact with noisy, difÞcult-to-characterize sources of data, such as those deriving
from physical signals or from human activity. In more recent history, the Þeld of
machine learning has aimed to Þll this gap, allying itself with inductive traditions in
probability and statistics, while focusing on methods that are amenable to analysis
as computational procedures.

Machine learning methods can be divided into supervised learning methods and
unsupervised learning methods. Supervised learning has been a major focus of
machine learning research. In supervised learning, each data point is associated
with a label (e.g., a category, a rank or a real number) and the goal is to Þnd a
function that maps data into labels (so as to predict the labels of data that have
not yet been labeled). A canonical example of supervised machine learning is the
email spam Þlter, which is trained on known spam messages and then used to mark
incoming unlabeled email as spam or non-spam.

While supervised learning remains an active and vibrant area of research, more
recently the focus in machine learning has turned to unsupervised learning meth-
ods. In unsupervised learning the data are not labeled, and the broad goal is to Þnd
patterns and structure within the data set. Different formulations of unsupervised
learning are based on different notions of �pattern� and �structure.� Canonical ex-
amples include clustering, the problem of grouping data into meaningful groups
of similar points, and dimension reduction, the problem of Þnding a compact rep-
resentation that retains useful information in the data set. One way to render these
notions concrete is to tie them to a supervised learning problem; thus, a structure is
validated if it aids the performance of an associated supervised learning system. Of-
ten, however, the goal is more exploratory. Inferred structures and patterns might be
used, for example, to visualize or organize the data according to subjective criteria.
With the increased access to all kinds of unlabeled data�scientiÞc data, personal
data, consumer data, economic data, government data, text data�exploratory un-
supervised machine learning methods have become increasingly prominent.

Another important dichotomy in machine learning distinguishes between para-
metric and nonparametric models. A parametric model involves a Þxed represen-
tation that does not grow structurally as more data are observed. Examples include
linear regression and clustering methods in which the number of clusters is Þxed
a priori. A nonparametric model, on the other hand, is based on representations
that are allowed to grow structurally as more data are observed.1 Nonparametric
approaches are often adopted when the goal is to impose as few assumptions as
possible and to �let the data speak.�

The nonparametric approach underlies many of the most signiÞcant develop-
ments in the supervised learning branch of machine learning over the past two

1In particular, despite the nomenclature, a nonparametric model can involve parameters; the issue is
whether or not the number of parameters grows as more data are observed.
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decades. In particular, modern classiÞers such as decision trees, boosting and near-
est neighbor methods are nonparametric, as are the class of supervised learning sys-
tems built on �kernel methods,� including the support vector machine. (See Hastie
et al. [2001] for a good review of these methods.) Theoretical developments in su-
pervised learning have shown that as the number of data points grows, these methods
can converge to the true labeling function underlying the data, even when the data
lie in an uncountably inÞnite space and the labeling function is arbitrary [Devroye
et al. 1996]. This would clearly not be possible for parametric classiÞers.

The assumption that labels are available in supervised learning is a strong as-
sumption, but it has the virtue that few additional assumptions are generally needed
to obtain a useful supervised learning methodology. In unsupervised learning, on
the other hand, the absence of labels and the need to obtain operational deÞnitions
of �pattern� and �structure� generally makes it necessary to impose additional as-
sumptions on the data source. In particular, unsupervised learning methods are often
based on �generative models,� which are probabilistic models that express hypothe-
ses about the way in which the data may have been generated. Probabilistic graphi-
cal models (also known as �Bayesian networks� and �Markov random Þelds�) have
emerged as a broadly useful approach to specifying generative models [Lauritzen
1996; Jordan 2000]. The elegant marriage of graph theory and probability theory
in graphical models makes it possible to take a fully probabilistic (i.e., Bayesian)
approach to unsupervised learning in which efÞcient algorithms are available to
update a prior generative model into a posterior generative model once data have
been observed.

Although graphical models have catalyzed much research in unsupervised learn-
ing and have had many practical successes, it is important to note that most of
the graphical model literature has been focused on parametric models. In particu-
lar, the graphs and the local potential functions comprising a graphical model are
viewed as Þxed objects; they do not grow structurally as more data are observed.
Thus, while nonparametric methods have dominated the literature in supervised
learning, parametric methods have dominated in unsupervised learning. This may
seem surprising given that the open-ended nature of the unsupervised learning
problem seems particularly commensurate with the nonparametric philosophy. But
it reßects an underlying tension in unsupervised learning�to obtain a well-posed
learning problem it is necessary to impose assumptions, but the assumptions should
not be too strong or they will inform the discovered structure more than the data
themselves.

It is our view that the framework of Bayesian nonparametric statistics provides
a general way to lessen this tension and to pave the way to unsupervised learn-
ing methods that combine the virtues of the probabilistic approach embodied in
graphical models with the nonparametric spirit of supervised learning. In Bayesian
nonparametric (BNP) inference, the prior and posterior distributions are no longer
restricted to be parametric distributions, but are general stochastic processes [Hjort
et al. 2010]. Recall that a stochastic process is simply an indexed collection of
random variables, where the index set is allowed to be inÞnite. Thus, using stochas-
tic processes, the objects of Bayesian inference are no longer restricted to Þnite-
dimensional spaces, but are allowed to range over general inÞnite-dimensional
spaces. For example, objects such as trees of arbitrary branching factor and arbi-
trary depth are allowed within the BNP framework, as are other structured objects
of open-ended cardinality such as partitions and lists. It is also possible to work
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with stochastic processes that place distributions on functions and distributions on
distributions. The latter fact exhibits the potential for recursive constructions that
is available within the BNP framework. In general, we view the representational
ßexibility of the BNP framework as a statistical counterpart of the ßexible data
structures that are ubiquitous in computer science.

In this article, we aim to introduce the BNP framework to a wider computational
audience by showing how BNP methods can be deployed in a speciÞc unsupervised
machine learning problem of signiÞcant current interest�that of learning topic
models for collections of text, images and other semi-structured corpora [Blei et al.
2003b; GrifÞths and Steyvers 2006; Blei and Lafferty 2009].

Let us brießy introduce the problem here; a more formal presentation appears
in Section 4. A topic is deÞned to be a probability distribution across words from
a vocabulary. Given an input corpus�a set of documents each consisting of a
sequence of words�we want an algorithm to both Þnd useful sets of topics and
learn to organize the topics according to a hierarchy in which more abstract topics
are near the root of the hierarchy and more concrete topics are near the leaves.
While a classical unsupervised analysis might require the topology of the hierarchy
(branching factors, etc.) to be chosen in advance, our BNP approach aims to infer a
distribution on topologies, in particular placing high probability on those hierarchies
that best explain the data. Moreover, in accordance with our goals of using ßexible
models that �let the data speak,� we wish to allow this distribution to have its support
on arbitrary topologies�there should be no limitations such as a maximum depth
or maximum branching factor.

We provide an example of the output from our algorithm in Figure 1. The input
corpus in this case was a collection of abstracts from the Journal of the ACM (JACM)
from the years 1987 to 2004. The Þgure depicts a topology that is given highest
probability by our algorithm, along with the highest probability words from the
topics associated with this topology (each node in the tree corresponds to a single
topic). As can be seen from the Þgure, the algorithm has discovered the category of
function words at level zero (e.g., �the� and �of�), and has discovered a set of Þrst-
level topics that are a reasonably faithful representation of some of the main areas
of computer science. The second level provides a further subdivision into more
concrete topics. We emphasize that this is an unsupervised problem. The algorithm
discovers the topic hierarchy without any extra information about the corpus (e.g.,
keywords, titles or authors). The documents are the only inputs to the algorithm.

A learned topic hierarchy can be useful for many tasks, including text catego-
rization, text compression, text summarization and language modeling for speech
recognition. A commonly used surrogate for the evaluation of performance in these
tasks is predictive likelihood, and we use predictive likelihood to evaluate our
methods quantitatively. But we also view our work as making a contribution to
the development of methods for the visualization and browsing of documents. The
model and algorithm we describe can be used to build a topic hierarchy for a docu-
ment collection, and that hierarchy can be used to sharpen a user�s understanding of
the contents of the collection. A qualitative measure of the success of our approach
is that the same tool should be able to uncover a useful topic hierarchy in different
domains based solely on the input data.

By deÞning a probabilistic model for documents, we do not deÞne the level
of �abstraction� of a topic formally, but rather deÞne a statistical procedure that
allows a system designer to capture notions of abstraction that are reßected in usage
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FIG. 1. The topic hierarchy learned from 536 abstracts of the Journal of the ACM (JACM) from
1987�2004. The vocabulary was restricted to the 1,539 terms that occurred in more than Þve docu-
ments, yielding a corpus of 68K words. The learned hierarchy contains 25 topics, and each topic node
is annotated with its top Þve most probable terms. We also present examples of documents associated
with a subset of the paths in the hierarchy.

patterns of the speciÞc corpus at hand. While the content of topics will vary across
corpora, the ways in which abstraction interacts with usage will not. A corpus might
be a collection of images, a collection of HTML documents or a collection of DNA
sequences. Different notions of abstraction will be appropriate in these different
domains, but each are expressed and discoverable in the data, making it possible to
automatically construct a hierarchy of topics.

This article is organized as follows. We begin with a review of the neces-
sary background in stochastic processes and Bayesian nonparametric statistics in
Section 2. In Section 3, we develop the nested Chinese restaurant process, the prior
on topologies that we use in the hierarchical topic model of Section 4. We derive an
approximate posterior inference algorithm in Section 5 to learn topic hierarchies
from text data. Examples and an empirical evaluation are provided in Section 6.
Finally, we present related work and a discussion in Section 7.
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FIG. 2. A conÞguration of the Chinese restaurant process. There are an inÞnite number of tables,
each associated with a parameter βi . The customers sit at the tables according to Eq. (1) and each
generate data with the corresponding parameter. In this conÞguration, ten customers have been seated
in the restaurant, populating four of the inÞnite set of tables.

2. Background
Our approach to topic modeling reposes on several building blocks from stochas-
tic process theory and Bayesian nonparametric statistics, speciÞcally the Chinese
restaurant process [Aldous 1985], stick-breaking processes [Pitman 2002], and the
Dirichlet process mixture [Antoniak 1974]. In this section, we brießy review these
ideas and the connections between them.

2.1. DIRICHLET AND BETA DISTRIBUTIONS. Recall that the Dirichlet distribu-
tion is a probability distribution on the simplex of nonnegative real numbers that
sum to one. We write

U ∼ Dir(α1, α2, . . . , αK ),
for a random vector U distributed as a Dirichlet random variable on the K -simplex,
where αi > 0 are parameters. The mean of U is proportional to the parameters

E[Ui ] = αi∑K
k=1 αk

and the magnitude of the parameters determines the concentration of U around the
mean. The speciÞc choice α1 = · · · = αK = 1 yields the uniform distribution
on the simplex. Letting αi > 1 yields a unimodal distribution peaked around the
mean, and letting αi < 1 yields a distribution that has modes at the corners of
the simplex. The beta distribution is a special case of the Dirichlet distribution for
K = 2, in which case the simplex is the unit interval (0, 1). In this case we write
U ∼ Beta(α1, α2), where U is a scalar.

2.2. CHINESE RESTAURANT PROCESS. The Chinese restaurant process (CRP)
is a single parameter distribution over partitions of the integers. The distribution can
be most easily described by specifying how to draw a sample from it. Consider a
restaurant with an inÞnite number of tables each with inÞnite capacity. A sequence
of N customers arrive, labeled with the integers {1, . . . , N }. The Þrst customer
sits at the Þrst table; the nth subsequent customer sits at a table drawn from the
following distribution:

p(occupied table i | previous customers) = ni
γ+n−1

p(next unoccupied table | previous customers) = γ

γ+n−1 ,
(1)

where ni is the number of customers currently sitting at table i , and γ is a real-
valued parameter which controls how often, relative to the number of customers in
the restaurant, a customer chooses a new table versus sitting with others. After N
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customers have been seated, the seating plan gives a partition of those customers
as illustrated in Figure 2.

With an eye towards Bayesian statistical applications, we assume that each table
is endowed with a parameter vector β drawn from a distribution G0. Each customer
is associated with the parameter vector at the table at which he sits. The result-
ing distribution on sequences of parameter vectors is referred to as a Pólya urn
model [Johnson and Kotz 1977].

The Pólya urn distribution can be used to deÞne a ßexible clustering model. Let
the parameters at the tables index a family of probability distributions (e.g., the
distribution might be a multivariate Gaussian in which case the parameter would
be a mean vector and covariance matrix). Associate customers to data points, and
draw each data point from the probability distribution associated with the table at
which the customer sits. This induces a probabilistic clustering of the generated
data because customers sitting around each table share the same parameter vector.

This model is in the spirit of a traditional mixture model [Titterington et al.
1985], but is critically different in that the number of tables is unbounded. Data
analysis amounts to inverting the generative process to determine a probability
distribution on the �seating assignment� of a data set. The underlying CRP lets
the data determine the number of clusters (i.e., the number of occupied tables) and
further allows new data to be assigned to new clusters (i.e., new tables).

2.3. STICK-BREAKING CONSTRUCTIONS. The Dirichlet distribution places a
distribution on nonnegative K -dimensional vectors whose components sum to one.
In this section, we discuss a stochastic process that allows K to be unbounded.

Consider a collection of nonnegative real numbers {θi }∞i=1 where
∑

i θi = 1. We
wish to place a probability distribution on such sequences. Given that each such
sequence can be viewed as a probability distribution on the positive integers, we
obtain a distribution on distributions, that is, a random probability distribution.

To do this, we use a stick-breaking construction. View the interval (0, 1) as a
unit-length stick. Draw a value V1 from a Beta(α1, α2) distribution and break off
a fraction V1 of the stick. Let θ1 = V1 denote this Þrst fragment of the stick and
let 1 − θ1 denote the remainder of the stick. Continue this procedure recursively,
letting θ2 = V2(1 − θ1), and in general deÞne

θi = Vi

i−1∏
j=1

(1 − Vj ),

where {Vi } are an inÞnite sequence of independent draws from the Beta(α1, α2)
distribution. Sethuraman [1994] shows that the resulting sequence {θi } satisÞes∑

i θi = 1 with probability one.
In the special case α1 = 1, we obtain a one-parameter stochastic process known

as the GEM distribution [Pitman 2002]. Let γ = α2 denote this parameter and
denote draws from this distribution as θ ∼ GEM(γ ). Large values of γ skew the
beta distribution towards zero and yield random sequences that are heavy-tailed,
that is, signiÞcant probability tends to be assigned to large integers. Small values
of γ yield random sequences that decay more quickly to zero.

2.4. CONNECTIONS. The GEM distribution and the CRP are closely related. Let
θ ∼ GEM(γ ) and let {Z1, Z2, . . . , Z N } be a sequence of integer-valued variables
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drawn independently from θ , i.e.,
p(Zn = i | θ ) = θi .

This distribution induces a random partition on the integers {1, 2, . . . , N }, where
the partition groups together those indices n whose values of Zn are equal. It can be
shown that this distribution on partitions is the same as the distribution on partitions
induced by the CRP [Pitman 2002]. As implied by this result, the GEM parameter
γ controls the partition in the same way as the CRP parameter γ .

As with the CRP, we can augment the GEM distribution to consider draws of
parameter vectors. Let {βi } be an inÞnite sequence of independent draws from a
distribution G0 deÞned on a sample space �. DeÞne

G =
∞∑

i=1
θiδβi ,

where δβi is an atom at location βi and where θ ∼ GEM(γ ). The object G is a
distribution on �; it is a random distribution.

Consider now a Þnite partition of �. Sethuraman [1994] showed that the prob-
ability assigned by G to the cells of this partition follows a Dirichlet distribution.
Moreover, if we consider all possible Þnite partitions of �, the resulting Dirichlet
distributions are consistent with each other. This suggests, by an appeal to the Kol-
mogorov consistency theorem [Billingsley 1995], that we can view G as a draw
from an underlying stochastic process, where the index set is the set of Borel sets
of �. Although this naive appeal to the Kolmogorov consistency theorem runs
aground on measure-theoretic difÞculties, the basic idea is correct and can be made
rigorous via a different approach [Ferguson 1973]. The resulting stochastic process
is known as the Dirichlet process.

Note that if we truncate the stick-breaking process after L −1 breaks, we obtain a
Dirichlet distribution on an L-dimensional vector. TheÞrst L−1 components of this
vector manifest the same kind of bias towards larger values for earlier components
as the full stick-breaking distribution. However, the last component θL represents
the portion of the stick that remains after L − 1 breaks and has less of a bias toward
small values than in the untruncated case.

Finally, we will Þnd it convenient to deÞne a two-parameter variant of the GEM
distribution that allows control over both the mean and variance of stick lengths.
We denote this distribution as GEM(m, π ), in which π > 0 and m ∈ (0, 1). In this
variant, the stick lengths are deÞned as Vi ∼ Beta(mπ, (1 − m)π ). The standard
GEM(γ ) is the special case when mπ = 1 and γ = (1 − m)π . Note that the mean

and variance of the standard GEM are tied through its single parameter.

3. The Nested Chinese Restaurant Process
The Chinese restaurant process and related distributions are widely used in Bayesian
nonparametric statistics because they make it possible to deÞne statistical models in
which observations are assumed to be drawn from an unknown number of classes.
However, this kind of model is limited in the structures that it allows to be expressed
in data. Analyzing the richly structured data that are common in computer science
requires extending this approach. In this section, we discuss how similar ideas can
be used to deÞne a probability distribution on inÞnitely deep, inÞnitely branching
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FIG. 3. A conÞguration of the nested Chinese restaurant process illustrated to three levels. Each box
represents a restaurant with an inÞnite number of tables, each of which refers to a unique table in the
next level of the tree. In this conÞguration,Þve tourists have visited restaurants along four unique paths.
Their paths trace a subtree in the inÞnite tree. (Note that the conÞguration of customers within each
restaurant can be determined by observing the restaurants chosen by customers at the next level of the
tree.) In the hLDA model of Section 4, each restaurant is associated with a topic distribution β. Each
document is assumed to choose its words from the topic distributions along a randomly chosen path.

trees. This distribution is subsequently used as a prior distribution in a hierarchical
topic model that identiÞes documents with paths down the tree.

A tree can be viewed as a nested sequence of partitions. We obtain a distribution
on trees by generalizing the CRP to such sequences. SpeciÞcally, we deÞne a
nested Chinese restaurant process (nCRP) by imagining the following scenario for
generating a sample. Suppose there are an inÞnite number of inÞnite-table Chinese
restaurants in a city. One restaurant is identiÞed as the root restaurant, and on each
of its inÞnite tables is a card with the name of another restaurant. On each of the
tables in those restaurants are cards that refer to other restaurants, and this structure
repeats inÞnitely many times.2 Each restaurant is referred to exactly once; thus,
the restaurants in the city are organized into an inÞnitely branched, inÞnitely-deep
tree. Note that each restaurant is associated with a level in this tree. The root
restaurant is at level 1, the restaurants referred to on its tables� cards are at level 2,
and so on.

A tourist arrives at the city for an culinary vacation. On the Þrst evening, he enters
the root Chinese restaurant and selects a table using the CRP distribution in Eq. (1).
On the second evening, he goes to the restaurant identiÞed on the Þrst night�s table
and chooses a second table using a CRP distribution based on the occupancy pattern
of the tables in the second night�s restaurant. He repeats this process forever. After
M tourists have been on vacation in the city, the collection of paths describes a
random subtree of the inÞnite tree; this subtree has a branching factor of at most
M at all nodes. See Figure 3 for an example of the Þrst three levels from such a
random tree.

There are many ways to place prior distributions on trees, and our speciÞc choice
is based on several considerations. First and foremost, a prior distribution combines
with a likelihood to yield a posterior distribution, and we must be able to compute

2A Þnite-depth precursor of this model was presented in Blei et al. [2003a].
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this posterior distribution. In our case, the likelihood will arise from the hierarchical
topic model to be described in Section 4. As we will show in Section 5, the speciÞc
prior that we propose in this section combines with the likelihood to yield a posterior
distribution that is amenable to probabilistic inference. Second, we have retained
important aspects of the CRP, in particular the �preferential attachment� dynamics
that are built into Eq. (1). Probability structures of this form have been used as
models in a variety of applications [Barabasi and Reka 1999; Krapivsky and Redner
2001; Albert and Barabasi 2002; Drinea et al. 2006], and the clustering that they
induce makes them a reasonable starting place for a hierarchical topic model.

In fact, these two points are intimately related. The CRP yields an exchangeable
distribution across partitions, that is, the distribution is invariant to the order of
the arrival of customers [Pitman 2002]. This exchangeability property makes CRP-
based models amenable to posterior inference using Monte Carlo methods [Escobar
and West 1995; MacEachern and Muller 1998; Neal 2000].

The nCRP is closely related to a stochastic process known as the nested Dirichlet
process (nDP), which has been proposed independently of our work by Rodrṍguez
et al. [2008]. Indeed, just as the CRP can be obtained be obtained by integrating
out the Dirichlet process [Blackwell and MacQueen 1973], a K -level nCRP can be
obtained by integrating out the Dirichlet processes in a K -level nDP.

4. Hierarchical Latent Dirichlet Allocation
The nested CRP provides a way to deÞne a prior on tree topologies that does not
limit the branching factor or depth of the trees. We can use this distribution as a
component of a probabilistic topic model.

The goal of topic modeling is to identify subsets of words that tend to co-occur
within documents. Some of the early work on topic modeling derived from latent
semantic analysis, an application of the singular value decomposition in which �top-
ics� are viewed post hoc as the basis of a low-dimensional subspace [Deerwester
et al. 1990]. Subsequent work treated topics as probability distributions over words
and used likelihood-based methods to estimate these distributions from a cor-
pus [Hofmann 1999b]. In both of these approaches, the interpretation of �topic�
differs in key ways from the clustering metaphor because the same word can be
given high probability (or weight) under multiple topics. This gives topic models
the capability to capture notions of polysemy (e.g., �bank� can occur with high
probability in both a Þnance topic and a waterways topic). Probabilistic topic mod-
els were given a fully Bayesian treatment in the latent Dirichlet allocation (LDA)
model [Blei et al. 2003b].

Topic models such as LDA treat topics as a �ßat� set of probability distributions,
with no direct relationship between one topic and another. While these models can
be used to recover a set of topics from a corpus, they fail to indicate the level of
abstraction of a topic, or how the various topics are related. The model that we
present in this section builds on the nCRP to deÞne a hierarchical topic model.
This model arranges the topics into a tree, with the desideratum that more general
topics should appear near the root and more specialized topics should appear near
the leaves [Hofmann 1999a]. Having deÞned such a model, we use probabilis-
tic inference to simultaneously identify the topics and the relationships between
them.
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Our approach to deÞning a hierarchical topic model is based on identifying
documents with the paths generated by the nCRP. We augment the nCRP in two
ways to obtain a generative model for documents. First, we associate a topic, that is,
a probability distribution across words, with each node in the tree. A path in the tree
thus picks out an inÞnite collection of topics. Second, given a choice of path, we
use the GEM distribution to deÞne a probability distribution on the topics along this
path. Given a draw from a GEM distribution, a document is generated by repeatedly
selecting topics according to the probabilities deÞned by that draw, and then drawing
each word from the probability distribution deÞned by its selected topic.

More formally, consider the inÞnite tree deÞned by the nCRP and let cd denote the
path through that tree for the dth customer (i.e., document). In the hierarchical LDA
(hLDA) model, the documents in a corpus are assumed drawn from the following
generative process:
(1) For each table k ∈ T in the inÞnite tree,

(a) Draw a topic βk ∼ Dirichlet(η).
(2) For each document, d ∈ {1, 2, . . . , D}

(a) Draw cd ∼ nCRP(γ ).
(b) Draw a distribution over levels in the tree, θd | {m, π} ∼ GEM(m, π ).
(c) For each word,

i. Choose level Zd,n | θd ∼ Discrete(θd).
ii. Choose word Wd,n | {zd,n, cd,β} ∼ Discrete(β cd [zd,n]), which is pa-

rameterized by the topic in position zd,n on the path cd .

Here we use �Z ∼ Discrete(θ )� to denote the discrete distribution that sets Z = i
with probability θi . This generative process deÞnes a probability distribution across
possible corpora.

The goal of Þnding a topic hierarchy at different levels of abstraction is distinct
from the problem of hierarchical clustering [Zamir and Etzioni 1998; Larsen and
Aone 1999; Vaithyanathan and Dom 2000; Duda et al. 2000; Hastie et al. 2001;
Heller and Ghahramani 2005]. Hierarchical clustering treats each data point as a
leaf in a tree, and merges similar data points up the tree until all are merged into
a root node. Thus, internal nodes represent summaries of the data below which,
in this setting, would yield distributions across words that share high probability
words with their children.

In the hierarchical topic model, the internal nodes are not summaries of their
children. Rather, the internal nodes reßect the shared terminology of the documents
assigned to the paths that contain them. This can be seen in Figure 1, where the
high probability words of a node are distinct from the high probability words of
its children.

It is important to emphasize that our approach is an unsupervised learning ap-
proach in which the probabilistic components that we have deÞned are latent vari-
ables. That is, we do not assume that topics are predeÞned, nor do we assume that
the nested partitioning of documents or the allocation of topics to levels are pre-
deÞned. We infer these entities from a Bayesian computation in which a posterior
distribution is obtained from conditioning on a corpus and computing probabilities
for all latent variables.

As we will see experimentally, there is statistical pressure in the posterior to place
more general topics near the root of the tree and to place more specialized topics
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further down in the tree. To see this, note that each path in the tree includes the root
node. Given that the GEM distribution tends to assign relatively large probabilities
to small integers, there will be a relatively large probability for documents to select
the root node when generating words. Therefore, to explain an observed corpus,
the topic at the root node will place high probability on words that are useful across
all the documents.

Moving down in the tree, recall that each document is assigned to a single path.
Thus, the Þrst level below the root induces a coarse partition on the documents, and
the topics at that level will place high probability on words that are useful within
the corresponding subsets. As we move still further down, the nested partitions
of documents become Þner. Consequently, the corresponding topics will be more
specialized to the particular documents in those paths.

We have presented the model as a two-phase process: an inÞnite set of topics are
generated and assigned to all of the nodes of an inÞnite tree, and then documents are
obtained by selecting nodes in the tree and drawing words from the corresponding
topics. It is also possible, however, to conceptualize a �lazy� procedure in which
a topic is generated only when a node is Þrst selected. In particular, consider an
empty tree (i.e., containing no topics) and consider generating the Þrst document.
We select a path and then repeatedly select nodes along that path in order to generate
words. A topic is generated at a node when that node is Þrst selected and subsequent
selections of the node reuse the same topic.

After n words have been generated, at most n nodes will have been visited and
at most n topics will have been generated. The (n + 1)th word in the document can
come from one of previously generated topics or it can come from a new topic.
Similarly, suppose that d documents have previously been generated. The (d +1)th
document can follow one of the paths laid down by an earlier document and select
only �old� topics, or it can branch off at any point in the tree and generate �new�
topics along the new branch.

This discussion highlights the nonparametric nature of our model. Rather than
describing a corpus by using a probabilistic model involving a Þxed set of param-
eters, our model assumes that the number of parameters can grow as the corpus
grows, both within documents and across documents. New documents can spark
new subtopics or new specializations of existing subtopics. Given a corpus, thisßex-
ibility allows us to use approximate posterior inference to discover the particular
tree of topics that best describes its documents.

It is important to note that even with thisßexibility, the model still makes assump-
tions about the tree. Its size, shape, and character will be affected by the settings
of the hyperparameters. The most inßuential hyperparameters in this regard are
the Dirichlet parameter for the topics η and the stick-breaking parameters for the
topic proportions {m, π}. The Dirichlet parameter controls the sparsity of the top-
ics; smaller values of η will lead to topics with most of their probability mass on
a small set of words. With a prior bias to sparser topics, the posterior will prefer
more topics to describe a collection and thus place higher probability on larger
trees. The stick-breaking parameters control how many words in the documents
are likely to come from topics of varying abstractions. If we set m to be large (for
example, m = 0.5) then the posterior will more likely assign more words from
each document to higher levels of abstraction. Setting π to be large (e.g., π = 100)
means that word allocations will not likely deviate from such a setting.
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How we set these hyperparameters depends on the goal of the analysis. When we
analyze a document collection with hLDA for discovering and visualizing a hierar-
chy embedded within it, we might examine various settings of the hyperparameters
to Þnd a tree that meets our exploratory needs. We analyze documents with this
purpose in mind in Section 6.2. In a different setting, when we are looking for a
good predictive model of the data, for example, to compare hLDA to other statis-
tical models of text, then it makes sense to �Þt� the hyperparameters by placing
priors on them and computing their posterior. We describe posterior inference for
the hyperparameters in Section 5.4 and analyze documents using this approach in
Section 6.3.

Finally, we note that hLDA is the simplest model that exploits the nested CRP,
that is, a ßexible hierarchy of distributions, in the topic modeling framework. In
a more complicated model, one could consider a variant of hLDA where each
document exhibits multiple paths through the tree. This can be modeled using a
two-level distribution for word generation: Þrst choose a path through the tree, and
then choose a level for the word.

Recent extensions to topic models can also be adapted to make use of a ßexible
topic hierarchy. As examples, in the dynamic topic model the documents are time
stamped and the underlying topics change over time [Blei and Lafferty 2006];
in the author-topic model the authorship of the documents affects which topics
they exhibit [Rosen-Zvi et al. 2004]. This said, some extensions are more easily
adaptable than others. In the correlated topic model, the topic proportions exhibit
a covariance structure [Blei and Lafferty 2007]. This is achieved by replacing
a Dirichlet distribution with a logistic normal, and the application of Bayesian
nonparametric extensions is less direct.

4.1. RELATED WORK. In previous work, researchers have developed a number
of methods that employ hierarchies in analyzing text data. In one line of work,
the algorithms are given a hierarchy of document categories, and their goal is to
correctly place documents within it [Koller and Sahami 1997; Chakrabarti et al.
1998; McCallum et al. 1999; Dumais and Chen 2000]. Other work has focused on
deriving hierarchies of individual terms using side information, such as a grammar
or a thesaurus, that are sometimes available for text domains [Sanderson and Croft
1999; Stoica and Hearst 2004; Cimiano et al. 2005].

Our method provides still another way to employ a notion of hierarchy in text
analysis. First, rather than learn a hierarchy of terms we learn a hierarchy of topics,
where a topic is a distribution over terms that describes a signiÞcant pattern of
word co-occurrence in the data. Moreover, while we focus on text, a �topic� is
simply a data-generating distribution; we do not rely on any text-speciÞc side
information such as a thesaurus or grammar. Thus, by using other data types and
distributions, our methodology is readily applied to biological data sets, purchasing
data, collections of images, or social network data. (Note that applications in such
domains have already been demonstrated forßat topic models [Pritchard et al. 2000;
Marlin 2003; Fei-Fei and Perona 2005; Blei and Jordan 2003; Airoldi et al. 2008].)
Finally, as a Bayesian nonparametric model, our approach can accommodate future
data that might lie in new and previously undiscovered parts of the tree. Previous
work commits to a single Þxed tree for all future data.
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5. Probabilistic Inference
With the hLDA model in hand, our goal is to perform posterior inference, that
is, to �invert� the generative process of documents described above for estimating
the hidden topical structure of a document collection. We have constructed a joint
distribution of hidden variables and observations�the latent topic structure and
observed documents�by combining prior expectations about the kinds of tree
topologies we will encounter with a generative process for producing documents
given a particular topology. We are now interested in the distribution of the hidden
structure conditioned on having seen the data, that is, the distribution of the underly-
ing topic structure that might have generated an observed collection of documents.
Finding this posterior distribution for different kinds of data and models is a central
problem in Bayesian statistics. See Bernardo and Smith [1994] and Gelman et al.
[1995] for general introductions to Bayesian statistics.

In our nonparametric setting, we must Þnd a posterior distribution on countably
inÞnite collections of objects�hierarchies, path assignments, and level allocations
of words�given a collection of documents. Moreover, we need to be able to do this
using theÞnite resources of the computer. Not surprisingly, the posterior distribution
for hLDA is not available in closed form. We must appeal to an approximation.

We develop a Markov chain Monte Carlo (MCMC) algorithm to approximate
the posterior for hLDA. In MCMC, one samples from a target distribution on a
set of variables by constructing a Markov chain that has the target distribution as
its stationary distribution [Robert and Casella 2004]. One then samples from the
chain for sufÞciently long that it approaches the target, collects the sampled states
thereafter, and uses those collected states to estimate the target. This approach is
particularly straightforward to apply to latent variable models, where we take the
state space of the Markov chain to be the set of values that the latent variables can
take on, and the target distribution is the conditional distribution of these latent
variables given the observed data.

The particular MCMC algorithm that we present in this paper is a Gibbs sampling
algorithm [Geman and Geman 1984; Gelfand and Smith 1990]. In a Gibbs sampler,
each latent variable is iteratively sampled conditioned on the observations and all
the other latent variables. We employ collapsed Gibbs sampling [Liu 1994], in
which we marginalize out some of the latent variables to speed up the convergence
of the chain. Collapsed Gibbs sampling for topic models [GrifÞths and Steyvers
2004] has been widely used in a number of topic modeling applications [McCallum
et al. 2004; Rosen-Zvi et al. 2004; Mimno and McCallum 2007; Dietz et al. 2007;
Newman et al. 2006].

In hLDA, we sample the per-document paths cd and the per-word level alloca-
tions to topics in those paths zd,n . We marginalize out the topic parameters βi and
the per-document topic proportions θd . The state of the Markov chain is illustrated,
for a single document, in Figure 4. (The particular assignments illustrated in the
Þgure are taken at the approximate mode of the hLDA model posterior conditioned
on abstracts from the JACM.)

Thus, we approximate the posterior p( c1:D, z1:D | γ, η, m, π, w1:D). The hy-
perparameter γ reßects the tendency of the customers in each restaurant to share
tables, η reßects the expected variance of the underlying topics (e.g, η � 1 will
tend to choose topics with fewer high-probability words), and m and π reßect
our expectation about the allocation of words to levels within a document. The
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FIG. 4. A single state of the Markov chain in the Gibbs sampler for the abstract of �A new approach
to the maximum-ßow problem� [Goldberg and Tarjan, 1986]. The document is associated with a path
through the hierarchy cd , and each node in the hierarchy is associated with a distribution over terms.
(The Þve most probable terms are illustrated.) Finally, each word in the abstract wd,n is associated
with a level in the path through the hierarchy zd,n , with 0 being the highest level and 2 being the lowest.
The Gibbs sampler iteratively draws cd and zd,n for all words in all documents (see Section 5).

hyperparameters can be Þxed according to the constraints of the analysis and prior
expectation about the data, or inferred as described in Section 5.4.

Intuitively, the CRP parameter γ and topic prior η provide control over the size of
the inferred tree. For example, a model with large γ and small η will tend to Þnd a
tree with more topics. The small η encourages fewer words to have high probability
in each topic; thus, the posterior requires more topics to explain the data. The large
γ increases the likelihood that documents will choose new paths when traversing
the nested CRP.

The GEM parameter m reßects the proportion of general words relative to speciÞc
words, and the GEM parameter π reßects how strictly we expect the documents to
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adhere to these proportions. A larger value of π enforces the notions of generality
and speciÞcity that lead to more interpretable trees.

The remainder of this section is organized as follows. First, we outline the two
main steps in the algorithm: the sampling of level allocations and the sampling of
path assignments. We then combine these steps into an overall algorithm. Next,
we present prior distributions for the hyperparameters of the model and describe
posterior inference for the hyperparameters. Finally, we outline how to assess the
convergence of the sampler and approximate the mode of the posterior distribution.

5.1. SAMPLING LEVEL ALLOCATIONS. Given the current path assignments, we
need to sample the level allocation variable zd,n for word n in document d from its
distribution given the current values of all other variables:
p(zd,n | z−(d,n), c, w, m, π, η) ∝ p(zd,n | zd,−n, m, π )p(wd,n | z, c, w−(d,n), η),

(2)
where z−(d,n) and w−(d,n) are the vectors of level allocations and observed words
leaving out zd,n and wd,n respectively. We will use similar notation whenever items
are left out from an index set; for example, zd,−n denotes the level allocations in
document d, leaving out zd,n .

The Þrst term in Eq. (2) is a distribution over levels. This distribution has an
inÞnite number of components, so we sample in stages. First, we sample from
the distribution over the space of levels that are currently represented in the rest
of the document, that is, max( zd,−n), and a level deeper than that level. The Þrst
components of this distribution are, for k ≤ max( zd,−n),

p(zd,n = k | zd,−n, m, π ) = E
[

Vk

k−1∏
j=1

(1 − Vj ) | zd,−n, m, π

]

= E[Vk | zd,−n, m, π ]
k−1∏
j=1

E[1 − Vj | zd,−n, m, π ]

= mπ + #[ zd,−n = k]
π + #[ zd,−n � k]

k−1∏
j=1

(1 − m)π + #[ zd,−n > j]
π + #[ zd,−n � j]

where #[·] counts the elements of an array satisfying a given condition.
The second term in Eq. (2) is the probability of a given word based on a possible

assignment. From the assumption that the topic parameters βi are generated from
a symmetric Dirichlet distribution with hyperparameter η we obtain
p(wd,n | z, c, w−(d,n), η) ∝ #[ z−(d,n) = zd,n, czd,n = cd,zd,n , w−(d,n) = wd,n] + η

(3)
which is the smoothed frequency of seeing word wd,n allocated to the topic at level
zd,n of the path cd .

The last component of the distribution over topic assignments is
p(zd,n > max( zd,−n) | zd,−n, w, m, π, η)

= 1 −
max( zd,−n)∑

j=1
p(zd,n = j | zd,−n, w, m, π, η).

Journal of the ACM, Vol. 57, No. 2, Article 7, Publication date: January 2010.



Chinese Restaurant Process and Bayesian Nonparametric Inference 7:17

If the last component is sampled then we sample from a Bernoulli distribution for
increasing values of 
, starting with 
 = max( zd,−n) + 1, until we determine zd,n ,
p(zd,n = 
 | zd,−n, zd,n > 
 − 1, w, m, π, η) = (1 − m)p(wd,n | z, c, w−(d,n), η)

p(zd,n > 
 | zd,−n, zd,n > 
 − 1)
= 1 − p(zd,n = 
 | zd,−n, zd,n > 
 − 1, w, m, π, η).

Note that this changes the maximum level when resampling subsequent level as-
signments.

5.2. SAMPLING PATHS. Given the level allocation variables, we need to sample
the path associated with each document conditioned on all other paths and the
observed words. We appeal to the fact that max( zd) is Þnite, and are only concerned
with paths of that length:

p( cd | w, c−d, z, η, γ ) ∝ p( cd | c−d, γ )p( wd | c, w−d, z, η). (4)
This expression is an instance of Bayes�s theorem with p( wd | c, w−d, z, η) as
the probability of the data given a particular choice of path, and p( cd | c−d, γ ) as
the prior on paths implied by the nested CRP. The probability of the data is obtained
by integrating over the multinomial parameters, which gives a ratio of normalizing
constants for the Dirichlet distribution,

p( wd | c, w−d , z, η) =
max( zd )∏


=1

�
(∑

w #[ z−d = 
, c−d,
 = cd,
, w−d = w] + V η
)

∏
w �

(
#[ z−d = 
, c−d,
 = cd,
, w−d = w] + η

)
∏

w �
(
#[ z = 
, c
 = cd,
, w = w] + η

)
�

(∑
w #[ z = 
, c
 = cd,
, w = w] + V η

) ,

where we use the same notation for counting over arrays of variables as above. Note
that the path must be drawn as a block, because its value at each level depends on
its value at the previous level. The set of possible paths corresponds to the union of
the set of existing paths through the tree, each represented by a leaf, with the set of
possible novel paths, each represented by an internal node.

5.3. SUMMARY OF GIBBS SAMPLING ALGORITHM. With these conditional dis-
tributions in hand, we specify the full Gibbs sampling algorithm. Given the current
state of the sampler, { c(t)

1:D, z(t)
1:D}, we iteratively sample each variable conditioned

on the rest.
(1) For each document d ∈ {1, . . . , D}

(a) Randomly draw c(t+1)
d from Eq. (4).

(b) Randomly draw z(t+1)
n,d from Eq. (2) for each word, n ∈ {1, . . . Nd}.

The stationary distribution of the corresponding Markov chain is the conditional
distribution of the latent variables in the hLDA model given the corpus. After run-
ning the chain for sufÞciently many iterations that it can approach its stationary
distribution (the �burn-in�) we can collect samples at intervals selected to mini-
mize autocorrelation, and approximate the true posterior with the corresponding
empirical distribution.

Although this algorithm is guaranteed to converge in the limit, it is difÞcult
to say something more deÞnitive about the speed of the algorithm independent
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of the data being analyzed. In hLDA, we sample a path from the tree for each
document cd and a level assignment for each word zd,n . As described above, the
number of items from which each is sampled depends on the current state of the
hierarchy and other level assignments in the document. Two data sets of equal size
may induce different trees and yield different running times for each iteration of the
sampler. For the corpora analyzed below in Section 6.2, the Gibbs sampler averaged
0.001 seconds per document for the JACM data and Psychological Review data,
and 0.006 seconds per document for the Proceedings of the National Academy of
Sciences data.3

5.4. SAMPLING THE HYPERPARAMETERS. The values of hyperparameters are
generally unknown a priori. We include them in the inference process by endowing
them with prior distributions,

m ∼ Beta(α1, α2)
π ∼ Exponential(α3)
γ ∼ Gamma(α4, α5)
η ∼ Exponential(α6).

These priors also contain parameters (�hyper-hyperparameters�), but the resulting
inferences are less inßuenced by these hyper-hyperparameters than they are by
Þxing the original hyperparameters to speciÞc values [Bernardo and Smith 1994].

To incorporate this extension into the Gibbs sampler, we interleave Metropolis-
Hastings (MH) steps between iterations of the Gibbs sampler to obtain new values
of m, π , γ , and η. This preserves the integrity of the Markov chain, although it may
mix slower than the collapsed Gibbs sampler without the MH updates [Robert and
Casella 2004].

5.5. ASSESSING CONVERGENCE AND APPROXIMATING THE MODE. Practical ap-
plications must address the issue of approximating the mode of the distribution on
trees and assessing convergence of the Markov chain. We can obtain information
about both by examining the log probability of each sampled state. For a particular
sample, that is, a conÞguration of the latent variables, we compute the log proba-
bility of that conÞguration and observations, conditioned on the hyperparameters:

L(t) = log p
(

c(t)
1:D, z(t)

1:D, w1:D | γ, η, m, π
)

. (5)

With this statistic, we can approximate the mode of the posterior by choosing
the state with the highest log probability. Moreover, we can assess convergence
of the chain by examining the autocorrelation of L(t). Figure 5 (right) illustrates
the autocorrelation as a function of the number of iterations between samples (the
�lag�) when modeling the JACM corpus described in Section 6.2. The chain was
run for 10,000 iterations; 2000 iterations were discarded as burn-in.

Figure 5 (left) illustrates Eq. (5) for the burn-in iterations. Gibbs samplers stochas-
tically climb the posterior distribution surface to Þnd an area of high posterior prob-
ability, and then explore its curvature through sampling. In practice, one usually
restarts this procedure a handful of times and chooses the local mode which has
highest posterior probability [Robert and Casella 2004].

3Timings were measured with the Gibbs sampler running on a 2.2-GHz Opteron 275 processor.
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FIG. 5. (Left) The complete log likelihood of Eq. (5) for the Þrst 2000 iterations of the Gibbs sampler
run on the JACM corpus of Section 6.2. (Right) The autocorrelation function (ACF) of the complete log
likelihood (with conÞdence interval) for the remaining 8000 iterations. The autocorrelation decreases
rapidly as a function of the lag between samples.

Despite the lack of theoretical guarantees, Gibbs sampling is appropriate for
the kind of data analysis for which hLDA and many other latent variable models
are tailored. Rather than try to understand the full surface of the posterior, the
goal of latent variable modeling is to Þnd a useful representation of complicated
high-dimensional data, and a local mode of the posterior found by Gibbs sampling
often provides such a representation. In the next section, we will assess hLDA
qualitatively, through visualization of summaries of the data, and quantitatively, by
using the latent variable representation to provide a predictive model of text.

6. Examples and Empirical Results
We present experiments analyzing both simulated and real text data to demonstrate
the application of hLDA and its corresponding Gibbs sampler.

6.1. ANALYSIS OF SIMULATED DATA. In Figure 6, we depict the hierarchies
and allocations for ten simulated data sets drawn from an hLDA model. For each
data set, we draw 100 documents of 250 words each. The vocabulary size is 100,
and the hyperparameters are Þxed at η = .005, and γ = 1. In these simulations, we
truncated the stick-breaking procedure at three levels, and simply took a Dirichlet
distribution over the proportion of words allocated to those levels. The resulting
hierarchies shown in Figure 6 illustrate the range of structures on which the prior
assigns probability.

In the same Þgure, we illustrate the estimated mode of the posterior distribution
across the hierarchy and allocations for the ten data sets. We exactly recover the
correct hierarchies, with only two errors. In one case, the error is a single wrongly
allocated path. In the other case, the inferred mode has higher posterior probability
than the true tree structure (due to Þnite data).

In general, we cannot expect to always Þnd the exact tree. This is dependent on
the size of the data set, and how identiÞable the topics are. Our choice of small
η yields topics that are relatively sparse and (probably) very different from each
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FIG. 6. Inferring the mode of the posterior hierarchy from simulated data. See Section 6.1.

other. Trees will not be as easy to identify in data sets which exhibit polysemy and
similarity between topics.

6.2. HIERARCHY DISCOVERY IN SCIENTIFIC ABSTRACTS. Given a document
collection, one is typically interested in examining the underlying tree of topics at
the mode of the posterior. As described above, our inferential procedure yields a
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tree structure by assembling the unique subset of paths contained in { c1, . . . , cD}
at the approximate mode of the posterior.

For a given tree, we can examine the topics that populate the tree. Given the
assignment of words to levels and the assignment of documents to paths, the
probability of a particular word at a particular node is roughly proportional to
the number of times that word was generated by the topic at that node. More specif-
ically, the mean probability of a word w in a topic at level 
 of path p is given
by

p(w | z, c, w, η) = #[ z = 
, c = p, w = w] + η

#[ z = 
, c = p] + V η
. (6)

Using these quantities, the hLDA model can be used for analyzing collections of
scientiÞc abstracts, recovering the underlying hierarchical structure appropriate to a
collection, and visualizing that hierarchy of topics for a better understanding of the
structure of the corpora. We demonstrate the analysis of three different collections
of journal abstracts under hLDA.

In these analyses, as above, we truncate the stick-breaking procedure at three
levels, facilitating visualization of the results. The topic Dirichlet hyperparameters
were Þxed at η = {2.0, 1.0, 0.5}, which encourages many terms in the high-level
distributions, fewer terms in the mid-level distributions, and still fewer terms in the
low-level distributions. The nested CRP parameter γ was Þxed at 1.0. The GEM
parameters were Þxed at π = 100 and m = 0.5. This strongly biases the level
proportions to place more mass at the higher levels of the hierarchy.

In Figure 1, we illustrate the approximate posterior mode of a hierarchy estimated
from a collection of 536 abstracts from the JACM. The tree structure illustrates
the ensemble of paths assigned to the documents. In each node, we illustrate the
top Þve words sorted by expected posterior probability, computed from Eq. (6).
Several leaves are annotated with document titles. For each leaf, we chose the Þve
documents assigned to its path that have the highest numbers of words allocated to
the bottom level.

The model has found the function words in the data set, assigning words like
�the,� �of,� �or,� and �and� to the root topic. In its second level, the posterior hier-
archy appears to have captured some of the major subÞelds in computer science,
distinguishing between databases, algorithms, programming languages and net-
working. In the third level, it further reÞnes those Þelds. For example, it delineates
between the veriÞcation area of networking and the queuing area.

In Figure 7, we illustrate an analysis of a collection of 1,272 psychology abstracts
from Psychological Review from 1967 to 2003. Again, we have discovered an
underlying hierarchical structure of the Þeld. The top node contains the function
words; the second level delineates between large subÞelds such as behavioral, social
and cognitive psychology; the third level further reÞnes those subÞelds.

Finally, in Figure 8, we illustrate a portion of the analysis of a collection of
12,913 abstracts from the Proceedings of the National Academy of Sciences from
1991 to 2001. An underlying hierarchical structure of the content of the journal has
been discovered, dividing articles into groups such as neuroscience, immunology,
population genetics and enzymology.

In all three of these examples, the same posterior inference algorithm with the
same hyperparameters yields very different tree structures for different corpora.
Models of Þxed tree structure force us to commit to one in advance of seeing the
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FIG. 7. A portion of the hierarchy learned from the 1,272 abstracts of Psychological Review from
1967�2003. The vocabulary was restricted to the 1,971 terms that occurred in more than Þve docu-
ments, yielding a corpus of 136K words. The learned hierarchy, of which only a portion is illustrated,
contains 52 topics.

data. The nested Chinese restaurant process at the heart of hLDA provides a ßexible
solution to this difÞcult problem.

6.3. COMPARISON TO LDA. In this section, we present experiments compar-
ing hLDA to its nonhierarchical precursor, LDA. We use the inÞnite-depth hLDA
model; the per-document distribution over levels is not truncated. We use predictive
held-out likelihood to compare the two approaches quantitatively, and we present
examples of LDA topics in order to provide a qualitative comparison of the methods.
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FIG. 8. A portion of the hierarchy learned from the 12,913 abstracts of the Proceedings of the
National Academy of Sciences from 1991�2001. The vocabulary was restricted to the 7,200 terms that
occurred in more than Þve documents, yielding a corpus of 2.3M words. The learned hierarchy, of
which only a portion is illustrated, contains 56 topics. Note that the γ parameter is Þxed at a smaller
value, to provide a reasonably sized topic hierarchy with the signiÞcantly larger corpus.

LDA has been shown to yield good predictive performance relative to competing
unigram language models, and it has also been argued that the topic-based analy-
sis provided by LDA represents a qualitative improvement on competing language
models [Blei et al. 2003b; GrifÞths and Steyvrs 2006]. Thus LDA provides a natural
point of comparison.

There are several issues that must be borne in mind in comparing hLDA to LDA.
First, in LDA the number of topics is a Þxed parameter, and a model selection
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procedure is required to choose the number of topics. (A Bayesian nonparametric
solution to this can be obtained with the hierarchical Dirichlet process [Teh et al.
2007b].) Second, given a set of topics, LDA places no constraints on the usage of
the topics by documents in the corpus; a document can place an arbitrary probability
distribution on the topics. In hLDA, on the other hand, a document can only access
the topics that lie along a single path in the tree. In this sense, LDA is signiÞcantly
more ßexible than hLDA.

This ßexibility of LDA implies that for large corpora we can expect LDA to
dominate hLDA in terms of predictive performance (assuming that the model se-
lection problem is resolved satisfactorily and assuming that hyperparameters are
set in a manner that controls overÞtting). Thus, rather than trying to simply op-
timize for predictive performance within the hLDA family and within the LDA
family, we have instead opted to Þrst run hLDA to obtain a posterior distribution
over the number of topics, and then to conduct multiple runs of LDA for a range
of topic cardinalities bracketing the hLDA result. This provides an hLDA-centric
assessment of the consequences (for predictive performance) of using a hierarchy
versus a ßat model.

We used predictive held-out likelihood as a measure of performance. The proce-
dure is to divide the corpus into D1 observed documents and D2 held-out documents,
and approximate the conditional probability of the held-out set given the training
set

p
(

w held-out
1 , . . . , w held-out

D2
| w obs

1 , . . . , w obs
D1

,M
)
, (7)

where M represents a model, either LDA or hLDA. We employed collapsed Gibbs
sampling for both models and integrated out all the hyperparameters with priors.
We used the same prior for those hyperparameters that exist in both models.

To approximate this predictive quantity, we run two samplers. First, we collect
100 samples from the posterior distribution of latent variables given the observed
documents, taking samples 100 iterations apart and using a burn-in of 2000 samples.
For each of these outer samples, we collect 800 samples of the latent variables
given the held-out documents and approximate their conditional probability given
the outer sample with the harmonic mean [Kass and Raftery 1995]. Finally, these
conditional probabilities are averaged to obtain an approximation to Eq. (7).

Figure 9 illustrates the Þve-fold cross-validated held-out likelihood for hLDA
and LDA on the JACM corpus. The Þgure also provides a visual indication of the
mean and variance of the posterior distribution over topic cardinality for hLDA; the
mode is approximately a hierarchy with 140 topics. For LDA, we plot the predictive
likelihood in a range of topics around this value.

We see that at each Þxed topic cardinality in this range of topics, hLDA pro-
vides signiÞcantly better predictive performance than LDA. As discussed above,
we eventually expect LDA to dominate hLDA for large numbers of topics. In a
large range near the hLDA mode, however, the constraint that documents pick top-
ics along single paths in a hierarchy yields superior performance. This suggests that
the hierarchy is useful not only for interpretation, but also for capturing predictive
statistical structure.

To give a qualitative sense of the relative degree of interpretability of the topics
that are found using the two approaches, Figure 10 illustrates ten LDA topics chosen
randomly from a 50-topic model. As these examples make clear, the LDA topics
are generally less interpretable than the hLDA topics. In particular, function words

Journal of the ACM, Vol. 57, No. 2, Article 7, Publication date: January 2010.



Chinese Restaurant Process and Bayesian Nonparametric Inference 7:25

FIG. 9. The held-out predictive log likelihood for hLDA compared to the same quantity for LDA as
a function of the number of topics. The shaded blue region is centered at the mean number of topics
in the hierarchies found by hLDA (and has width equal to twice the standard error).

FIG. 10. The Þve most probable words for each of ten randomly chosen topics from an LDA model
Þt to Þfty topics.

are given high probability throughout. In practice, to sidestep this issue, corpora
are often stripped of function words before Þtting an LDA model. While this is a
reasonable ad-hoc solution for (English) text, it is not a general solution that can be
used for non-text corpora, such as visual scenes. Even more importantly, there is no
notion of abstraction in the LDA topics. The notion of multiple levels of abstraction
requires a model such as hLDA.

In summary, if interpretability is the goal, then there are strong reasons to prefer
hLDA to LDA. If predictive performance is the goal, then hLDA may well remain
the preferred method if there is a constraint that a relatively small number of topics
should be used. When there is no such constraint, LDA may be preferred. These
comments also suggest, however, that an interesting direction for further research is
to explore the feasibility of a model that combines the deÞning features of the LDA
and hLDA models. As we described in Section 4, it may be desirable to consider an
hLDA-like hierarchical model that allows each document to exhibit multiple paths
along the tree. This might be appropriate for collections of long documents, such
as full-text articles, which tend to be more heterogeneous than short abstracts.
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7. Discussion
In this paper, we have shown how the nested Chinese restaurant process can be
used to deÞne prior distributions on recursive data structures. We have also shown
how this prior can be combined with a topic model to yield a Bayesian nonpara-
metric methodology for analyzing document collections in terms of hierarchies
of topics. Given a collection of documents, we use MCMC sampling to learn an
underlying thematic structure that provides a useful abstract representation for data
visualization and summarization.

We emphasize that no knowledge of the topics of the collection or the structure
of the tree are needed to infer a hierarchy from data. We have demonstrated our
methods on collections of abstracts from three different scientiÞc journals, showing
that while the content of these different domains can vary signiÞcantly, the statistical
principles behind our model make it possible to recover meaningful sets of topics
at multiple levels of abstraction, and organized in a tree.

The Bayesian nonparametric framework underlying our work makes it possible
to deÞne probability distributions and inference procedures over countably inÞnite
collections of objects. There has been other recent work in artiÞcial intelligence
in which probability distributions are deÞned on inÞnite objects via concepts from
Þrst-order logic [Milch et al. 2005; Pasula and Russell 2001; Poole 2007]. While
providing an expressive language, this approach does not necessarily yield struc-
tures that are amenable to efÞcient posterior inference. Our approach reposes instead
on combinatorial structure�the exchangeability of the Dirichlet process as a dis-
tribution on partitions�and this leads directly to a posterior inference algorithm
that can be applied effectively to large-scale learning problems.

The hLDA model draws on two complementary insights�one from statistics, the
other from computer science. From statistics, we take the idea that it is possible to
work with general stochastic processes as prior distributions, thus accommodating
latent structures that vary in complexity. This is the key idea behind Bayesian
nonparametric methods. In recent years, these models have been extended to include
spatial models [Duan et al. 2007] and grouped data [Teh et al. 2007b], and Bayesian
nonparametric methods now enjoy new applications in computer vision [Sudderth
et al. 2005], bioinformatics [Xing et al. 2007], and natural language processing [Li
et al. 2007; Teh et al. 2007b; Goldwater et al. 2006a, 2006b; Johnson et al. 2007;
Liang et al. 2007].

From computer science, we take the idea that the representations we infer from
data should be richly structured, yet admit efÞcient computation. This is a growing
theme in Bayesian nonparametric research. For example, one line of recent research
has explored stochastic processes involving multiple binary features rather than
clusters [GrifÞths and Ghahramani 2006; Thibaux and Jordan 2007; Teh et al.
2007a]. A parallel line of investigation has explored alternative posterior inference
techniques for Bayesian nonparametric models, providing more efÞcient algorithms
for extracting this latent structure. SpeciÞcally, variational methods, which replace
sampling with optimization, have been developed for Dirichlet process mixtures to
further increase their applicability to large-scale data analysis problems [Blei and
Jordan 2005; Kurihara et al. 2007].

The hierarchical topic model that we explored in this article is just one example
of how this synthesis of statistics and computer science can produce powerful new
tools for the analysis of complex data. However, this example showcases the two
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major strengths of the Bayesian nonparametric approach. First, the use of the nested
CRP means that the model does not start with a Þxed set of topics or hypotheses
about their relationship, but grows to Þt the data at hand. Thus, we learn a topology
but do not commit to it; the tree can grow as new documents about new topics
and subtopics are observed. Second, despite the fact that this results in a very
rich hypothesis space, containing trees of arbitrary depth and branching factor,
it is still possible to perform approximate probabilistic inference using a simple
algorithm. This combination of ßexible, structured representations and efÞcient
inference makes nonparametric Bayesian methods uniquely promising as a formal
framework for learning with ßexible data structures.
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