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Abstract

We advocate an optimization-centric view of Bayesian inference. Our inspiration is the
representation of Bayes’ rule as infinite-dimensional optimization (Csiszár, 1975; Donsker and
Varadhan, 1975; Zellner, 1988). Equipped with this perspective, we study Bayesian inference
when one does not have access to (1) well-specified priors, (2) well-specified likelihoods, (3)
infinite computing power. While these three assumptions underlie the standard Bayesian
paradigm, they are typically inappropriate for modern Machine Learning applications.
We propose addressing this through an optimization-centric generalization of Bayesian
posteriors that we call the Rule of Three (RoT). The RoT can be justified axiomatically
and recovers Bayesian, PAC-Bayesian and VI posteriors as special cases. While the RoT

is primarily a conceptual and theoretical device, it also encompasses a novel sub-class of
tractable posteriors which we call Generalized Variational Inference (GVI) posteriors. Just
as the RoT, GVI posteriors are specified by three arguments: a loss, a divergence and a
variational family. They also possess a number of desirable properties, including modularity,
Frequentist consistency and an interpretation as approximate ELBO. We explore applications
of GVI posteriors, and show that they can be used to improve robustness and posterior
marginals on Bayesian Neural Networks and Deep Gaussian Processes.
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1. Introduction

Though first discovered by the Reverend Thomas Bayes (1763), the version of Bayes’ Theorem
that a modern audience would be familiar with is much closer to the one in De Laplace
(1774). Bayes’ rule is one of the most fundamental results in probability theory and states
that for a probability measure P and two events A, B, it holds that

P (A|B) =
P (B|A)P (A)

P (B)
.

As usual, P (A|B) denotes the conditional probability of event A given that event B occured.
It would take nearly two more centuries for this mathematical result to be used as the
basis for an entire school of statistical inference (Fienberg, 2006). More precisely, Fisher
(1950) provides the first mention of the term Bayesian in accordance with our modern
understanding (David, 1998).

Bayesian statistics uses Bayes’ Theorem to conduct inference on an unknown and
unobservable event A. Specifically, suppose that one can compute for an observable event B
the probability P(B|A) and has a prior belief P(A) about the event A before observing B.
Now, Bayes’ rule tells us that we should be able to draw probabilistic inferences on A|B by
computing the probability P(A|B). In practice, the events A quantify the uncertainty about
a parameter of interest θ ∈ Θ and so are of the form A ⊂ Θ. The prior beliefs about events
A are usually specified by some probability density π : Θ→ R+ inducing the probability
measure P(A) =

∫
A dπ(θ). This leaves us with the need to specify a probability distribution

P (B|A) that relates the (unobserved) parameter θ to the (observable) event B. In practice,
B will correspond to n observations x1:n. The next step is to define a distribution of B|A.
This amounts to positing a likelihood function pn(x1:n|θ) and setting P(B|A) = pn(x1:n|θ).
Put together, this yields the standard Bayesian posterior that we denote as q∗B(θ) throughout
the paper and which is given by

q∗B(θ) =
pn(x1:n|θ)π(θ)

Z
.

Here, Z =
∫
Θ pn(x1:n|θ)dπ(θ) is the normalizing constant—also known as the partition

function—whose computation often makes the Bayesian posterior intractable.

Bayesian inference is appealing both conceptually and practically: Unlike Frequentist
inference, Bayesian methods allow inferences to be informed by domain expertise in the
form of a carefully specified prior belief π(θ). Furthermore, Bayesian inference produces
belief distributions (rather than point estimates) over the parameter of interest θ ∈ Θ. As
a consequence, Bayesian inferences automatically quantify uncertainty about θ. This is
practically useful in many situations, but especially if one uses θ predictively: Integrating
over q∗B(θ) avoids being over-confident about the best value of θ, substantially improving
predictive performance (see e.g. Aitchison, 1975). Amongst other benefits, it is this enhanced
predictive performance that has cast Bayesian inference as one of the predominant paradigms
in contemporary large-scale statistical inference and machine learning.

While Bayesian methods automatically quantify the uncertainty about their inferences,
this comes at a cost: In the translation of Bayes’ rule into the Bayesian posterior q∗B(θ), we
have made three implicit but crucial assumptions. First, we assumed that the modeller has
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a prior belief which is worth being taken into account and which the modeller is capable
of writing out mathematically in the form of π(θ). Second, we specified the likelihood
function pn(x1:n|θ) as a conditional probability. In other words, we assumed that the model
is correctly specified, which is to say that pn(x1:n|θ∗) = dP(x1:n) for some unknown value of
θ∗ ∈ Θ. Third, we assumed the availability of enough computational power to make use of
the often intractable posterior q∗B(θ). In many situations, these three assumptions built into
q∗B(θ) are harmless. For modern large-scale statistical machine learning tasks however, they
are frequently violated.

To address this, the current paper takes a step back from the traditional interpretation
of the Bayesian posterior q∗B(θ) as an updating rule—Instead, we adopt an optimization-
centric view point. Throughout, we motivate this with the tension between the three main
assumptions underlying standard Bayesian inference on the one hand and the requirement
of many contemporary statistical applications on the other hand. Aimed at resolving this
tension, we define an optimization-centric generalization of Bayesian inference that we call
the Rule of Three (RoT). The RoT is specified by an optimization problem over the space
of probability measures P(Θ) on Θ with three arguments. These arguments are a loss
function `, a divergence D measuring the deviation of the posterior from the prior and a
space Π ⊆ P(Θ) of feasible solutions. Together, these three ingredients define posterior
beliefs of the form

q∗(θ) = arg min
q∈Π

{
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+D(q‖π)

}
def
= P (`,D,Π). (1)

While this objective clearly also depends on two additional arguments—data x1:n and a
prior π—we consider these fixed throughout and thus notationally suppress this dependence.
Posteriors defined via this objective recover previous generalizations of Bayesian inference,
including those inspired by Gibbs posteriors (e.g. Ghosh and Basu, 2016; Bissiri et al., 2016;
Jewson et al., 2018; Nakagawa and Hashimoto, 2019; Chérief-Abdellatif and Alquier, 2019a),
tempered posteriors (e.g. Grünwald, 2011, 2012; Holmes and Walker, 2017; Grünwald and
Van Ommen, 2017; Miller and Dunson, 2019), as well as PAC-Bayesian approaches (for
a recent overview, see Guedj, 2019). we illustrate this taxonomy in Figure 1. Unlike any
of these previous generalizations however, posteriors taking the form P (`,D,Π) may be
non-multiplicative.

Figure 1: A taxonomy of some important belief distributions as special cases of the RoT.
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For example, the RoT recovers Variational Inference (VI) posteriors based on minimizing
the Kullback-Leibler Divergence (KLD) to q∗B(θ). Beyond that, it also gives rise to a new
class of distributions we will call Generalized Variational Inference (GVI) posteriors. GVI

posteriors are the methodological consequence of our generalization and are defined as the
tractable special case for the RoT in which Π = Q = {q(θ|κ) : κ ∈K} ⊂ P(Θ) is chosen to
be a variational family. A number of theoretical and empirical findings lead us to conclude
that GVI posteriors are often well-suited to real world inference problems.

The key ideas presented in the current paper are developed in five steps.

Section 2: We recapitulate the standard approach to Bayesian inference and various
variational approximation schemes for q∗B(θ). Unconventionally, we do so through the
lens of infinite-dimensional optimization. This view provides a number of interesting
insights: For example, it enables a natural breakdown of variational approximation
methods. Further, it reveals that relative to the objective characterizing q∗B(θ), standard
VI is the optimal solution in its variational family.

Section 3: We explain why a generalized view on Bayesian inference is useful. To
this end, we first recapitulate the three assumptions that justify Bayesian inference:
the availability of appropriately specified priors and likelihoods as well as sufficient
computational power to address the intractability of q∗B(θ). We contrast these assump-
tions with the realities of modern day large-scale inference and explain some problems
arising from the severe misalignment between assumptions and reality.

Section 4: We axiomatically derive a generalized representation of Bayesian infer-
ence that we call the Rule of Three (RoT). Unlike previous generalizations, the RoT

constitutes an optimization-centric outlook on Bayesian inference. We discuss the
RoT and explain how it addresses the adverse effects of violating the assumptions
underlying standard Bayesian inference. Lastly, we draw connections between the RoT

and existing Bayesian methods.

Section 5: The conceptual contribution of the RoT can be translated into a method-
ological one via a family of methods we call Generalized Variational Inference (GVI). We
explain how to use GVI for robust inference and more appropriate marginal variances.
We also point to some theoretical findings, including frequentist consistency and an
interpretation of GVI as approximate evidence lower bound. Computation of GVI

posteriors concludes the section.

Section 6: We demonstrate GVI on two large-scale inference applications: Bayesian
Neural Networks (BNNs) and Deep Gaussian Processes (DGPs). In different ways, both
model classes are representative for the different ways in which contemporary large-
scale inference is often at odds with the assumptions underlying the standard Bayesian
posterior. We show that appropriately addressing this misalignment dramatically
improves performance.

Throughout, we radically simplify the presentation for improved readability: For example,
we do not incorporate latent variables into our notation. Further, we assume that losses are
additive, homogeneous and such that the i-th loss term `(θ, xi) only depends on xi. Neither
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of these assumptions is necessary, and we will explicitly relax them for those parts of the
paper where such a relaxation is needed.

2. An optimization-centric view on Bayesian inference

First, we set the stage by introducing an optimization-centric view on (generalized) Bayesian
inference. Drawing attention to an isomorphism between the Bayesian posterior and an
infinite-dimensional optimization problem, we discuss three implications of this relationship:

Section 2.2: Committing to any exact Bayesian posterior is equivalent to committing
to a particular optimization problem over the space of probability measures

Section 2.3: With an optimization-centric view on Bayesian inference and a fixed
variational family Q, standard Variational Inference (VI) produces optimal approxima-
tions of the exact Bayesian posterior in Q by the logic of constrained optimization.
Similarly, non-standard VI methods based on alternative objectives are suboptimal.

Section 2.4: While standard VI posteriors are nominally optimal relative to q∗B(θ),
non-standard approximations often perform much better in practice because they
define posteriors through more appropriate objectives.

2.1 Preliminaries

Given a prior belief π(θ) and observations x1:n linked to θ via a likelihood function p(xi|θ),
the standard Bayesian posterior belief q∗B(θ) is computed through a multiplicative
updating rule with `(θ, xi) = − log p(xi|θ) as

q∗B(θ) ∝ π(θ)
n∏
i=1

exp{−`(θ, xi)}. (2)

While this way of writing Bayes rule might seem cumbersome, it reveals that the multiplicative
structure is in principle applicable to any loss function. In fact, replacing the negative log
likelihood with any loss ` : Θ×X → R yields the generalized Bayesian posterior. If the
normalizer of eq. (2) exists, these posteriors provide a coherent way for updating beliefs
about an arbitrary parameter θ (Bissiri et al., 2016).

For instance, θ could be the median for the data generating mechanism that produced x1:n.
A loss-based Bayesian treatment of this problem would combine a prior belief π about the
median with `(θ, xi) = |θ−xi|1. Together, these two ingredients yield a generalized Bayesian
posterior belief about the median as above. For some generalized Bayesian posteriors with
more interesting loss functions, see Ghosh and Basu (2016); Alquier et al. (2016); Grünwald
and Van Ommen (2017); Jewson et al. (2018); Knoblauch et al. (2018); Chérief-Abdellatif
and Alquier (2019a); Nakagawa and Hashimoto (2019); Knoblauch and Vomfell (2020).

Throughout this paper, we do not notationally distinguish standard and generalized
Bayesian posteriors. Unless we make the distinction explicit, we call both types of belief
distributions Bayesian posterior and denote any posterior belief computed as in eq. (2)
by q∗B(θ). The asterisk superscript in q∗B(θ) emphasizes our next observation: Any posterior
belief distribution is the result of an appropriately specified optimization problem.

5



Knoblauch, Jewson and Damoulas

2.2 Bayesian inference as infinite-dimensional optimization

While the logic of multiplicative updates inherent in Bayes’ rule and eq. (2) is conceptually
elegant, there is an independent and completely different path for arriving at q∗B(θ): dating
back at least to Csiszár (1975) and Donsker and Varadhan (1975), it was shown that Bayesian
inference can be recast as the solution to an infinite-dimensional optimization problem. This
result was rediscovered in statistics by Zellner (1988) and states that for P(Θ) denoting the
space of all probability measures on Θ, the Bayesian posterior is given by

q∗B(θ) = P (− log p(·|θ),KLD,P(Θ)) = arg min
q∈P(Θ)

{
Eq(θ)

[
−

n∑
i=1

log(p(xi|θ))

]
+ KLD (q||π)

}
,

where KLD is the Kullback-Leibler divergence (Kullback and Leibler, 1951) given by

KLD(q||π) = Eq(θ)

[
log

(
q(θ)

π(θ)

)]
= Eq(θ) [log q(θ)]− Eq(θ) [log π(θ)] .

Similarly, the generalized Bayesian posteriors of Bissiri et al. (2016) solve

q∗B(θ) = P (`,KLD,P(Θ)) = arg min
q∈P(Θ)

{
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q||π)

}
. (3)

This objective allows a re-interpretation of Bayesian inference as regularized optimization:
as in maximum likelihood inference and other empirical risk minimization tasks, one wishes
to minimize some loss function over the data. Unlike with frequentist methods however, one
wishes to quantify uncertainty and obtain a belief distribution rather than a point estimate.
Consequently, one adds the KLD regularization term. In fact, if this KLD term were absent
from eq. (3), the solution of the optimization problem would simply be a Dirac mass δ

θ̂n
(θ)

at the empirical risk minimizer θ̂n.
For completeness’ sake, we provide a proof of eq. (3) based on the supplementary material

of Bissiri et al. (2016). This encompasses the original result of (Csiszár, 1975) and (Donsker
and Varadhan, 1975) for `(θ, xi) = − log p(xi|θ).

Theorem 1 If Z =
∫
Θ exp {−∑n

i=1 `(θ, xi)}π(θ)dθ < ∞, then the solution of eq. (3)
exists and is equivalent to the generalized Bayesian posterior q∗B(θ) as given in eq. (2).

Proof One may rewrite the objective in eq. (3) as

q∗(θ) = arg min
q∈P(Θ)

{∫
Θ

[
log

(
exp

{
n∑
i=1

`(θ, xi)

})
+ log

(
q(θ)

π(θ)

)]
q(θ)dθ

}

= arg min
q∈P(Θ)

{∫
Θ

log

(
q(θ)

π(θ) exp {−∑n
i=1 `(θ, xi)}

)
q(θ)dθ

}
.

As one only cares about the minimizer q∗(θ) (and not the objective value), it also holds that
for any constant Z > 0, the above is equal to

q∗(θ) = arg min
q∈P(Θ)

{∫
Θ

log

(
q(θ)

π(θ) exp {−∑n
i=1 `(θ, xi)}Z−1

)
q(θ)dθ − logZ

}
= arg min

q∈P(Θ)

{
KLD

(
q(θ)

∥∥∥π(θ) exp

{
−

n∑
i=1

`(θ, xi)

}
Z−1

)}
.
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Lastly, one sets Z =
∫
θ exp {−∑n

i=1 `(θ, xi)}π(θ)dθ and notes that as the KLD is a statistical
divergence, it is minimized uniquely if its two arguments are the same, so q∗(θ) = q∗B(θ).

The result in Theorem 1 implies an important observation that drives much of the current
paper’s development: Any commitment to a (standard or generalized) Bayesian posterior is
always a commitment to an optimization problem.

Observation 1 If you conduct inference based upon the Bayesian posterior q∗B(θ) in eq. (2),
you conduct inference by specifying and solving the optimization problem in eq. (3). In other
words, q∗B(θ) is adequate to address a given inference problem if and only if minimizing
the objective in eq. (3) reflects the goals of your inference.

Building on this observation, Section 3, will explain why the usefulness of the standard
Bayesian posterior—and thus of the objective in eq. (3)—is at least doubtful for many
contemporary machine learning applications.

2.3 Optimality of standard Variational Inference

While q∗B(θ) is analytically available up to a normalizing constant, this is not immediately
useful: As exact computations with q∗B(θ) are often only possible through sampling methods,
using a posterior of this form typically incurs a large computational burden. To alleviate
this problem, many approximate Bayesian inference schemes have been proposed. Their
principal idea is to force the posterior belief into some parametric form. Specifically, one
seeks to approximate q∗B(θ) ≈ q∗A(θ), where q∗A(θ) ∈ Q and

Q = {q(θ|κ) : κ ∈K} (4)

is a family of distributions on Θ parameterized by κ. This significantly reduces the
computational burden, because it transforms the optimization problem from an infinite-
dimensional into a finite-dimensional space.

The literature on such approximations is extensive and has diverse origins. Their
development arguably started with Laplace Approximations (see e.g. the seminal papers
of Tierney and Kadane, 1986; Shun and McCullagh, 1995; MacKay, 1998), which have
recently been refined into Integrated Nested Laplace Approximations (Rue et al., 2009). A
second family of approximation methods known as Expectation Propagation (Opper and
Winther, 2000; Minka, 2001) was motivated through factor graphs and message passing
(Minka, 2005). The third and arguably most successful approach originated by connecting
the Expectation-Maximization algorithm (Dempster et al., 1977) and the variational free
energy from statistical physics (Neal and Hinton, 1998), culminating in Variational Inference
(VI) (Jordan et al., 1999; Beal, 2003). For these methods, Q is called the variational family.

Two main interpretations of VI prevail: One may derive its objective function as an
Evidence Lower Bound (ELBO); And one can show that VI minimizes the KLD between Q
and q∗B(θ). Here, we introduce a third interpretation of VI: Relative to the objective in eq.
(3), it corresponds to the best Q-constrained solution of the Bayesian inference problem.

2.3.1 VI as log evidence bound

One context in which VI was derived is the task of model selection. In Bayesian model
selection, the integral p(x1:n) =

∫
Θ exp{−∑n

i=1 `(θ, xi)}π(θ)dθ—called evidence or marginal
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likelihood whenever `(θ, xi) = − log p(xi|θ) for some likelihood model p—takes centre stage.
Roughly speaking, one selects the model for which this integral is largest. But since p(x1:n)
is generally intractable, one finds an approximation to it. In particular, one notes that for
any q(θ) ∈ Q,

log p(x1:n) = log

(∫
Θ

exp{−
n∑
i=1

`(θ, xi)}π(θ)dθ

)

= log

(∫
Θ

exp{−
n∑
i=1

`(θ, xi)}
π(θ)

q(θ)
q(θ)dθ

)
Jensen’s IE
≥

∫
Θ

log

(
exp

{
−

n∑
i=1

`(θ, xi)

}
π(θ)

q(θ)

)
q(θ)dθ. (5)

If the loss function is `(θ, xi) = − log p(xi|θ) for some likelihood model p, then the right
hand side of eq. (5) is called the Evidence Lower Bound (ELBO). Rewriting the integral,
one now obtains the VI posterior as

q∗VI(θ) = P (`,KLD,Q) = arg min
q∈Q

{
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q||π)

}
, (6)

where q∗VI(θ) = q(θ|κ∗) for some optimal parameter κ∗ ∈K.

Taking inspiration from this interpretation, alternative approximations target generalized
Evidence Lower Bounds (e.g. Chen et al., 2018; Domke and Sheldon, 2018; Burda et al.,
2016). For a given bound log p(x1:n) ≥ G-ELBO(q), such methods produce posteriors as

q∗G−ELBO(θ) = arg min
q∈Q

{−G-ELBO(q)} .

Multi-sample bounds (see e.g. Burda et al., 2016) are a particularly prominent example. As
the name implies, these bounds interpret the ELBO term given in eq. (6) by

ELBO(q) = Eθ∼q(θ)

[
log

(
exp{−∑n

i=1 `(θ, xi)π(θ)}
q(θ)

)]
as a bound constructed from a single sample of θ and replace the objective with its K-sample
version obtained by

MS-ELBO(q,K) = Eθ1:K∼
∏K
j=1 q(θj)

log
1

K

K∑
j=1

(
exp{−∑n

i=1 `(θj , xi)π(θ)}
q(θj)

) .
The rationale for doing so is that MS-ELBO(q, 1) = ELBO(q), and that the resulting bound
on the (generalized) evidence is tighter than the standard ELBO. More precisely, for any
K ∈ N, log p(x1:n) ≥ MS-ELBO(q,K + 1) ≥ MS-ELBO(q,K) ≥ MS-ELBO(q, 1) = ELBO(q).

2.3.2 VI as KLD-minimization and Discrepancy VI (
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DVI)

A second well-known perspective on standard VI posteriors is motivated by rewriting the
objective in eq. (6) in terms of the Kullback-Leibler Divergence (KLD) as follows:

q∗VI(θ) = arg min
q∈Q

{
KLD

(
q(θ)

∥∥∥q∗B(θ)
)}

The relevant algebraic arguments are similar to the ones used in the proof of Theorem 1
and show that standard VI finds q∗VI(θ) ∈ Q closest to q∗B(θ) in the KLD-sense.

This insight has produced a growing literature seeking to minimize (local or global)
discrepancies D between Q and q∗B(θ) different from the KLD (e.g. Minka, 2001; Opper and
Winther, 2000; Li and Turner, 2016; Dieng et al., 2017; Hernández-Lobato et al., 2016; Yang
et al., 2019; Cichocki and Amari, 2010; Ranganath et al., 2016; Wang et al., 2018; Saha
et al., 2019). For a disrepancy measure D : P(Θ)× P(Θ)→ R, these methods compute

q∗DVI(θ) = arg min
q∈Q

{
D
(
q(θ)

∥∥∥q∗B(θ)
)}

.

In the remainder, we will call such procedures Discrepancy Variational Inference (DVI)
methods whenever D 6= KLD. We graphically summarize their interpretation in Figure 2a.
Note that DVI methods do not fall into our Rule of Three framework: they are generally not
recoverable as P(`,D,Q) for any choice of `, D, Q.

(a) DVI interpretation of VI (b) Interpretation of VI as in Theorem 2

Figure 2: Best viewed in color. Depicted is a schematic to clarify the conceptual distinction
between two interpretations of VI. DVI methods interpret VI as the KLD-projection of q∗B(θ)
into the variational family Q. New methods are then derived by replacing the KLD with
alternative projection operators. In contrast, Theorem 2 interprets VI posteriors as best
solutions to a constrained optimization problem. Rather than finding the global optimum
q∗B(θ) of the optimization problem in eq. (3), VI finds the best solution in the subset
Q ⊂ P(Θ).

9



Knoblauch, Jewson and Damoulas

2.3.3 VI as constrained optimization

While the interpretations of VI as optimizing over an evidence lower bound and as minimizing
a discrepancy are well-known, this paper presents a third interpretation: VI posteriors are also
the optimal solutions to the Q-constrained version of the optimization problem underlying
q∗B(θ). Specifically, comparing eq. (3) to eq. (6) shows that while q∗B(θ) is obtained by
optimizing over all of P(Θ), q∗VI(θ) is obtained by optimizing the same objective—but
only over the finite-dimensional subset Q ⊂ P(Θ). This observation is summarized in the
following Theorem.

Theorem 2 (Optimality of standard VI) Relative to the objective in eq. (3) character-
izing Bayesian inference, and for any fixed finite-dimensional variational family Q, standard
VI produces the optimal posterior belief in Q.

Proof First, notice that the VI posterior belief distribution q∗VI(θ) and the Bayesian posterior
belief distribution q∗B(θ) both seek to minimize

Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD(q‖π)

over q(θ). Second, notice that q∗VI(θ) is the minimizer of this objective relative to Q while
q∗B(θ) is the minimizer relative to P(Θ). Third, note that Q ⊂ P(Θ).

This provides another meaningful interpretation of q∗VI(θ) depicted in Figure 2b. Specifically,
the result endows standard VI with a special property: in the optimization-centric view
on Bayesian inference, we should prefer q∗VI(θ) amongst all possible approximations within
Q provided we believe that the optimization objective defining the Bayesian posterior is
appropriate for the problem at hand. The following observation explains this in more detail.

Observation 2 As Observation 1 explained, committing to q∗B(θ) means committing to the
objective function in eq. (3). In other words, if we judge the posterior belief q∗B(θ) to be
desirable, we are also saying that the objective function in eq. (3) encodes properties that we
want our posterior to adhere to. Accordingly, once we restrict posterior beliefs to a subset
Q ⊂ P(Θ), we should want to compute the best possible solution to the same objective in Q.
As Theorem 2 shows, this is exactly what VI does.

Relative to the optimization-centric view on Bayesian inference, Theorem 2 also implies the
sub-optimality of alternative approximation methods.

Corollary 3 (Suboptimality of alternative methods) Relative to the objective in eq.
(3) characterizing Bayesian inference, and for any fixed finite-dimensional variational family
Q, methods different from standard VI produce sub-optimal posterior beliefs.

Proof We prove this by contradiction: Suppose we are given a posterior belief q∗A(θ) that
could not have alternatively been produced by standard VI. First, by definition of standard
VI, it holds that that for any sequence of observations x1:n and for all n,

Eq∗VI(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗VI||π) ≤ Eq∗A(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗A||π) .
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Since we also assumed that q∗A(θ) could not have alternatively been produced by standard
VI, it also holds that the inequality is strict, i.e.

Eq∗VI(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗VI||π) < Eq∗A(θ)

[
n∑
i=1

`(θ, xi)

]
+ KLD (q∗A||π) .

This yields the desired result.

Corollary 3 says that for a fixed variational family Q, any alternative approximation
q∗A(θ) ∈ Q that is not equal to q∗VI(θ) will be sub-optimal under an optimization-centric
view of Bayesian inference. This concerns a host of methods, including generalized evidence
lower bound formulations, alternative Discrepancy Variational Inference (DVI) methods or
Expectation Propagation (EP) approaches. This is significant, as it shows that alternative
approximations do not provide the optimal posterior relative to eq. (3)—an equation that is
endowed with particular meaning under the optimization-centric view on Bayesian inference.

Importantly, the result does not imply that these alternative posterior approximations
will perform worse than VI in practice. In fact, from an optimization-centric standpoint it
is quite clear why such alternative approximations can deliver empirical success: if q∗A(θ)
performs better than the standard variational approximation q∗VI(θ), the objective underlying
q∗A(θ) must implicitly be targeting a more appropriate posterior belief for the problem at
hand—an observation we elaborate upon next.

2.4 Reconciling (sub)optimality with empirical evidence

At first glance, the sub-optimality result of Corollary 3 may seem to contradict numerous
landmark findings in the area of approximate Bayesian inference: standard VI exhibits
various well-known pathologies that hinder its effectiveness in certain situations (see e.g.
Turner and Sahani, 2011). For this reason, various alternative approximations have proven
successful in practice (e.g. Minka, 2001; Rue et al., 2009) and often produce more desirable
posterior inferences.

This paradox resolves itself upon closer examination. Notably, our notion of optimality
is relative to the objective that defined the Bayesian posterior. In other words, the practical
relevance of our optimality result hinges on two crucial assumptions that are typically
violated in practice. First, one needs to assume that the best possible belief for the task
at hand is the minimizer of the original objective in eq. (3)—i.e., the Bayesian posterior
q∗B(θ). Second, one then needs to assume that the variational family Q is rich enough
to make the statement q∗VI(θ) ≈ q∗B(θ) not completely vacuous1. Conversely, this means
that the (nominally sub-optimal) objective underlying q∗A(θ) often encodes more desirable
belief distributions than the (nominally optimal) one underlying q∗VI(θ) if at least one of the
following holds:

(i) The optimization objective in eq. (3) is misspecified and does not reflect the belief
distribution we wish to compute. In other words, the full posterior q∗B(θ) (and hence

1. To give a hyperbolic example, consider q∗B(θ) = N (θ; 0, 1) and Q = {N (θ;−100, 1),N (θ; 100, 1)}. While
the (sub)optimality results of Theorem 2 and Corollary 3 continue to hold, Q will make the statement
q(θ) ≈ q∗B(θ) meaningless for all q ∈ Q.
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the objective underlying it) are already problematic—and since it is based on the same
objective, q∗VI(θ) will inherit these problems.

(ii) The approximating family Q makes the statement q(θ) ≈ q∗B(θ) vacuous for any
q ∈ Q. In other words, thinking about q∗A(θ) or q∗VI(θ) as approximations to q∗B(θ)
becomes purely semantic—and we should rather think about q∗A(θ) and q∗VI(θ) as belief
distributions constructed directly by minimizing some objective function on Q.

Under these conditions, q∗A(θ) can outperform q∗VI(θ) whenever the underlying objective
implicitly encodes desirable properties for the posterior belief distribution that are not part
of the objective in eq. (3).

For example, virtually all posteriors produced within the DVI family (e.g. Li and Turner,
2016; Hernández-Lobato et al., 2016; Dieng et al., 2017; Regli and Silva, 2018) are designed
to address (ii): these methods prevent unimodal approximations from focusing too strongly
around the empirical risk minimizer of θ. For standard VI, this phenomenon is common
whenever Q is the mean field variational family, which explains why DVI often empirically
outperforms standard VI for this choice of Q. Under the optimization-centric view on
posterior beliefs, this implies that in spite of being sub-optimal relative to eq. (3), DVI

methods pose objectives that are often better-suited to produce belief distributions in Q.
This raises an interesting question: Rather than thinking of inference in a subset Q ⊂ P(Θ)
as approximate, can we adapt an optimization-centric view from the start and then directly
design objectives that generate posterior beliefs with desirable properties? Later in this paper,
we will operationalize this logic and propose a procedure we call Generalized Variational
Inference (GVI).

Beforehand, we step back and ask under which conditions such an optimization-centric
design of posteriors would even be desirable. We find the answer in the next Section by
re-visiting the original motivations for performing Bayesian inference. Specifically, we explain
how the assumptions underpinning the traditional Bayesian paradigm are often misaligned
with the reality of contemporary statistical machine learning. This misalignment has three
dimensions: The information contained in the prior belief (P), the role of the likelihood
model (L), and the availability of computational resources (C).

3. A reality check: Re-examining the traditional Bayesian paradigm

In the following section, we illuminate the misalignment between the assumptions underlying
the traditional Bayesian paradigm and the way in which modern statistical machine learning
uses (approximate) Bayesian posteriors to conduct inference.

First, Section 3.1 elaborates on the three crucial assumptions underlying the standard
Bayesian posterior: Appropriate specification of prior (P) and likelihood (L) as well
as an infinite computational budget (C).

Next, Section 3.2 exposes the misalignment of these three assumptions with inferential
practices in contemporary statistical machine learning and large-scale inference.

Lastly, Sections 3.3–3.5 points to the adverse real-world consequences arising from
violating these assumptions.

12
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3.1 The traditional Bayesian paradigm

Due to their direct correspondence with the fundamental rules of probability, Bayesian
posteriors q∗B(θ) are desirable objects to be basing inference on. To see why, suppose the
following three conditions hold true.

(P) The Prior π(θ) is correctly specified: It encodes the best available judgement about θ
based on all information available to the modeller. Crucially, the distribution π(θ) is
assumed to reflect this prior belief exactly. This implies that π(θ) should completely
reflect all information available to the modeller such as previously observed observations
x−m:0 of the same phenomenon or domain expertise relating to the problem domain
and the statistical model.

(L) There exists an (unknown but fixed) θ∗ making the Likelihood model equivalent to
the data generating mechanism of xi. This is to say that xi ∼ p(xi|θ∗).2

(C) The budget for Computation is infinite, so the complexity of computing the belief
q∗B(θ) can be ignored.

If (L), (P) and (C) are satisfied, it immediately follows that the best belief about the best
parameter value given the data {θ∗ = θ}|{x1:n = x1:n} is simply given by

dP (θ|x1:n) ∝ dP (θ)
n∏
i=1

dP (xi|θ) = π(θ)
n∏
i=1

p(xi|θ) ∝ q∗B(θ). (7)

Note that (P) and (L) lend a meaningful interpretation to Bayes’ rule in form of conditional
probability updates. Complementing this, (C) ensures that it is feasible to compute the
often intractable solution q∗B(θ) of eq. (3). Accordingly, (C) generally is interpreted to
mean that a Markov Chain Monte Carlo algorithm can be run for long enough to accurately
represent q∗B(θ). In summary, if (P), (L) and (C) hold, q∗B(θ) is the only desirable posterior
belief distribution.

But how well does reality align with (P), (L) and (C)? Turning attention to (C) first, most
traditional scientific disciplines have little need to worry about computational complexity
and will resort to sampling schemes for two reasons: First, the models are often relatively
simple and thus straightforward to infer. Second, even for more complicated models the
experimental setups, the cost of data collection typically outweighs those of computation

2. We note here that to keep the presentation simpler, we are giving conditions that are stricter than
what is required for Bayesian analysis. In particular, (L) corresponds to an objectivist treatment of the
likelihood and can be weakened under the subjectivist paradigm for Bayesian analysis. In this paradigm,
the treatment of the likelihood mirrors that of the prior: It now simply corresponds to the modeller’s
belief about the process that generated the data. While this first sounds like a weaker requirement, it
ends up producing the same misspecification problems as (L). Specifically, a subjectivist treatment of
the likelihood requires the modeller to express her beliefs about the likelihood function exactly. This
forces her to make more probability statements than she realistically has time or introspection for (see
e.g. Goldstein, 1990; O’Hagan and Oakley, 2004; Goldstein, 2006). The result is that the likelihood
function supplied by the modeller is at best going to be an approximate description of the modeller’s
beliefs. This provides the subjectivist interpretation of misspecification. Notice that it directly mirrors
the objectivist interpretation of misspecification in (L): The likelihood function supplied is at best going
to be an approximate description of the true data generating mechanism.
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by orders of magnitude. As for (P) and (L), neither prior nor likelihood are ever perfect
reflections of one’s full prior beliefs (see e.g. Goldstein, 1990; O’Hagan and Oakley, 2004;
Goldstein, 2006) or the data generating mechanism (see e.g. Bernardo, 2000). In other words,
(P) and (L) are invariably violated when interpreted literally. However and as enshrined
in Box’s aphorism that all models are wrong, but some are useful, this is not a problem so
long as these violations are sufficiently small. In traditional statistics, ensuring that these
violations are small has typically been enforced through a simple recursion (e.g. Box, 1980;
Berger et al., 1994). Specifically, until you are confident that both (P) and (L) are close
enough to the truth, repeat the following: Check if (L) or (P) are violated severely. If
they are, choose a more appropriate likelihood and prior. In order to operationalize this
iterative logic, batteries of descriptive statistics, tests and model selection criteria have been
developed.

In summary then, ignoring the computational overhead and iteratively refining likeli-
hoods and priors is rightfully the predominant inferential strategy for traditional scientific
endeavours. Not only is domain expertise relevant for designing priors and likelihood, but
the process of finding an appropriate model often provides valuable insights in itself. Further,
the expensive part of the analysis is typically data collection. Consequently, it is typically not
prohibitive to perform inference even with the most computationally expensive of sampling
schemes. In line with this, most methodological contributions in statistical sciences rely to a
substantial degree on (P), (L) and (C).

3.2 Machine Learning: Challenging the traditional Bayesian paradigm

Contemporary large-scale inference applications have frequently turned the traditional
schematic of statistical model design upside down: Rather than carefully designing an
appropriate likelihood model p(·|θ) for a specific data domain, statistical machine learning
research is typically characterized by the search of a flexible algorithm that can fit any
data set x1:n well enough to produce useful inferences. The resulting likelihood models are
typically not attempting to describe any data generating processes in the sense of (L). Rather,
they are highly over-parameterized functions of θ and typically un-identifiable, meaning that
θ∗ is neither interpretable nor unique. Such statistical machine learning models have three
major issues under the traditional paradigm of Bayesian inference that are readily identified:

(EP) Invariably, the Prior is misspecified. Two factors compound this issue: Firstly, the
large number of parameters over-parameterizing the likelihoods of many statistical
machine learning models are no longer interpretable. This often prohibits domain
experts to carry out carefully guided prior elicitation. Secondly, priors are typically
selected at least in part for their computational feasibility. This fundamentally alters
the interpretation of the prior: Rather than the result of an attempt to capture the
modeller’s knowledge before observing the data, the prior takes the role of a more or
less arbitrary reference measure. To make matters worse, the number of parameters is
often large relative to n, which means that the priors have a disproportionate effect on
inference via q∗B(θ)—a problem we discuss in Example 1 in the context of Bayesian
Neural Networks.

(EL) Clearly, the Likelihood is misspecified. This often has adverse side effects: While using
an over-parameterized or off-the-shelf likelihood function can provide a good fit for
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the typical behaviour of the data, it will struggle with heterogeneous or untypical data
points. We demonstrate this phenomenon on a changepoint problem in Example 4.

(EC) With increasingly complex statistical models, (C) has proven an increasingly infeasible
description of reality. Accordingly, this problem has inspired numerous directions
of research, including variational methods and Laplace approximations. Example 2
illustrates this for the case of Gaussian Processes.

Under the challenges outlined in (EP), (EL) and (EC), standard Bayesian posteriors often
do not provide appropriate belief distributions. In the remainder, we will explain how and
why this is the case for many parts of modern large-scale inference.

3.3 Prior misspecification

For most finite-dimensional parameters, even severely misspecified priors can often be
harmless. For example, prior misspecification is typically no problem in the asymptotic
sense. Specifically, so long as (L) holds, it suffices that π(θ∗) > 0 for standard Bayesian
posteriors to contract around θ∗ at rate O(n−1/2) (see e.g. Ghosal, 1998; Ghosal et al., 2000;
Shen and Wasserman, 2001; Walker, 2004, and references therein).

Often, these results are used as an apology to neglect the role of prior specification.
While it is reassuring that the sequence of standard Bayesian posteriors shrinks to the
population-optimum as n→∞, this does not describe the real world: n is usually fixed and
only a single posterior is computed. Further, it is possible to specify arbitrarily bad priors
for any n fixed observations. This means that once one departs from assuming that (P)
is at least approximately correct, the standard Bayesian posterior belief about θ∗ can be
made arbitrarily inappropriate. In summary, prior specification is particularly precarious
whenever (i) the parameter space is large relative to n or (ii) it is impossible to specify priors
in a principled way. As we discuss in the next example, a model invariably affected by both
problems is the Bayesian Neural Network (BNN).

Example 1 (Deep Bayesian models as violations of (P)) Bayesian Neural Networks
( BNNs) (MacKay, 1996; Neal, 2012) combine Deep Learning with Bayesian uncertainty
quantification. For the parameter vector θ of network weights, let F (θ) be the function
specified by a Neural Network. One way of thinking about BNNs is as an over-parameterized
likelihood function with a large number of parameters d = |Θ|. This is to say that one
believes that (at least approximately), xi ∼ p(xi|F (θ∗)) for some θ∗ ∈ Θ. For a prior π(θ)
about θ, this means that BNNs seek to do inference on the posterior given by

q∗(θ) ∝ π(θ)

n∏
i=1

p(xi|F (θ)).

This approach is conceptually appealing: One circumvents most issues with (L) by making
the likelihood function almost arbitrarily flexible, and also quantifies uncertainty in the usual
Bayesian manner. While both observations are correct, they mask a severe practical issue
with this approach: Specifying π(θ) in a principled way and in accordance with (P) is
generally impossible.
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There are two main reasons for this: Firstly, the vector θ indexes a black box model
and is not interpretable, making domain expertise useless for prior elicitation. Secondly,
computational aspects are a major concern for BNNs, so that one typically is constrained to
choose priors that factorize over θ. As a consequence, practitioners often resort to choosing
“default priors” that do not even attempt to approximately satisfy (P). Specifically, one
typically just picks π(θ) =

∏d
j=1 πj(θj), where πj(θj) is a standard normal distribution for

all j. Choosing priors in this ad-hoc fashion violates the principles underlying classical
Bayesian modelling (see also Section 5.2.1) and is especially problematic when n is small
relative to d (so that the prior has relatively strong influence). At the same time, reliable
uncertainty quantification is most important whenever n is small relative to d. In fact, this
is a well-known issue and addressed in various contributions by up-weighting the likelihood
(down-weighting the KLD term in the ELBO), see Zhang et al. (2018); Rossi et al. (2019a,b);
Sønderby et al. (2016).

We do not mean to suggest that it is impossible to specify meaningful or useful priors
for BNNs. For example, Toussaint et al. (2006) uses the principles of transformation
invariance and maximum entropy, Nalisnick et al. (2020) calibrates priors via their predictive
distribution and a ‘reference’ model, and Matsubara et al. (2020) focuses on the prior’s
impact on the prediction space (see also Gelman et al., 2017) and in particular its covariance
structure to specify more principled priors. While these approaches are all conceptually
elegant, they also are computationally cumbersome—thus compounding the issues outlined in
(EC). As a result, the fully factorized priors discussed above are the de-facto default choices
for most applications.

For completeness, we note that the current paper does not discuss uninformative and
so-called objective priors (see, e.g. Jeffreys, 1961; Zellner, 1977; Bernardo, 1979; Berger
and Bernardo, 1992; Jaynes, 2003; Berger, 2006). Such priors are constructed to be as
uninformative as possible. In some ways, they would be a natural, principled alternative to
ill-informed priors. Generally however, their construction results in improper priors–densities
that do not correspond to a finite measure and thus do not integrate to one. While this is
not generally prohibitive, it would severely complicate the developments of Section 4 because
most divergences are not well-defined for improper priors3.

3.4 Likelihood Misspecification

While prior misspecification affects inference adversely, the issue for inferential practice is even
more serious if (L) is violated: Whenever the likelihood model for xi is severely misspecified,
inference outcomes suffer dramatically. Moreover, not even the asymptotic regime offers a
remedy: The adverse effects of misspecification persist as n→∞. The traditional approach
to addressing this issue is straightforward: If the likelihood model p(xi|θ) is misspecified,
simply investigate why exactly it fits the data poorly. After residual analysis, intense study
of descriptive statistics and consultation with domain experts, redesign it to arrive at a
likelihood model p′(xi|θ′), which provides a better fit to the data and (approximately)

3. The KLD is the exception to this rule: As it depends on the log normalizer of π(θ) in an additive fashion,
improper priors can still be admissible so long as eq. (3) yields a solution for the unnormalized version of
the KLD as given in Cichocki and Amari (2010).
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satisfies (L). In other words, the traditional view is that any problem with misspecification
is really a problem with careless modelling.

As outlined in Section 3.2, this strategy is neither practiced nor feasible with contem-
porary large-scale models. The naive interpretation of likelihoods as corresponding to an
appropriately good description of the true data generating process in the sense of (L) is thus
wholly inappropriate. This is especially important as many large-scale models are mainly
interested in capturing the typical behaviour of the data—rather than fully modelling every
aspect of a population. While this may appear to be a minor point at first glance, it has
serious consequences for inferential practice. To see why, suppose a population contains
a small number of outlying observations, local heterogeneities or spiky noise. The naive
interpretation of the likelihood as in (L) assumes that these untypical aspects are encoded
in the likelihood function. Hence, if xi is an outlier, the inference machinery of traditional
statistics interprets this as a strong signal: Since the likelihood model is an approximately
correct description of the data, the most informative observations are those that do not fit
the model fitted to the rest of the data. This is why aberrant parts of the data will have a
disproportional impact on inference outcomes—leading standard inference methods to break
down (see also Jewson et al., 2018).

Moreover, the often-invoked intuition that a sufficiently flexible likelihood family (such as
likelihoods parameterized by Neural Networks) will not suffer these problems is dangerously
incorrect in at least two ways: firstly, increasing the dimension of the model space for a fixed
number of observations amounts to placing more weight on the prior—and so amounts to
merely shifting the problem from (L) into (P). Secondly, the symmetries and degeneracies of
such likelihoods can be shown to induce generalization errors that increase with the number
of observations n (see e.g. Watanabe, 2018, Example 19 and Remark 20).

3.5 Computation mismatch

As Theorem 1 shows, the Bayesian posterior q∗B(θ) is the result of optimizing over the
infinite-dimensional space P(Θ). Generally, this implies that the posterior itself also does
not live in a finite-dimensional space. In fact, the only case in which q∗B(θ) can be represented
through a finite-dimensional parameter is when prior and likelihood are conjugate to one
another—a fact independently established by Koopman (1936), Pitman (1936), and Darmois
(1935) and thus commonly referred to as Koopman-Pitman-Darmois Theorem. This means
that inference with q∗B(θ) is generally a hard problem, which manifests itself through the need
to compute the posterior’s normalizing constant. To address this problem, Markov Chain
Monte Carlo algorithms are typically used. Such algorithms produce an exact representation
of q∗B(θ) if the chain runs indefinitely and collects infinitely many samples. In practice,
collecting a finite number of samples from the chain yields can represent q∗B(θ) almost
exactly whenever d = |Θ| is not too large. For large enough d however, the number of
samples required to make the approximation useful is often too large to make samplers
computationally viable: For example, in the best case scenario, Random Walk Metropolis
Hastings scales like O(d2) (Roberts et al., 1997), the Metropolis-adjusted Langevin algorithm
like O(d4/3) (Roberts and Rosenthal, 1998) and Hamiltonian Monte Carlo like O(d5/4)
(Beskos et al., 2013). Note that these results assume independence and Gaussianity—so in
practice scaling rates are typically even worse.

17



Knoblauch, Jewson and Damoulas

Approximation strategies constitute an alternative way to avoid explicit computation
of normalizing constants. These methods project q∗B(θ) into some parameterized subset
Q ⊂ P(Θ). Clearly then, they produce approximations q∗A(θ) of high quality only if the set
Q is chosen to be sufficiently rich. In practice however, most posterior belief distributions
q∗A(θ) computed this way barely deserve to be called approximations of q∗B(θ). For example,
consider the mean field normal variational family given by

QMFN =


d∏
j=1

N (θj |µj , σ2
j ) : µj ∈ R, σ2

j ∈ R>0 for all j

 . (8)

For most interesting non-trivial posterior distributions q∗B(θ), there will not exist an element
q ∈ QMFN that could be considered a meaningful approximation to q∗B(θ). This is perhaps
unsurprising: After all, QMFN assumes O(d2) independence relationships in the approximate
posterior belief for θ. Worse still: As approximations are particularly attractive when
|Θ| = d is large, in practice we will resort to such insufficiently expressive “approximations”
to q∗B(θ) precisely when the elements in QMFN are structurally most dissimilar from q∗B(θ). To
improve the quality of these approximations, numerous directions of research have proposed
ever more flexible variational families in order to make Q more expressive. Examples include
implicit distributions (e.g. Tran et al., 2017; Tiao et al., 2018; Shi et al., 2018; Ma et al.,
2019), normalizing flows (e.g. Rezende and Mohamed, 2015), or the variational Gaussian
Process (Tran et al., 2016). Generally, there is no free lunch: more expressive families Q
will incur higher computational cost and compound the issues with (C).

In the current paper, we advocate an optimization-centric view of posterior belief
computation. As a side-product of this view, we believe that it is often unhelpful to think
of q∗A(θ) as an approximation to q∗B(θ). Rather, we prefer to think of q∗A(θ) as defining a
new and distinct posterior belief distribution in its own right—which happens to also be an
approximation to q∗B(θ) if Q is sufficiently expressive.

To highlight the importance that computational considerations as summarized in (C)
have played in research on statistical machine learning, we end their discussion by pointing
to some of the recent research on Bayesian computation for Gaussian Processes.

Example 2 (large-scale Gaussian processes as violations of (C)) Many Bayesian ma-
chine learning models prohibit exact computation. One particularly interesting case are Gaus-
sian Process ( GP) models: Even in the special cases where they admit closed form posteriors,
it may well be impossible to compute them exactly for sufficiently large inference problems.
The reason is that for n observations, direct computation of the associated GP posterior takes
O(n3) time. As a consequence, an entire literature is dedicated to bringing down this compu-
tational complexity (see for instance Williams and Seeger, 2001; Quiñonero-Candela and
Rasmussen, 2005; Snelson and Ghahramani, 2006; Titsias, 2009) and developing software
or computer-architecture specific methods geared towards inference with GPs (e.g. Matthews
et al., 2017; Gardner et al., 2018; Balandat et al., 2019; Wang et al., 2019). Furthermore,
with deep (i.e., hierarchical) approaches to GPs introduced in Damianou and Lawrence (2013)
and extended in various directions (e.g. Dai et al., 2016; Hegde et al., 2019), this challenge
has only become more important (see e.g. Bui et al., 2016; Cutajar et al., 2017b; Salimbeni
and Deisenroth, 2017).
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4. The Rule of Three: Optimization-Centric Bayesian Inference

As the last sections have shown, the traditional view of Bayesian inference as an update rule
relies on a number of assumptions that are not always a good basis for modern large-scale
statistical inference. To address this, we propose a optimization-centric view on Bayesian
methods. This view encompasses numerous exact Bayesian methods as well as variational
approximations, can naturally relax the three assumptions underlying standard Bayesian
posteriors, and can be interpreted as a generalization of the Bayesian paradigm. Developing
these ideas proceeds in three steps:

Section 4.1 sets out axioms that are a minimal requirement for any posterior belief
distribution. In accordance with these axioms, we derive the Rule of Three (RoT).

Sections 4.2 & 4.3 discuss the RoT as a recipe for producing posterior belief
distributions and elaborate on its three interpretable ingredients. We also show how
the RoT can directly address the concerns associated with imposing (P), (L) and
(C).

Section 4.4 demonstrates that the axiomatic development is both helpful and useful
by comparing the RoT with existing methods that generate belief distributions.

4.1 An axiomatic foundation for Bayesian inference

In this section, we give an axiomatic foundation for Bayesian inference that is flexible enough
to relax (P), (L) and (C). Before doing so, we set out some preliminaries.

Definition 4 (Loss Function) Losses are functions Ln : Θ × X n → R which are lower
bounded. For observations x1:n ∈ X n, their empirical risk minimizers are given by

θ̂n ∈ arg min
θ∈Θ

{Ln(θ, x1:n)} .

Definition 5 (Statistical Divergence) Statistical divergences are functions D : P(Θ)×
P(Θ)→ R≥0 so that D(q‖π) ≥ 0 and D(q‖π) = 0⇐⇒ q(θ) = π(θ) almost everywhere.

For simplicity, we will avoid introducing measure-theoretic notation in the remainder. To this
end, we will assume that all probability measures of interest have densities with respect to
the Lebesgue measure. We also slightly abuse notation in two ways: We write q ∈ P(Θ) for
probability densities q(θ) on Θ, even though probability densities are not in P(Θ). However,
q(θ) induces a measure µq ∈ P(Θ) as µq(A) =

∫
A dq(θ) for any measurable set A ⊂ Θ.

Thus, whenever we write q ∈ P(Θ), what we mean is that µq ∈ P(Θ). Similarly, when we
write q1 6= q2, we mean that there exists a measurable set A ∈ Θ such that µq∗1 (A) 6= µq∗2 (A).

Moreover, we will generally assume that the loss is additive and given by

Ln(θ, x1:n) =

n∑
i=1

`(θ, xi) (9)

unless explicitly stated otherwise. The additivity assumption unclutters notation: instead
of having to specify an infinite sequence {Ln}n∈N of functions specified on the sequence of
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spaces {Θ×X n}n∈N, we only need to define the function ` : Θ×X → R. Note that while
the axiomatic development is presented for ` only, the conclusions are unchanged if one uses
arbitrary loss sequences {Ln}n∈N instead.

Axiom I (Representation) The posterior q∗ ∈ P(Θ) solves an optimization problem over
some space Π ⊆ P(Θ). For any finite sample {xi}ni=1, the optimization problem’s objective
is increasing in two arguments:

(i) An expected in-sample loss
∑n

i=1 `(θ, xi) taken with respect to q∗(θ).

(ii) The deviation from the prior π(θ) as measured by some statistical divergence D.

Reiterating the essence of Observation 1, Axiom I formalizes the optimization-centric
view on Bayesian inference. More precisely, it tells us that for a fixed prior π, posteriors are
specified through three parts: The loss `, the divergence D(·‖π) and the space Π. Making
this insight more precise, we can derive the following representation Theorem:

Theorem 6 (Form 1) Under Axiom I, posterior belief distributions can be written as

q∗(θ) = arg min
q∈Π

{
f

(
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
, D(q||π)

)}
,

where f : R2 → R is some function that may depend on π,Π, `, {xi}ni=1, or D.

Proof This follows directly from Axiom I: Firstly, any posterior belief distribution q∗(θ)
is the solution to an optimization problem over Π. Thus, for an appropriately structured
objective Obj, one can write

q∗(θ) = arg min
q∈Π

{Obj(q)} .

By (i) and (ii) of Axiom I, we also know that the optimization’s objective depends only on
D(q||π) and Eq(θ)[`(θ, xi)]. Clearly then, for some function f : R2 → R,

Obj(q) = f

(
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
, D(q||π)

)
,

which completes the proof.

This result is a first and helpful step, but in itself does not suffice to yield objectives that
are useful in practice. Specifically, we need to get a handle on the function f . It is clear
that under Axiom I alone, very little can be said about f . Since our explicit target is a
generalization of the Bayesian inference problem, we will have to restrict the form of f so
that Theorem 6 admits only the Bayesian posterior whenever D = KLD and Π = P(Θ).

Axiom II (Recovers Bayesian Posteriors) Function f in Theorem 6 does not depend
on π,Π, `, {xi}ni=1, or D. Further, q∗ is the posterior q∗B of eq. (2) if D = KLD, Π = P(Θ).

The intution of Axiom II is clear: in the case of q∗B, D = KLD, Π = P(Θ); and f does
not depend on the data {xi}ni=1, the prior π, the loss `, etc. As we want to recover q∗B,
we thus impose the same conditions for other posteriors. Fortunately, this also drastically
simplifies the representation of Theorem 6.
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Theorem 7 Suppose the posterior belief q∗ ∈ P(Θ) satisfies Axioms I and II. Then the
objective of Theorem 6 can be identified as f(x, y) = x+ y so that

q∗(θ) = arg min
q∈Π

{
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+D(q‖π)

}
= P (`,D,Π). (10)

Proof This follows by combining Theorem 6 with Axiom II and eq. (3).

The last result is of crucial importance for the further development of the paper: Specifically,
eq. (10) suggests a flexible recipe for the optimization-centric design of new posterior
distributions.

Remark 8 Theorem 7 demonstrates that in combination with Axiom I, Axiom II enforces an
additive relationship between the expected loss and prior regularizer. This additive relationship
is desirable for a number of reasons, some of which include

• Invariance to additive, but not multiplicative constants: adding constants to `
will not change the posterior. In other words for, any C ∈ R, we have P (`,D,Π) =
P (`+C,D,Π). However, multiplying ` by w (or equivalently, D by 1

w ) for some w ∈ R
changes the posterior that is computed. This means that we recover a well-known feature
of other Bayes-like procedures. In fact, exponentiating likelihoods p(·|θ)w—which is
equivalent to multiplying `(θ, xi) = − log p(xi|θ) with some w ∈ (0, 1)—is a popular
tool in the existing literature on generalized Bayesian methods with D = KLD (e.g.
Grünwald, 2011, 2012; Holmes and Walker, 2017; Grünwald and Van Ommen, 2017;
Miller and Dunson, 2019) and serves to up-weight (or down-weight) the information
of the data relative to the prior.

• Recovery of (D-approximated) prior without additional Information: Given
no information from the observations (i.e. if ` = 0), the solution of the optimization
problem in Theorem 7 is the member of admissible set Π that is closest to the prior
π(θ) as measured by D. Put differently, P (` = 0, D,Π) = arg minq∈ΠD(q‖π). Clearly
then, if π ∈ Π we have that P (` = 0, D,Π) = π.

• Generalized (weak) likelihood principle: Data x1:n favours θ1 over θ2 if and
only if

∑n
i=1 ` (θ1, xi) <

∑n
i=1 ` (θ2, xi). This is the natural generalization of the ‘weak

likelihood principle’ outlined by Sober (2008) from ` (θ, xi) = − log p(xi|θ) to general
loss functions , see also Mayo-Wilson and Saraf (2020).

These implications of Theorem 7 are a natural requirement for any belief distribution trading
off prior against data-driven information.

4.2 The Rule of Three

Following the axiomatic developments of the last section that culminated in Theorem 7, we
now discuss the interpretations and theoretical properties of posterior belief distributions
generated from objectives as in eq. (10). To simplify the representation throughout the
remainder, we first define notation for posteriors of this form.
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Definition 9 (Rule of Three (RoT)) For observations x1:n, a prior π, a space Π ⊆ P(Θ),
a loss function ` : Θ×X → R and a divergence D(·‖π) : Π→ R≥0, we say that a posterior
has been constructed via the Rule of Three ( RoT) if it can be written as

q∗(θ) = P (`,D,Π) = arg min
q∈Π

{
Eq(θ)

[
n∑
i=1

`(θ, xi)

]
+D(q‖π)

}
.

Here, P (`,D,Π) is a short-hand notation for the RoT suppressing dependence on x1:n and
π.

In the remainder, we study posteriors taking the form P (`,D,Π). Just as for standard
variational posteriors, it is generally hard to establish existence and uniquenes when Π is
a variational family. If Π = P(Θ) however, P(`,D,Π) exists whenever D is convex in its
first argument by elementary analysis. If D is strictly convex in its first argument, this
minimizer is also guaranteed to be unique. More elaborate arguments can be deployed to
prove existence for non-convex divergences by imposing additional assumptions on the loss
function and using Prokhorov’s Theorem (see Knoblauch (2019a), Lemma 1).

The most practically relevant versions of these posteriors take Π to be a κ-parameterized
family of distributions Q = {q(θ|κ) : κ ∈K}, a special case we explore in Section 5. Since
such parameterized sets Q are commonly called variational families, we call the act of
computing posteriors of the form P (`,D,Q) Generalized Variational Inference (GVI).

Before we proceed to study GVI, we first give an interpretation of the three components
in the RoT. In particular, we show that these components directly address the three violated
assumptions (EP), (EL) and (EC) of standard Bayesian inference via an intuitive modularity
result. Beyond that, we recover existing Bayesian methods as special cases of the RoT. Lastly,
we discuss the meaning of a Bayesian method (not) being representable via P (`,D,Π) and
use this as a springboard to motivate GVI.

4.3 Modularity of the Rule of Three

Each component of the optimization problem defined by the posterior P (`,D,Π) serves a
specific and separate purpose.

(·L) A loss ` : Θ×X → R. The loss defines the parameter of interest θ by linking it to the
observations x1:n. To simplify presentation, we will assume that all losses are additive
and identical4, that they depend on a parameter θ rather than a latent variable5, and
that they are deterministic without dependence on (local or global) latent variables6.

(·P) A divergence D : P(Θ)× P(Θ)→ R+ that regularizes the posterior by penalizing
deviations from the prior π(θ). Note that D determines the nature of the uncertainty

4. As pointed out above, losses are not required to be identical. For instance, we could replace `(θ, xi) by
`i(θ, xi) and set `i(θ, xi) = `(θ, xi|x1:i−1). Here, the xi-th observation is conditioned on the first i− 1
observations as is common in time series models. Generally speaking, conditional dependence is easy to
incorporate into the RoT at the expense of complicating notation, see also Knoblauch (2019a).

5. This requirement is easily relaxed: For instance, in the experiments on Deep Gaussian Processes in
Section 6, all losses are defined relative to latent variables.

6. While latent variable models are not the focus of the current paper, the RoT and GVI are easily extended
to the latent variable case, see Knoblauch (2019a).
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induced by π. To see this, consider D = 0 and the (non-RoT) problem

q̂(θ) = arg min
q∈P(Θ)

{
Eq

[
n∑
i=1

`(θ, xi)

]}
. (11)

Denoting θ̂n = arg minθ∈Θ {
∑n

i=1 `(θ, xi)} and δy(x) as the Dirac measure at y, it
is clear that q̂(θ) = δ

θ̂n
(θ), which holds as δ

θ̂n
∈ P(Θ). Clearly, the absence of D

corresponds to the absence of any uncertainty in the posterior. Similarly, the nature
of D determines the nature in which uncertainty about θ is quantified.

(·C) A set of feasible posteriors Π ⊆ P(Θ): By definition, any q ∈ Π is a feasible solution
for the optimization problem associated to the posterior P (`,D,Π).

Interestingly, each of these three arguments directly addresses one of the problems (EP), (EL)
and (EC) in Section 3: Firstly, the loss ` determines the parameter and thus can be used
to tackle model misspecification and other violations of (L). Secondly—assuming one has
specified the best possible prior—the divergence D can tackle (P) by shaping the nature in
which priors affect uncertainty quantification. Thirdly, the choice of Π can directly address
(C): The more computational power is available, the more complex Π is allowed to become.
Formalizing this intuitive modularity, we arrive at the following result:

Theorem 10 (RoT modularity) Hold x1:n, n, π(θ) and Π fixed. Let q∗1(θ) ∈ Π =
P (`,D,Π). If one wishes to derive an alternative posterior q∗2(θ) ∈ Π through the RoT

(1) which avoids or is robust to model misspecification, this amounts to changing `.

(2) which is robust to prior misspecification without changing the parameter of interest,
this amounts to changing D.

(3) which affects quantification of uncertainty without changing the parameter of interest,
this amounts to changing D.

Since giving a complete account of the necessary arguments and definitions (such as the
definition for robustness) is somewhat laborious, we defer definitions and the proof to
Appendix C.

4.4 Connecting the Rule of Three to existing methods

As summarized in Table 1, most existing methods with Bayesian flavour are special cases
of P (`,D,Π). This includes a wide range of approximate Bayesian methods, including
standard Variational Inference (VI). In the following paragraphs, we elaborate on some
of the most important connections.

4.4.1 Standard Variational Inference (VI)

One of the perhaps most surprising entries in Table 1 are standard VI posteriors: the RoT

does not judge the full Bayesian posterior q∗B to be preferable to standard VI posteriors
q∗VI by default. The reason for this is simple: Unlike the traditional Bayesian paradigm,
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Method `(θ, xi) D Π

Standard Bayes − log p(xi|θ) KLD P(Θ)

Power Likelihood Bayes1 − log p(xi|θ) 1
wKLD, w < 1 P(Θ)

Composite Likelihood Bayes2 −wi log p(xi|θ) KLD P(Θ)

Divergence-based Bayes3 divergence-based ` KLD P(Θ)

Gibbs/PAC-Bayes 4 any ` KLD P(Θ)

VAE5,† − log pζ(xi|θ) KLD Q
β-VAE6,† − log pζ(xi|θ) β · KLD, β > 1 Q
Bernoulli-VAE7,† continuous Bernoulli KLD Q
Standard VI − log p(xi|θ) KLD Q
Power VI8 − log p(xi|θ) 1

wKLD, w < 1 Q
Utility VI9 − log p(xi|θ) + log u(h, xi) KLD Q
Regularized Bayes10 − log p(xi|θ) + φ(θ, xi) KLD Q
Gibbs VI11 any ` KLD Q
Generalized VI any ` any D Q

Table 1: Relationship of P (`,D,Q) to a selection of existing methods. 1(e.g. Grünwald,
2011, 2012; Holmes and Walker, 2017; Grünwald and Van Ommen, 2017; Miller and Dunson,
2019), 2(e.g. Varin et al., 2011; Pauli et al., 2011; Ribatet et al., 2012; Hamelijnck et al.,
2019), 3(e.g. Hooker and Vidyashankar, 2014; Ghosh and Basu, 2016; Futami et al., 2018;
Jewson et al., 2018; Chérief-Abdellatif and Alquier, 2019a), 4(Bissiri et al., 2016; Germain
et al., 2016; Guedj, 2019; Syring and Martin, 2019), 5(Kingma and Welling, 2013), 6(Higgins
et al., 2017), 7(Loaiza-Ganem and Cunningham, 2019) 8(e.g. Yang et al., 2017; Huang et al.,
2018) 9(e.g. Kuśmierczyk et al., 2019; Lacoste-Julien et al., 2011) 10(Ganchev et al. (2010),
but only if the regularizer can be written as Eq(θ) [φ(θ,x)] as in Zhu et al. (2014)), 11(e.g.

Alquier et al., 2016) †For notational clarification for the VAE entries in the table, see Section
4.4.4.

the RoT explicitly encodes the availability of finite computational resources through the
argument Π. Hence, when computational resources are scarce and posterior beliefs can
only be computed over a parameterized set Q ⊂ P(Θ), standard VI produces the best
computationally feasible posterior. In this sense, the RoT respects the optimality result of
standard VI presented in Theorem 2.

4.4.2 Coherence and the RoT

Unlike previous generalizations such as the Generalized Bayesian update in eq. (2), posteriors
generated through the RoT are allowed to break a property referred to as coherence or
Bayesian additivity (e.g. Bissiri et al., 2016; Fong and Holmes, 2019). In a nutshell, coherence
says that posteriors have to be generated according to some function ψ : R2 → R which for

24



An Optimization-centric View on Bayes’ Rule

the prior π(θ) and loss terms `(θ, x1), `(θ, x2) behaves as

ψ (`(θ, x2), ψ (`(θ, x1), π(θ))) = ψ (`(θ, x1) + `(θ, x2), π(θ)) .

Effectively, this property enforces a multiplicative update via exponential additivity as in eq.
(2). For the standard Bayesian posterior, the desirability of coherence is a direct result of
assuming (P) and (C). To see this, note that treating the prior belief according to (P) and
assuming infinite computational power via (C) is exactly equivalent to setting D = KLD and
Π = P(Θ). Solving eq. (3) with these specifications as in the proof of Theorem 1, one now
obtains the coherent exponentially additive update rule in eq. (2). In other words, enforcing
coherence is reasonable only if (P) and (C) can be assumed to hold. Conversely, posteriors
that violate coherence do not have to rely on (P) and (C)—which is precisely what we set
out to do in the first place.

4.4.3 PAC-Bayes

While PAC-Bayesian results often have intimate links with Bayesian inference (see e.g.
Germain et al., 2016; Grünwald and Van Ommen, 2017), their motivations and origins
are distinct (see e.g. Shawe-Taylor and Williamson, 1997; Guedj, 2019): Unlike Bayesian
inference, PAC-Bayesian results are not constructed based on (P) and (L). Rather, their aim
is the derivation of generalization bounds for belief distributions q(θ) ∈ P(Θ) defined over
some hypothesis space (corresponding to the parameter space Θ) relative to a loss function
(corresponding to `). For example, under a prior belief π(θ), a loss ` and a data generating
mechanism for x1:n satisfying appropriate regularity conditions and for any q(θ) ∈ P(Θ) as
well as for any fixed value of ε > 0, McAllester’s seminal bound (McAllester, 1999a,b) says
that with probability at least 1− ε,

Eq(θ)

[
Ex1:n

[
1

n

n∑
i=1

`(θ,xi)

]]
≤ Eq(θ)

[
1

n

n∑
i=1

`(θ, xi)

]
+

√
KLD(q, π) + log 2

√
n
ε

2n
. (12)

Minimizing the right hand side of this bound with respect to q(θ) over some set Π ⊆ P(Θ)
immediately recovers a special case for the RoT given by P (`,DMcAllester,Π). Here, DMcAllester

is just the last term of the above bound, with a subtracted constant and rescaled by n:

DMcAllester(q‖π) =
√
n ·


√

KLD(q, π) + log 2
√
n
ε

2
−

√
log 2

√
n
ε

2

 .

Subtraction of the constant ensures that DMcAllester(q‖π) = 0 if and only if π(θ) = q(θ)
(almost everywhere). The rescaling is necessary as we have to multiply both sides of eq. (12)
by n to bring them into the RoT form. Note that neither the addition of the constant nor
the rescaling affects the minimizer of the right hand side.

A similar logic can be applied to virtually all PAC-Bayesian bounds, crucially also for
bounds based on divergences other than the KLD such as those of Bégin et al. (2016),
Alquier and Guedj (2018), or Ohnishi and Honorio (2020).7 In these settings, GVI—the

7. For more classical bounds based on D = KLD 6= DMcAllester, see Catoni (2007); Zhang (2006).
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tractable case when Π = Q is a parameterized subset of P(Θ)—is a promising way forward
to scale and operationalize PAC-Bayesian learning. In fact, since the current manuscript
was first made publicly available, the work of Letarte et al. (2019) and Alquier (2020)
constitute the first steps in this direction. More generally speaking, PAC-Bayesian analysis
may prove crucial in deciding which divergence should be used for inference in a given
problem: The bounds of Bégin et al. (2016), Alquier and Guedj (2018), and Ohnishi and
Honorio (2020) all depend on divergences other than the KLD, and provide generalization
guarantees for less restrictive settings than the KLD. For example, the bounds of Alquier and
Guedj (2018) depend on f -divergences, and provide generalization guarantees even if the
observation sequence exhibits a substantial degree of heterogeneity or temporal dependence.
Similarly, unlike bounds based on the KLD, the bounds of Ohnishi and Honorio (2020)
provide generalization guarantees even if ` is an unbounded loss function.

4.4.4 Latent Variable Models & Variational Autoencoders

While we have thus far stated the entire development in terms of a single global latent
variable θ, nothing stops us from extending the presented ideas to local latent variables.
The reason for this is that none of our Axioms prohibit Θ or Π to depend on n or indeed
x1:n. In other words, we can seamlessly transfer everything we considered thus far to the
context of inference on local latent variables z1:n ∈ Zn by taking Θ = Θ(n) = Zn.

To make this logic more tangible, we will explain how Variational Autoencoders (VAEs)
(Kingma and Welling, 2013) can be recast in the RoT form. VAEs use local latent variables,
in our notation θ = θ1:n, to encode lower dimensional representations of observations x1:n

via the global parameter κg. Simultaneously, they seek to probabilistically decode the latent
variables back to the observation space via the global decoder model with parameters ζ.
This involves an optimisation problem over a set of distributions for the latent variables.
The corresponding variational family is

Πx1:n =

{
q(θ|κg) =

n∏
i=1

q(θi|κi) so that q(θi|κi) = N (θi;µ(κg, xi), σ(κg, xi)

}
,

where the parameters κi = (κg, xi) consist of a fixed local component observation xi as
well as the global parameter κg that is shared to be optimized over. Here, κg will define
the weights of a neural network indexing a probabilistic model. The optimization problem
underlying a VAE is now given by

arg min
ζ,q∈Πx1:n

{
n∑
i=1

Eq(θi|κi) [− log pζ(xi|θi)] +

n∑
i=1

KLD (q(θi|κi)‖π(θi))

}
.

where
∑n

i=1 Eq(θi|κi) [− log pζ(xi|θi)] minimises the expected reconstruction error of decoding
the probabilistic encoding and the KLD term regularises this encoding to improve the
model’s capacity to generate realistic pseudo-observations. Now simply note that for the
fully factorized prior π(θ) =

∏n
i=1 π(θi), one can rewrite the above as

arg min
ζ,q∈Πx1:n

{
Eq(θ|κg)

[
n∑
i=1

− log pζ(xi|θi)
]

+ KLD (q(θ|κg)‖π(θ))

}
, (13)
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which is a RoT form with an added optimization over the hyperparameter ζ.8 An important
distinction between this example and many of the others in Table 1 is that for VAEs, the
variational distributions are introduced in order to regularise the latent space rather than to
approximate an underlying Bayesian posterior. As a result, the VAE objective exists solely
as a means to generate desirable generative distributions for a particular inference tasks.

4.4.5 Links with Information Theory

One can also draw a close connection between the RoT and another latent variable model:
the Predictive Information Bottleneck (PIB) (see Tishby et al., 2000; Bialek et al., 2001).
Given a data generating process φ so that x1:∞ ∼ φ and a compressed representation θ of
the random variables x1:n, the PIB poses the following optimization problem:

q∗(θ|x1:n) = arg min
p(θ|x1:n)∈ΠPIB

{−I(θ,xn+1:∞)} s.t. I(θ,x1:n) ≤ I0, (14)

where all random variables admit densities p with respect to the Lebesgue measure,

I(Z,Y ) = KLD (p(Z,Y )‖p(Z)p(Y ))

denotes the mutual information between random variables Z and Y , and

ΠPIB =

{
q ∈ P(Θ|X n) :

∫
Θ
q(θ|x1:n)p(x1:n)dθ = p(x1:n)

}
is the set of admissible conditional distributions. This shows that the PIB maximizes the
mutual information I(θ,xn+1:∞) between the future xn+1:∞ and the compression (i.e. model)
θ subject to an upper bound I0 on the mutual information I(θ,x1:n) between said model
and the distribution of the training data x1:n. The PIB owes its name to the requirement
that I(θ,x1:n) ≤ I0: in words, this bound prevents the compression from being arbitrarily
expressive and forces us to squeeze the information contained in x1:n through a bottleneck.

This PIB form is generally hard to solve, but can be rewritten as a RoT-like objective

q∗(θ|x1:n) = arg min
q∈ΠPIB

{Eq [Ln,PIB(q)] +DPIB(q‖πPIB)} .

The nature of Ln,PIB and DPIB as well as mathematical details for arriving at this form
are deferred to Appendix D. While the structure of the problem closely resembles that
of Definition 9, there are some important differences. Most important among them, the
PIB relates to the full distributional characterizations of the random variables x1:n via
p(x1:n)—rather than to any actual observations x1:n. As a consequence, the space of feasible
solutions ΠPIB contains all possible conditional distributions {q∗(θ|x1:n)}x1:n∈Xn—rather
than a single conditional distribution q∗(θ|x1:n) depending on a single realization x1:n of
x1:n only.

8. Optimizing over hyperparameters in variational objectives is very common, and our experiments in
Section 6 make use of this technique, too. While optimizing over hyperparameters is strictly speaking not
part of the RoT definition, we treat and discuss objectives of this kind essentially as members of the RoT.
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As shown in Alemi (2019) however, the PIB can also be variationally lower-bounded
and approximated with observations x1:n to arrive at the usual data-dependent form of the
RoT. Specifically, if we are willing to assume that x1:n are independent, then we may rewrite
p(x1:n|θ) =

∏n
i=1 p(xi|θ). This allows the coarse approximation Ep(x1:n) [log p(x1:n|θ)] =

Ep(x1:n) [
∑n

i=1 log p(xi|θ)] ≈ ∑n
i=1 log p(xi|θ), which replaces dependence on p(x1:n) by

dependence on a finite sample x1:n. This yields the approximate lower bound

I(θ,x1:n) ≥ H(x1:n) + Ep(θ|x1:n)

[
Ep(x1:n) [log p(x1:n|θ)]

]
≈ H(x1:n) + Ep(θ|x1:n)

[
n∑
i=1

log p(xi|θ)

]
For any π ∈ P(Θ), we can also derive another approximate upper bound via

I(θ,x1:n|xn+1:∞) ≤ Ep(θ|x1:n)p(x1:n)

[
log

(
p(θ|x1:n)

π(θ)

)]
≈ Ep(θ|x1:n)

[
log

(
p(θ|x1:n)

π(θ)

)]
Writing out the resulting bound and minimizing over p(θ|x1:n) ∈ P(Θ), we find that its
minimizer is P (− log p(·|θ), βKLD,P(Θ)).

5. Generalized Variational Inference (GVI)

We now introduce a version of the RoT that is feasible for real-world inference and that we
call Generalized Variational Inference (GVI). For Q a parameterized subset of P(Θ) (i.e., a
variational family), GVI posteriors are given by P (`,D,Q). We proceed as follows:

Section 5.1 motivates why GVI generates conceptually appealing posteriors.

Section 5.2 motivates choosing non-standard losses ` and divergences D. Particular
emphasis is placed on practical advice for making posterior inferences robust to model
and prior misspecification.

Section 5.3 discusses two theoretical guarantees for GVI: frequentist consistency
and an interpretation as approximate lower bound on the evidence of a (generalized)
Bayesian posterior.

Section 5.4 focuses on strategies for inference. We derive closed form objectives for a
set of GVI posteriors that are robust to model misspecification, introduce black box
inference for GVI, and provide results on closed form divergence expressions.

5.1 Operationalizing the Optimization-Centric View on Bayesian Inference

The driving force of the development thus far has been the idea that undesirable inference
outcomes are synonymous with an inappropriately designed optimization objective—an
observation we call the optimization-centric view on Bayesian inference. Following this line
of reasoning, the most transparent way of improving posteriors is a direct adjustment of the
optimization problem that generated them. Conveniently, Definition 9 provides a way to
specify posteriors precisely this way.
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Definition 11 (Generalized Variational Inference (GVI)) Solving any RoT of form
P (`,D,Q) for Q = {q(θ|κ) : κ ∈ K} a parameterized subset of P(Θ) (also called a
variational family) constitutes a procedure we call Generalized Variational Inference ( GVI).

GVI posteriors have a number of desirable properties. Of particular practical importance is
that they inherit the modularity result of Theorem 10. The ramifications are threefold:

(1) GVI can address model misspecification by changing `,

(2) GVI can address prior misspecification by changing D,

(3) GVI can address undesirable uncertainty quantification by changing D.

In the context of potential misspecification problems, this modularity means that GVI

posteriors P (`,D,Q) are appealing alternatives to q∗B(θ) or q∗VI(θ). More precisely, if one can
identify whether the assumptions underlying standard Bayesian inference are violated via the
likelihood or the prior, GVI can be used to address this in a modular and optimization-centric
manner by directly modifying ` or D. This means that GVI has an inherently different
motivation from other variational methods (such as standard VI or DVI): rather than seeking
to approximate q∗B(θ), GVI designs and computes an inherently different—and hopefully
better-suited—posterior belief.

Many Bayesian practitioners may argue that this feature makes GVI less desirable than
alternative variational methods: why would we prefer these posteriors over approximations
to q∗B(θ)? In principle, this is a valid point: in fact, if the assumptions underlying Bayesian
inference are at least approximately correct, and if Q contains qualitatively good approx-
imations to q∗B(θ), one will want to use a method that is motivated as approximation to
q∗B(θ). Yet—even if likelihoods and priors are correctly specified—thinking of variational
methods as approximations is often misleading: In many applications, the set Q does not
contain any distributions that can approximate q∗B(θ) in any meaningful way. In this setting,
variational methods seeking to approximate q∗B(θ) have a clear drawback when compared to
GVI posteriors: they are not interpretable as a modularly specified belief distribution—and
so their behaviour can have rather undesirable side-effects. We demonstrate this in Example
3 and Figure 3, and will revisit this issue with our experiments in Section 6.1, where we
observe its real world consequence on Bayesian Neural Networks.

Example 3 (Label switching and multi-modality) A recurrent theme in the research
on variational approximations q∗A(θ) to q∗B(θ) is the observation that if Q is a mean field
normal family, q∗VI(θ) will center closely around the maximum likelihood estimate (e.g. Turner
and Sahani, 2011). This phenomenon is often referred to as the zero-forcing behaviour
of the KLD (Minka, 2005). Its effect are undesirably overconfident variational posteriors
q∗VI(θ). Moreover, this problem is especially pronounced when the approximated posterior
beliefs q∗B(θ) are multi-modal. Popular approaches to address this issue are Expectation
Propagation ( EP) (Minka, 2001; Opper and Winther, 2000) and Divergence Variational
Inference ( DVI) methods as introduced in Section 2.3.2 (e.g. Hernández-Lobato et al., 2016;
Li and Turner, 2016; Dieng et al., 2017). All of these approaches seek to (locally or globally)
minimize an alternative zero-avoiding divergence D between Q and q∗B(θ). Unlike with
GVI, changing the divergence in the DVI-sense no longer affects uncertainty
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quantification alone. In other words, we may accidentally interfere with the loss and warp
the way the goodness of a parameter value θ is assessed in undesirable ways.

Using Bayesian mixture models ( BMMs), we show that this is indeed a problem in practice.
BMMs produce multi-modal posteriors as the likelihood function is invariant to switching
parameter labels. In other words, BMMs have multiple parameter values that constitute
equally good fits to the data. With this in mind, we simulate n = 100 observations from

p (x|θ = (µ1, µ2)) = 0.5 · N
(
x|µ1, 0.652

)
+ 0.5 · N

(
x|µ2, 0.652

)
for two different parameterizations 1) θ = (0, 0.75) and 2) θ = (0, 2). For inference, we use
the well-specified prior belief µj ∼ N (0, 22), j = 1, 2. Using the correctly specified likelihood
function `(θ, xi) = − log p (xi|θ = (µ1, µ2)), we compare the standard Bayesian posterior
q∗B(θ), the standard VI posterior q∗VI(θ), a DVI posterior based on Rényi’s α-divergence
(D(α)

AR) as described by Li and Turner (2016), and a GVI posterior using D = D
(α)
AR (see eq.

(15) and Appendix Definition 22). For Q, we use the collection of fully-factorized normals
on Θ.

Figure 3 shows the results. Because p (x|θ = (µ1, µ2)) = p (x|θ = (µ2, µ1)), there are two
equally good parameter values describing the data—implying that the full posterior q∗B(θ) is
bi-modal. By choice of Q however, the variational DVI and GVI posteriors are unimodal,
which endows them with a straightforward interpretation: firstly, the modes of these posteriors
should correspond to (one of the two) best parameter values of θ = (µ1, µ2). Secondly, their
variances quantify the uncertainty about this best value. For both settings of the true value
for θ, DVI produces a posterior that reflects a highly undesirable belief: the mode of the
DVI posterior is located at a (locally) worst value of θ. Unsurprisingly and as the bottom
right plot shows, this adversely affects predictive performance. This behaviour is entirely
attributable to the fact that unlike GVI posteriors, DVI do not inherit the modularity result
of Theorem 10. In this context, Figure 3 serves as a morality tale: In the GVI framework,
changing the KLD to another divergence only changes uncertainty quantification and does
not affect the way the best parameter is found. In sharp contrast, the DVI framework comes
with no such guarantee. Accordingly, posteriors produced with DVI may conflate uncertainty
quantification and the way the best parameter is found.

5.2 Choosing ` and D: Robustness, better marginals, and beyond

Under an optimization-centric view on Bayesian methods, saying that q∗VI(θ) produces
undesirable inferences amounts to saying that the objective in eq. (6) is inappropriate
for the inference task at hand. By virtue of their modularity, it is also clear that GVI

posteriors define convenient alternative objectives that can address some of the drawbacks
of traditional variational methods. Here, we focus on three situations that often cause
problems for standard VI, but can be addressed by GVI: Prior misspecificaton (EP), model
misspecification (EL), and overly narrow marginal variances.

To conclude this section, we provide some practical advice for using GVI. Since this
has been our focus throughout, we focus on choices of ` and D that enhance robustness.
Additionally, we also give some brief insights into other motivations for changing ` and D
that go beyond robustness.
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Figure 3: Best viewed in color. Depicted are inference outcomes for a BMM model, namely the
(multimodal) standard Bayesian posterior, standard VI posterior, a DVI-approximation
based on minimizing D

(α)
AR between Q and q∗B(θ) (Li and Turner, 2016), and a GVI posterior

taking D = D
(α)
AR. Top: Posterior marginals for µ1 = 0, µ2 = 0.75. The mode of the

DVI posterior is a locally worst value for θ relative to the exact Bayesian posterior. In
contrast, standard VI and GVI respect the loss: They produce a posterior belief centered
around one (of the two) values of θ minimizing the loss. Bottom left: Posterior marginal
for µ1 = 0, µ2 = 2. The effects of the top row become even stronger as the modes move
further apart. Bottom right: Posterior predictive for µ1 = 0, µ2 = 2 against the histogram
depicting the actual data. VI, GVI and exact Bayesian inference perform well and almost
identically. DVI performs poorly, failing to capture the mixture components of the BMM.

5.2.1 robustness to prior misspecification via D

As outlined in Section 3.3, inference outcomes are adversely affected if the prior does
not at least approximately reflect the best available judgement about good values of θ
before any data is seen. This is a problem whenever the prior is specified according to
some (more or less arbitrary) default setting. For example, in the case of Bayesian Neural
Networks (BNNs), a typical choice of prior is a multivariate standard normal distribution that
factorizes over all network weights. While this may seem harmless or even uninformative, a
supposedly uninformative prior specification of this kind actually encompasses a large degree
of information, e.g.
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(U) The prior belief is unimodal. In other words, we believe that there exists a uniquely
most likely parameterization of the network before observing any data.

(I) The prior belief is that all network weights of a BNN are uncorrelated. In fact, we even
believe that all network weights of a BNN are both pairwise and mutually independent.9

The above implications are in direct and strong contradiction to our best possible judgements
about BNNs and thus violate (P):

(EU) Neural Networks are well-understood to have multiple parameter settings that are
equally good (e.g. Choromanska et al., 2015). The unimodality assumption outlined in
(U) is thus clearly not a reflection of the best judgement available: A prior belief in
accordance with (P) would encode multimodality.

(EI) By construction, Neural Networks encode a significant degree of dependence in their
parameters: The best values for parameters in the l-th layer will strongly depend on
the best values for parameters in the (l− 1)-th layer (and vice versa). Hence, assuming
uncorrelatedness (much less so independence!) directly contradicts our best judgement.

From this, it is obvious that a fully factorized normal distribution is hardly an appropriate
default prior for BNNs in the sense of (P) in Section 3.1. At the same time, it is often
prohibitive or computationally infeasible to construct alternative prior beliefs that reflect
our best judgements more accurately. In other words, we are stuck with a sub-optimal prior.
Under the standard Bayesian paradigm, this is not an acceptable position. In contrast,
the optimization-centric paradigm outlined in Section 4.1 does not require the prior to be
flawless. We can thus use our very imperfect prior to design more appropriate posterior
beliefs: Simply adapt the argument D which regularizes the posterior belief against the prior.
In particular, we want to adapt D such that the resulting posteriors satisfy two criteria:
Firstly, they should be more robust to priors which strongly contradict the observed data.
Secondly, they should still provide reliable uncertainty quantification.

There is a host of robust alternatives to the KLD that we may hope behave in this way,
most of which fall within the families of α-, β-, and γ-divergences. Appendix B studies the
way in which these divergences affect prior robustness and uncertainty quantification in
great detail. Some of the most important findings are

• D should be unbounded over Q to prevent the posterior from collapsing to a point
mass. This rules out the family of α-divergences as well as the Total Variation Distance,
see Appendix B.1. Further and unsurprisingly, the larger the regularizers D, the larger
the induced posterior variances, see Appendix B.2

• Using D = 1
wKLD for w ∈ (0, 1) makes marginal variances larger, but is highly non-

robust to misspecified priors. This should not come as a surprise, since all we do is
giving more weight to the same regularizer that we were trying to fix in the first place.
While w > 1 decreases the adversarial effects of misspecified priors, it also rapidly
shrinks the posterior’s marginal variances. For details, see Appendix B.3.1.

9. For joint normal distributions, variables are uncorrelated if and only if they are independent.
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Figure 4: Best viewed in color. Taken from Section 6.2 in Knoblauch (2019a), the plot shows
the impact of different prior beliefs on inference in a Bayesian normal mixture model with
n = 50 observations and mixture components in Rd for different choices of d. Specifically,
the plot compares inference outcomes under a misspecified prior (Top) against those under a
well-specified prior (Bottom). It does so by depicting the average absolute difference between
the true parameter values and their MAP estimate on the y-axis. Here, the solid whiskers’
length corresponds to one standard deviation of the underlying posterior. For full details,
see Appendix E. The plot shows that using the KLD as prior regularizer as in standard
Variational Inference (VI) will produce undesirable uncertainty quantification under
misspecified prior beliefs. In contrast, Generalized Variational Inference (GVI) with
Rényi’s α-divergence as prior regularizer produces desirable uncertainty quantification in
both settings.

• The robust families of β- and γ-divergences induce fairly similar behaviour. While
they are robust to misspecified priors for β > 1 (or γ > 1), this robustness comes at
the price of a smaller marginal variance. For more details, see Appendices B.3.3 and
B.3.4.

• Amongst all robust divergences that we examined, Rényi’s α-divergence has the most
desirable properties. Specifically, it guarantees prior robustness without tightening the
marginal variances. Thus, it provides the prior robustness of β- and γ-divergences
without the associated overconfident uncertainty quantification, see Appendix B.3.2)

In conclusion, we find that Rényi’s α-divergence provides prior robustness in the most
practically useful way. For values of α ∈ (0, 1), it generally also provides larger marginal
variances than the KLD. Conversely, values of α > 1 provide tighter marginal variances than
the KLD. As Figures 4 and 10 show, the divergence produces similar posteriors as D = KLD

if the prior is correctly specified. The same Figures also show that unlike KLD, choosing
Rényi’s α-divergence continues to produce desirable uncertainty quantification when the
prior is misspecified.
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Figure 5: Depicted is the magnitude D(q‖π) for different robust divergences D and the
KLD for two Normal Inverse Gamma distributions given by q(θ) = NI−1(θ;µq,Vq, aq, bq)
and π(θ) = NI−1(θ;µπ,Vπ, aπ, bπ) with µπ = (0, 0)T , Vπ = 25 · I2, aπ = 500, bπ = 500 and
µq = (2.5, 2.5)T , Vq = 0.3 · I2, aq = 512, bq = 543.

Going into more detail, Rényi’s α-divergence—henceforth denoted D
(α)
AR and introduced

by Rényi (1961)—in the parameterization of Cichocki and Amari (2010) is given by

D
(α)
AR(q‖π) =

1

α(α− 1)
log

(
Eq(θ)

[(
π(θ)

q(θ)

)1−α
])

. (15)

Originally, Rényi’s α-divergence was motivated as the geometric mean information to
discriminate between the two hypotheses θ ∼ π(θ) and θ ∼ q(θ) of order α, for some
α ∈ (0, 1). Similarly, the original motivations for the KLD was its interpretation as the
arithmetic mean information to discriminate between θ ∼ π(θ) and θ ∼ q(θ) (Kullback
and Leibler, 1951). Intuitively speaking, geometric means are more robust measures of
central tendency than arithmetic means, and so it makes sense that the D

(α)
AR is generally

a more robust discrepancy measure. Conversely, picking smaller values of α ∈ (0, 1) will
produce more prior-robust measures of discrepancy than larger values of α ∈ (0, 1). Indeed,
D

(α)
AR(q‖π) even recovers the non-robust discrepancy KLD(q‖π) as α → 1. A host of other

robust divergences also recover the KLD as their respective hyperparameters appraoch one.
This includes α-, β- and γ-divergences as well as their generalizations (see Cichocki and
Amari, 2010). To illustrate this phenomenon, we vary their hyperprameters and plot their
magnitude in Figure 5. The plot illustrates that in our parameterization, hyperparameter
values below (above) unity impose larger (smaller) penalties than the KLD.

While D(α)
AR behaves robustly, it has one clear practical drawback relative to other potential

regularizers such as the KLD or f -divergences. Specifically, eq. (15) defines it as a log
expectation—meaning that standard stochastic inference techniques do not provide unbiased
estimates for D. In the experiments of the current paper, we circumvent this issue by
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only considering variational families Q that permit a closed form of D(α)
AR. Note that this

requirement is not particularly restrictive, as Rényi’s α-divergence has closed forms for
essentially all exponential family members (see Theorem 36).

5.2.2 robustness to model misspecification via `

Section 3.4 explains how and why (EL) can severely impede the usefulness of standard
Bayesian posteriors: if p(·|θ) is not an accurate description of the data generating mechanism,
inferences are susceptible to outliers, heterogeneity, and other adversarial aspects of the data.
Recalling that q∗B(θ) = P (− log p(·|θ),KLD,P(Θ)), it is also clear that treating the likelihood
model as (approximately) correct amounts to using the log score `(θ, xi) = − log p(xi|θ)
to assess how well p(·|θ) fits {xi}ni=1. Indeed, this loss processes information about the
likelihood model p(·|θ) contained in x1:n optimally within a Bayesian framework if this
model happens to be correctly specified (Zellner, 1988).

While this implies that robust likelihood-based losses are typically less statistically efficient
under correct specification, this tradeoff radically reverses even under mild misspecification
(see e.g. Basu et al., 1998; Fujisawa and Eguchi, 2008; Hung et al., 2018; Jewson et al., 2018).
For notational clarity, we write Ln(θ, x1:n) = Ln(p(·|θ), x1:n) as a robust loss assessing
the fit of likelihood parameter θ on the sample x1:n. The most appealing choices for
Ln : P(Θ) × X n → R are finite-sample estimators of D(px(·)‖p(·|θ)) for some robust
divergence D. In other words, a natural loss is the estimated divergence between the true
data-generating mechanism px and the model p(·|θ). A notable advantage of designing
losses in this way is the following: even in the unlikely event that p(·|θ) is correctly specified
for px—so that there is θ∗ for which px = p(·|θ∗)—minimizing an unbiased estimate of
D(px(·)‖p(·|θ)) targets the correct value θ∗ for any statistical divergence D. So even
though robust losses are less efficient than the log score under correct misspecification, they
nonetheless recover the parameter value if the model is correctly specified. An overview of
some robust losses constructed in this way is provided in Table 2. Note that unlike in eq.
(9), we have not assumed additivity of Ln since a large class of such robust losses obtained
this way are non-additive.

All losses presented in Table 2 guarantee various forms of robustness, and their main
limiting factors are often of practical nature. To begin with, all except the Total Variation
Distance depend on hyperparameters that are generally difficult to choose. All of the
non-additive losses in the table also come with higher computational complexity, since
non-additive losses do not admit unbiased estimation by sub-sampling. On top of this, such
losses generally come with increased computational overhead. For example, kernel-based
discrepancy measures such as the Maximum Mean Discrepancy or Kernel Stein Discrepancy
are estimated using double sums. This means that evaluating these losses on a sample of size
n has a computational complexity of O(n2). Estimating losses based on the α-divergence or
the Total Variation Distance is even more computationally demanding, since they require
kernel density estimators if X = Rp.

In summary, computational feasibility makes additive losses much more compelling
than their non-additive alternatives. At the time of writing, the only two divergence-based
losses that are both robust and additive are those corresponding to the family of β- and
γ-divergences (denoted Lβp and Lγp respectively), first introduced by Basu et al. (1998) and
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Divergence Hyperparameters Additive References

α-divergence α ∈ (0, 1) 7 Beran et al. (1977); Tamura and Boos
(1986); Simpson (1987); Lindsay et al.
(1994); Hooker and Vidyashankar (2014)

β-divergence β > 1 3 Basu et al. (1998); Ghosh and Basu
(2016); Futami et al. (2018)

γ-divergence γ > 1 3 Fujisawa and Eguchi (2008); Hung et al.
(2018); Nakagawa and Hashimoto (2019)

Maximum Mean
Discrepancy

Kernel kν and ν 7 Briol et al. (2019); Chérief-Abdellatif
and Alquier (2019b,a)

Kernel Stein Dis-
crepancy

Stein Operator, ker-
nel kν and ν

7 Barp et al. (2019)

Total Variation Dis-
tance

— 7 Yatracos (1985); Devroye and Lugosi
(2012); Knoblauch and Vomfell (2020)

Table 2: Overview over robust likelihood-based losses derived from divergences

Hung et al. (2018).

Lβp(θ,yi) = − 1

β − 1
p(yi|θ)β−1 +

Ip,β(θ)

β
(16)

Lγp(θ,yi) = − 1

γ − 1
p(yi|θ)γ−1 · γ

Ip,γ(θ)
γ−1
γ

.

Here, the integral term Ip,c(θ) =
∫
p(y|θL)cdy is generally available in closed form for

exponential families. These losses are more robust than the log score whenever β > 1 (or
γ > 1). Relative to other robust losses, they have two additional benefits: firstly and we
will explain in Section 5.4.1, they have desirable computational properties. Secondly, the
hyperparameter β (or γ) has a clear interpretation since the losses recover the negative log

likelihood as β → 1 (or γ → 1). To see this, one simply notes that limx→1
zx−1−1
x−1 = log z

and Ip,1(θ) = 1. Thus—unlike the other entries in Table 2 except the α-divergence—the
losses Lβp and Lγp can be made arbitrarily close to the standard negative log likelihood. More
specifically, choices of β = 1 + ε (or γ = 1 + ε) for small ε > 0 will provide a loss function
that is both robust and nearly as statistically efficient as the negative log likelihood.

Unfortunately, it is generally difficult to pick the optimal degree of robustness ε because
its optimal level will depend on the scale of the data x1:n. However, in numerous experiments
both in the remainder as well as in prior work (e.g. Jewson et al., 2018; Knoblauch et al.,
2018; Knoblauch, 2019a) we found that if the data are standardized, values for ε ∈ [0.01, 0.1]
will yield a very favourable trade-off between robustness and efficiency across a very wide
range of data sets and models.

Influence functions provide a concise and intuitively appealing way of illustrating this
trade-off between robustness and efficiency. In the Bayesian context, influence functions
quantify the impact the (n + 1)-th observation xn+1 has on the posterior distribution
q∗B(θ) constructed using the first n observations (Peng and Dey, 1995). This discrepancy is
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Figure 6: Best viewed in color. The plots compare influence functions (Left) and predictive
posteriors (Right) of a standard Bayesian inference against a GVI posterior. Left: The
influence functions of scoring the normal likelihood with a standard negative log likelihood
against a robust scoring rule derived from β-divergences. Right: A univariate normal
is fitted using all the data depicted, including the outlying contamination. The posterior
predictive corresponding to the robust scoring rule and β = 1.25 is able to ignore these
outliers. This stands in contrast to the posterior predictive based on standard Bayesian
inference, which assigns increasingly large influence to outlying observations.

measured by computing a divergence between the posteriors based on x1:n and on x1:(n+1).
Using the Fisher-Rao divergence (see Kurtek and Bharath, 2015), Figure 6 compares the
influence of a standard Bayesian posterior with that of a posterior belief computed using
Generalized Variational Inference (GVI). The left side of the Figure quantifies the lack of
robustness for standard Bayesian methods: In this, the influence of xn+1 on the posterior
belief grows stronger and stronger the more untypical it is relative to previously observed
data. Similarly, the right side shows the adverse effect this has on the posterior predictive.
To make the implications of influence functions for inferential practice more tangible, we
refer to the outlier problem in Example 4.

Example 4 (Outliers as violations of (L)) Arguably the most useful conceptualization
of outliers is that inherent in the ε-contamination model. In this model, most of the data
come from the uncontaminated model p(xi|θ∗), but a small proportion ε ∈ (0, 1) comes from
an outlier-generating density o:

ptrue(xi) = (1− ε) · p(xi|θ∗) + ε · o(xi).
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For data generated like this, an obvious violation of (L) would be to fit the data only to the
non-contaminated component p(xi|θ) in order to infer θ∗. This type of model misspecification
is especially poignant in Bayesian On-line Changepoint Detection ( BOCPD) (see e.g. Adams
and MacKay, 2007; Fearnhead and Liu, 2007; Wilson et al., 2010; Saatçi et al., 2010; Caron
et al., 2012; Turner et al., 2013; Knoblauch and Damoulas, 2018; Knoblauch et al., 2018).
Through an efficient recursive relationship that updates the Bayesian posterior, BOCPD

segments a data stream in real time. A canonical application example of BOCPD is the well-
log data set (O’Ruanaidh, 1994) whose observations are the nuclear responses of rock strata
while drilling a well. Generally, different rock strata are clearly distinguishable. However, as
rock formation processes are noisy and sometimes interrupted by extraordinary events (e.g.,
tsunamis, earth quakes, eruptions), the data are surprisingly close to an ε-contaminated
normal distribution within each of the strata. Figure 7 is taken from Knoblauch et al. (2018)
and shows how this phenomenon renders vanilla BOCPD an unreliable algorithm. It also
shows that this issue can be remedied by constructing alternative posterior belief distributions
via a special case of Generalized Variational Inference ( GVI) based on robust loss functions
derived from the β-divergence.

0 500 1000 1500 2000 2500 3000 3500 4000
Time

80000

100000

120000

140000

Nu
cle

ar
 R

es
po

ns
e

Figure 7: Best viewed in color. Inference outcomes of BOCPD on the well log data set
using the standard Bayesian posterior and a GVI posterior constructed with robust
losses based on the β-divergence. Solid vertical lines correspond to Maximum A Posteriori
(MAP) segmentation of GVI posterior, dashed vertical lines mark incorrect changepoints
additionally detected under standard Bayesian inference.

5.2.3 beyond robustness

While we have focused on using robustness throughout the paper, it should be clear that
the generalization introduced in Definition 9 is also useful outside this narrow restriction.
In fact, the standard VI objective can be inappropriate even in situations where assuming
appropriately specified priors (P) and likelihood functions (L) underlying the traditional
Bayesian paradigm are a useful working assumption.

Adjusting marginal variances: the uncertainty quantification of standard VI is often
inappropriate when Q is a mean field variational family factorizing dimension-wide over
θ and the individual entries of θ exhibit strong dependence (see for instance Example 3).
Oftentimes, this phenomenon is referred to as mode seeking behaviour (e.g. Minka, 2005).
The name itself also reveals that this problem is intimately linked to variational families
Q containing only unimodal distributions. Again, the modularity result of Theorem 10
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Figure 8: Best viewed in color. Marginal VI compared to different GVI posteriors for the
coefficient θ1 of data simulated from a Bayesian linear model (see Appendix B for details).
For all posteriors, the loss ` is the correctly specified negative log likelihood of the true data
generating mechanism. Further, for all variational posteriors the belief is constrained to lie
inside a mean field normal family Q. Due to high correlation between the coefficients for the
exact posterior, standard VI produces undesirably over-concentrated belief distributions.
In contrast, appropriately choosing the hyperparameters of alternative robust divergences
D 6= KLD provides more desirable uncertainty quantification.

can be helpful: Provided that one is limited to choosing the set of possible approximations
Q to contain only unimodal distributions, one can adapt the GVI posterior’s uncertainty
quantification properties by changing D = KLD to an alternative divergence. For instance,
in Example 3, Rényi’s α-divergence (D(α)

AR) provided a wider marginal variance. As Figure 8
illustrates, most other robust divergences behave similarly.

Inferential machinery for non-standard PAC-Bayes bounds: certain choices of D 6=
KLD would lead to an interpretation of the GVI objective as a PAC-Bayesian generalization
bound (see for instance Bégin et al., 2016; Wang et al., 2018; Ohnishi and Honorio, 2020) or
a regret bound (see Alquier, 2020). Importantly, these generalization bounds hold under
conditions where traditional PAC-Bayesian bounds based on the KLD would fail, such as
unbounded losses, heavy tails, or sequential dependence.

Intractability: one can use losses derived from the Fisher divergence or the Kernel Stein
Discrepancies (Hyvärinen, 2005; Barp et al., 2019) to perform inference in likelihood models
p(x|θ) = p̂(x|θ)/Z(θ) where the normalization constant Z(θ) is intractable. Specifically,
these losses only depend on the derivative of the likelihood model, so that we can ignore the
normalization constant since ∇x log p(x|θ) = ∇x log p̂(x|θ) − ∇x logZ(θ) = ∇x log p̂(x|θ).
Similarly, we can perform inference for models with implicitly specified, intractable likelihoods
by using the Maximum Mean Discrepancy as loss function (see Chérief-Abdellatif and Alquier,
2019a). Unlike the log likelihood, the Maximum Mean Discrepancy can be used as a loss
function even if the likelihood function p(·|θ) has no analytic form and can only be sampled
from for any given θ ∈ Θ—as in simulators. It is also possible to instead adapt D in a
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Consistency of GVI posteriors on Bayesian linear regression

Figure 9: Best viewed in color. Marginal VI and different GVI posteriors for the first
coefficient of a simulated 20-dimensional Bayesian Linear Model based on n observations.
The loss ` is the correctly specified negative log likelihood of the true data generating
mechanism and D is varied along the x-axis. Depicted are the forward and reverse KLD,
Rényi’s α-divergence (D(α)

AR), Jeffrey’s Divergence (JD) as well as the Fisher Divergence (FD).
All posteriors are members of the mean field normal family Q. Because all inferred posterior
beliefs are normals, dots are used to mark out the posterior mean and whiskers to denote
the posterior standard deviation. All posteriors are re-centered around the true value of the
coefficient, so that the y-axis shows how far the posterior belief is from the truth.

similar vain. This would simplify inference with so-called implicit priors that are represented
by a sample only (see e.g. Tiao et al., 2018).

Simplified optimization: From a more practical point of view, one could choose D (or `)
to simplify the corresponding optimization problem. For example, one could make D = DQ
directly defined only for a particular variational family Q to ensure that DQ is convex (or
even strongly convex) in the variational parameters. In fact, it is surprisingly easy to do
this. For example, letting π ∈ Q with variational parameter κπ, and q ∈ Q with variational
parameter κq, the divergence DQ(q‖π) = 1

2‖κπ − κq‖22 is 1-strongly convex in κq. Though
this particular ad-hoc divergence likely would produce strange uncertainty quantification,
the crucial point here is that it would result in an easy-to-optimize problem with a unique
solution whenever Eq(θ) [

∑n
i=1 `(θ, xi)] is convex in κq.

5.3 Theoretical properties of GVI

The principal appeal of GVI lies in its modularity and the associated subjective choices of `,
D and Q. Beyond that, the following section briefly visits two theoretical findings: firstly,
we point to novel results showing that GVI posteriors collapse to the population-optimal
value of θ as n→∞, regardless of D. Secondly, we show that GVI posteriors with certain
choices for D have a second interpretation as approximations to Bayesian posteriors with a
power likelihood.
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5.3.1 Frequentist consistency

Knoblauch (2019a) shows that GVI posteriors are consistent in the Frequentist sense. This
holds under a wide range of extremely mild regularity conditions on the arguments `,D
and Q so long as θ̂n is unique for all n large enough. Here, we state a simple version of the
result for independent data with the mean field normal variational family.

Theorem 12 (Frequentist consistency of GVI) Suppose that Assumption 1 in Knoblauch
(2019a) holds. Choose Q to be the mean field normal family, let D be lower-semi-continuous
in its first argument and suppose that D(q‖π) <∞ for all q ∈ Q. Further, let Px be the true
probability measure of some random variable x and suppose that the observations x1:n are
independent and identically distributed draws from x. If the prior is not infinitely bad for
the population of x (which is to say that Eπ [EPx [`(θ,x)]] <∞), then

q∗GVI,n(θ)
D−→ δθ∗(θ),

where q∗GVI,n(θ) is the GVI posterior corresponding to the problem P (`,D,Q) based on n
observations and θ∗ = arg minθ [EPx [`(θ,x)]] is the population-optimal parameter value.

Remark 13 This Theorem is an invocation of Corollary 1 in Knoblauch (2019a). As-
sumption 1 guarantees a number of conditions that are required to make GVI a well-defined
optimization problem. For example, it ensures that the sum of the losses has minimizers for
any finite n and in the large data limit and that the loss expected under Px is finite.

This finding is illustrated in Figure 9, which is taken from Knoblauch (2019a). As the theory
suggests, the posteriors collapse to a point mass under mild regularity conditions on D.
Unsurprisingly, speed and nature of the convergence depend on the choice of D.

5.3.2 GVI as a posterior approximation

Although the axiomatic development in Section 4.1 shows that GVI produces a posterior
belief distribution that is valid in its own right, one can also interpret certain GVI posteriors
as approximations to (generalized) Bayesian posteriors as in eq. (2). In particular, we show

that for a range of robust divergences D
(ρ)
robust parameterized by some hyperparameter ρ so

that limρ→1D
(ρ)
robust = KLD, the GVI objective constitutes a lower bound on the evidence

of generalized Bayesian posterior. Results of this form can be shown to hold for Rényi’s
α-divergence (D(α)

AR), the γ-divergence (D(γ)
G ) as well as the β-divergence (D(β)

B ). As they are
structurally similar, we only state the bound corresponding to D = D

(α)
AR and defer the results

for D(γ)
G and D

(β)
B as well as all proofs to Appendix F.

Theorem 14 (GVI as approximate Evidence Lower bound with D = D
(α)
AR) The ob-

jective of a GVI posterior based on P (`,D(α)
AR,Q) has an interpretation as lower bound on the

c(α)-scaled (generalized) evidence lower bound of P (w(α) · `,KLD,P(Θ)):

Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+ D

(α)
AR(q||π) ≥ −c(α) · ELBO

w(α)`(q) + S1(α, q, π) (17)
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where ELBOw(α)` denotes the Evidence Lower Bound associated with standard VI relative to
the generalized Bayesian posterior given by

q
w(α)`
B (θ) ∝ π(θ) exp

(
−w(α)

n∑
i=1

`(θ,xi)

)
,

where S1(α, q, π) = 1(0 < α < 1)
{
D

(α)
AR(q(θ)||π(θ)− KLD(q(θ)||π(θ))

}
is an interpretable

slack term, c(α) = min{1, α−1} and w(α) = max{1, α}.
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Figure 10: Best viewed in color. Marginal VI compared to different GVI posteriors for the
coefficient θ1 of data simulated from a d-dimensional Bayesian linear model with different
priors (see Appendix B for details). The prior for the coefficients is a Normal Inverse Gamma
distribution given by µ ∼ NI−1(µπ · 1d, vπ · Id, aπ, bπ) with vπ = 4 · Id, aπ = 3, bπ = 5
and various values for µπ. For all posteriors, the loss ` is the correctly specified negative
log likelihood of the true data generating mechanism. Further, all variational posteriors
are constrained to lie inside a mean field normal family Q. Notice that the standard VI

posterior corresponds to the ELBO component on the right hand side of the bound in eq.
(17). In contrast, the GVI posteriors are obtained by maximizing the left hand side of the
same bound.

Remark 15 Eq. (17) shows that the slack term S1(α, q, π) introduces the main difference
between P (`,D(α)

AR,Q) and P (w(α) · `,KLD,Q). It is possible but tedious to make analytically
more concise statements about S1(α, q, π) (see Appendix F). Doing so reveals that this
slack term makes P (`,D(α)

AR,Q) more robust to misspecification of the prior than that of
P (w(α) · `,KLD,Q), and that this behaviour becomes more pronounced for smaller α. This
phenomenon is summarized in Figure 10: since w(α) = 1 for α ∈ (0, 1), if we ignore
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S1(α, q, π) then the bound on the right of eq. (17) is just the ELBO of the Standard VI

posterior P (`,KLD,Q)) for all P (`,D(α)
AR,Q) with α ∈ (0, 1). As the Figure reveals, these two

posteriors are quite different—making the slack term rather important in relating P (`,D(α)
AR,Q)

to P (`,KLD,Q)). Since P (`,D(α)
AR,Q) inflates variance relative to P (`,KLD,Q)), one may

expect that up-weighting the KLD term with 1
α may produce similar posteriors. Thus, Figure

10 additionally compares P (`,D(α)
AR,Q) with P (`, 1

αKLD,Q)). Doing so reveals that while
P (`,D(α)

AR,Q) ≈ P (`, 1
αKLD,Q)) for reasonable prior specification, the distributions diverge

substantially as the prior becomes more and more misspecified. This clarifies the role of the
Slack term S1(α, q, π): while it ensures that P (`,D(α)

AR,Q) ≈ P (`, 1
αKLD,Q)) whenever π is

well-specified, it robustifies P (`,D(α)
AR,Q) (relative to P (`, 1

αKLD,Q))) for poor choices of π.

5.4 Inference with Generalized Variational Inference (GVI)

This section outlines two inference strategies for GVI: quasi-conjugate and fully black box
inference. Built on earlier findings in Knoblauch et al. (2018), we show that a class of GVI

posteriors based on robust likelihood scoring rules admits closed form variational objectives.
This closed form objective emerges when the likelihood is conjugate to the prior, we call the
resulting inference procedure quasi-conjugate. For more complicated models, closed form
objectives generally are not available. To address this, we introduce a black box inference
procedure for arbitrary choices of ` and D. Note that while this inference scheme in principle
works on any choice of π, Q and D, the variance of estimated gradients will be much-reduced
if D(q‖π) is available in closed form for all q ∈ Q. Conveniently, this generally holds if Q
is a set of exponential family models and π ∈ Q for all robust divergences studied in the
current paper.

5.4.1 Quasi-conjugate inference

An interesting interdependence between loss function and variational family was studied
in Knoblauch et al. (2018): When applying the robust scoring rule Lβ (see eq. (16))
derived from the β-divergence (D(β)

B ) to a likelihood p(·|θ) associated with a conjgate prior
π(θ|κ0), there is advantage in taking Q to be the family of the conjugate prior: specifically,
Lβ(θ, xi)→ − log p(xi|θ) as β → 1, so that the (generalized) Bayesian posterior

qβB(θ) ∝ π(θ)
n∏
i=1

exp
{
−Lβ(θ, xi)

}
becomes conjugate and is contained in Q as β → 1. Thus, so long as |β − 1| < ε for
some sufficiently small value ε > 0 and D = KLD, constraining the posterior to be in Q
produces excellent approximations to qβB(θ). Beyond approximation quality, choosing the
quasi-conjugate variational family also offers another advantage: As Theorem 2 in Knoblauch
et al. (2018) shows, they make the variational objective of P (Lβ,KLD,Q) available in closed
form. Consequently, no stochastic approximation to the objective is required, so that the
optimum is usually found within a very small number of iterations.

Proposition 16 extends this quasi-conjugacy to the robust scoring rule Lγ (see eq. (17))
derived from the γ-divergence (D(γ)

G ) of Hung et al. (2018). Similarly to Lβ, Lγ(θ, xi) →
− log p(xi|θ) as γ → 1, so that the same intuition that applied to Lβ also applies here.
Note that the conditions for Lγ in Proposition 16 are slightly more restrictive than those
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derived for Lβ due to the appearance of a multiplicative integral term. While the proof is
conceptually straightforward, it is notationally cumbersome and deferred to Appendix G.

Proposition 16 (Closed form GVI objectives with Lγ) Let Lγ(θ, ·) be the γ-divergence
based scoring rule for likelihood p(·|θ). Suppose p(·|θ) admits conjugacy relative to the expo-
nential distributions given by Q and let the conjugate prior π(θ|κ0) ∈ Q. Writing

p(x|θ) = h(x) exp
{
g(x)TT (θ)−B(x)

}
,

q(θ|κ) = h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
,

N = {κ : exp{A(η(κ))} <∞} ,

the objective of P (Lγ ,KLD,Q) has closed form if for observations x1:n and all q ∈ Q

I(γ)(θ) =

∫
X
p(x|θ)γdx, F1(κ) =

∫
Θ
T (θ)q(θ|κ)dθ, F2(κ) =

∫
Θ
I(γ)(θ)

1−γ
γ q(θ|κ)dθ

are closed form functions of θ and κ for all xi such that (η(κ) + (γ − 1)g(xi)) ∈ N .

5.4.2 Additional details on Black-Box GVI (BBGVI)

Standard VI is scalable using doubly stochastic, model-agnostic optimization techniques
(e.g. Paisley et al., 2012; Hoffman et al., 2013; Titsias and Lázaro-Gredilla, 2014; Salimans
and Knowles, 2014; Wu et al., 2019) collectively known as black box VI (Ranganath et al.,
2014). We extend these methods to black box GVI (BBGVI), an inference algorithm directly
inheriting the modularity of the posteriors defined by P (`,D,Q). This makes it easy to
build BBGVI into existing software: For example, adapting the Deep Gaussian Process
implementation of Salimbeni and Deisenroth (2017) required ¡100 lines of Python code.

Suppose Q = {q(θ|κ) : κ ∈ K} and that for all (κ,θ) ∈ (K,Θ), one can sample
θ ∼ q(θ|κ). Suppose also that the derivatives ∇κ log(q(θ|κ)) and ∇κD(q||π) exist (almost
surely relative to the measure on Θ induced by q). For many choices of D, Q and π,
∇κD(q||π) is available in closed form. In this case, BBGVI is particularly attractive and GVI

posteriors can be computed through an unbiased gradient estimate given as

∇κL̂(q|`,D,Q) =
1

S

S∑
s=1

{
n∑
i=1

`(θ(s), xi) · ∇κ log(q(θ(s)|κ))

}
+∇κD(q||π) (18)

and relying on an independent sample θ(1:S) i.i.d∼ q(θ|κ). Since all models in the experiments
of Section 6 admit closed forms for ∇κD(q||π), this is the gradient estimator we use in the
current paper. If a closed form for ∇κD(q||π) is not available but D(q||π) = Eq(θ|κ)

[
`Dκ,π(θ)

]
for a function `Dκ,π : Θ→ R, one could use the alternative unbiased gradient estimate

∇κL̂(q|`,D,Q) =
1

S

S∑
s=1

{[
n∑
i=1

`(θ(s), xi) + `Dκ,π(θ(s))

]
· ∇κ log(q(θ(s)|κ)) +∇κ`Dκ,π(θ(s))

}
.(19)

This can be deployed for most divergences of interest, including the family of f -divergences.
In some cases however, divergences will not be linear in q so that one has D(q‖π) =
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τ
(
Eq(θ|κ)

[
`Dκ,π(θ)

])
for some non-linear function τ : R → R. In this case, BBGVI can be

performed based on the biased gradient estimate

∇κL̂(q|`,D,Q) =
1

S

S∑
s=1

{
n∑
i=1

`(θ(s), xi) · ∇κ log(q(θ(s)|κ))

}
+

τ

(
1

S

S∑
s=1

`Dκ,π(θ(s))

)
· 1

S

S∑
s=1

∇κ`Dκ,π(θ(s)). (20)

Note that the induced bias of this estimator could be eliminated using the work of Grathwohl
et al. (2017). Whichever form the gradient takes, one can apply most standard black box
variance reduction techniques by introducing some control variate h (e.g. Ranganath et al.,
2014; Wu et al., 2019; Grathwohl et al., 2017), see also Appendix H for details. Algorithm 1
summarizes a generic BBGVI procedure.

Proposition 17 clarifies under which conditions closed forms for ∇κD(q‖π) are available
for the case of robust divergences.

Proposition 17 (Closed form D) Let q, π with natural parameters ηq,ηπ be in the expo-
nential family Q = {q(θ|η) = h(θ) exp {η′T (θ)−A(η)} : η ∈ N} with natural parameter
space N = {η : exp{A(η)} <∞}. Then,

(1) D
(α)
A (q||π) and D

(α)
AR(q||π) have a closed form if α ∈ (0, 1) or if αηq + (1− α)ηπ ∈ N

(2) D
(β)
B (q||π) has a closed form if h(θ) = h does not depend on θ and additionally,

(β− 1) ·η1 +η2 ∈ N for any η1,η2 ∈ N (amongst others, this holds for Beta, Gamma,
Gaussian, exponential or Laplace distributions)

(3) D
(γ)
G (q||π) has closed form if D

(β)
B (q||π) does for β = γ.

Roughly speaking, the above Proposition holds for all exponential families that are typically
of interest in variational inference schemes.

6. Experiments

Having introduced an inference strategy that is generic enough to work on high-dimensional,
black box Bayesian models, the remainder of the paper studies GVI on two applications
of interest in Bayesian Deep Learning. Before doing so, notice that as indicated in Table
1, previous work constitutes various interesting special cases of GVI with other strong
empirical results (e.g., Futami et al., 2018; Knoblauch et al., 2018; Chérief-Abdellatif and
Alquier, 2019a; Jankowiak et al., 2019) We add to this body of evidence by deploying GVI

on Bayesian Neural Networks (BNNs) and Deep Gaussian Processes (DGPs) to address
the particular ways in which these two models challenge the assumptions underlying the
standard Bayesian paradigm. All code used for generating the experiments is available from
https://github.com/JeremiasKnoblauch/GVIPublic.
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Algorithm 1 Black box GVI (BBGVI)

Input: x1:n, π, D, `, Q, h, StoppingCriterion, κ0, K, S, t = 0, LearningRate

done← False
while not done do

// STEP 1: Get a subsample from x1:n of size K
ρ1:K ← SampleWithoutReplacement(1 : n,K)
x(t)1:K ← xρ1:K

// STEP 2: Sample from q(θ|κt) and compute losses

θ(1:S) i.i.d.∼ q(θ|κt)
`i,s ← `(θ(s), x(t)i) · ∇κt log q(θ(s)|κt) for all s = 1, 2, . . . S and i = 1, 2, . . . ,K

`s ← n
K

∑K
i=1 `i,s for all s = 1, 2, . . . S

// STEP 3: Compute divergence term
if D(q‖π) admits closed form then

`s ← `s +∇κD(q‖π) for all s = 1, 2, . . . S
else if D(q‖π) = Eq[`Dκ,π(θ)] then

`s ← `s + `Dκ,π(θ(s))∇κt log q(θ(s)|κt) +∇κt`Dκt,π(θ(s)) for all s = 1, 2, . . . S

else if D(q‖π) = τ
(
Eq[`Dκ,π(θ)]

)
then

`s ← `s + τ
(

1
S

∑S
s=1 `

D
κt,π(θ(s))

)
· ∇κt`Dκt,π(θ(s)) for all s = 1, 2, . . . S

// STEP 4: Apply variance reduction via h if desired
if h 6= None then

hs ← h(θ(s), `s)
`s ← `s − hs for all for all s = 1, 2, . . . S

// STEP 5: Update κt and stopping criterion
ρt ← LearningRate(t)
L← 1

S

∑S
s=1 `s

κt+1 ← κt + ρt · L
done← StoppingCriterion(κt+1,κt, t)
t← t+ 1

6.1 Bayesian Neural Network Regression

As alluded to in Example 1 and Section 5.2.1, BNN models should be expected to suffer from
prior misspecification. Focusing on the regression case, we wish to alleviate this problem
using GVI’s modularity and thus focus on varying D. Accordingly, we fix the loss function
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to the usual negative log likelihood `(θ, yi, xi, σ
2) = − log pN (yi|xi, σ2, F (θ)) for

pN (yi|xi, σ2, F (θ)) = N (yi|F (θ), xi, σ
2),

and choose Q = QMFN as the normal mean field variational family given in eq. (8). With
this in hand, we compare three different constructions of posterior beliefs:

(1) Standard VI as described in Section 2.3;

(2) DVI methods introduced as approximations to the standard Bayesian posterior q∗B(θ)
that find q∗A(θ) = arg minq∈QD(q‖q∗B(θ)) with D being the α-divergence (Hernández-
Lobato et al., 2016)10 and Rényi’s α-divergence (Li and Turner, 2016);

(3) GVI with D = D
(α)
AR.

To make comparisons as fair as possible, our implementation is built on top of that used
for the results of Li and Turner (2016) and only changes the objective being optimized.
Similarly, all settings and data sets for which the methods are compared are unchanged
and taken directly from Li and Turner (2016) and Hernández-Lobato et al. (2016): We
use a single-layer network with 50 ReLU nodes on all experiments. Inference is performed
via probabilistic back-propagation (Hernández-Lobato and Adams, 2015) and the ADAM
optimizer (Kingma and Ba, 2014) with its default settings, 500 epochs and a batch size of
32. Priors and variational posteriors are both fully factorized normal distributions. Further,
the results are also evaluated on the same selection of UCI data sets (Lichman, 2013) and in
the same way as they were in Li and Turner (2016) and Hernández-Lobato et al. (2016):
Using 50 random splits of the relevant data into training (90%) and test (10%) sets, the
inferred models are evaluated predictively on the test sets using the average negative log
likelihood (NLL) as well as the average root mean square error (RMSE). For each of the 50
splits, predictions are computed based on 100 samples from the variational posterior.

We summarize the two main results of our experiments as follows: First, Figure 11
depicts what appears to be the most typical relationship between VI, DVI and GVI on BNNs.
Second, Figure 12 explores a surprising finding about the typical relationship further and
connects it back to the modularity result in Theorem 10. The Appendix contains some
further results.

6.1.1 Typical patterns (Figure 11)

As Figure 11 demonstrates, several findings form a consistent pattern across a range of data
sets. Three findings are most poignant.

(A) DVI can often achieve a performance gain for the NLL relative to standard VI, but
much less so for RMSE. On both metrics, there is no clear pattern of improvement.

(B) Relative to standard VI, GVI significantly improves performance for both NLL and
RMSE if α > 1. Conversely, GVI worsens performance if α ∈ (0, 1). In other words,
larger posterior variances adversely affect predictive quality.

10. We align the parameterization of the D(α)
A with the current paper, meaning 1−αcurrent = αH.-L. et al. (2016)
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Figure 11: Best viewed in color. Top row depicts RMSE, bottom row the NLL across a range
of data sets using BNNs. Dots correspond to means, whiskers to standard errors. The further
to the left, the better the predictive performance. For the depicted selection of data sets, a
clear common pattern exists for the performance differences between standard VI, DVI

and GVI.

(C) GVI performance is a clear banana-shaped function of α across all data sets: While
predictive performance benefits as α gets larger than one, the improvement flattens
out and bends back in a banana shape as α grows too large. In other words, de-
creasing uncertainty relative to the standard variational posterior improves predictive
performance, but becoming ‘overconfident’ worsens it.

Finding (B) has a straightforward interpretation: Since it holds that D(α)
AR ≤ KLD for α > 1

(see Van Erven and Harremos (2014)11 and Figure 5), the GVI posteriors associated with
D

(α)
AR for α > 1 are more concentrated than the standard VI posteriors, a phenomenon also

depicted on toy models in Figure 8. In other words: Ignoring more of the poorly specified
prior and consequently being closer to a point mass at the empirical risk minimizer is
beneficial for predictive performance. As alluded to in Example 1, this is to be expected: it
is doubtful if a literal interpretation of the prior as in (P) is appropriate for BNNs. As finding
(C) shows however, this does not mean that point estimates are preferable to posterior beliefs:
Increasing the value of α shrinks the variances too much, eventually impeding predictive
performance.

6.1.2 The surprising benefits of modularity (Figure 12)

While findings (B) and (C) should not come as a surprise by themselves, they do raise
an interesting question: In particular, GVI for D

(α)
AR with α = 0.5 is the worst-performing

11. Note that their result holds for a different parameterization of the D(α)
AR, but it is easy to show that our

parameterization is strictly smaller than theirs for α > 1.
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Figure 12: Best viewed in color. Depicted are test set predictions based on posterior
predictives (top panel) and parameter posterior pushforwards (bottom panel) with four
observations in the boston data set. Each column shows one observation (dashed line). The
predictive distributions (histogram) and their means (solid line) for each row correspond to
standard VI, DVI and GVI.
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setting across the board. This is remarkable because this setting also constructs the only
GVI posteriors in our experiments with wider variances than standard VI. At the same time,
producing wider variances and more conservative uncertainty quantification is one of the
main motivations for Expectation Propagation (EP) and the presented DVI methods, see
for example Figure 1(a) in Li and Turner (2016) or Figure 8 in Hernández-Lobato et al.
(2016). This is puzzling: Are wider variances for θ somehow beneficial for DVI posteriors’
predictive performance while damaging that of GVI posteriors? As it turns out, this is not
the case. Rather, while both GVI with α = 0.5 and all DVI methods produce parameter
posteriors with larger variances, in the case of DVI this does not translate into predictive
uncertainty—as would be expected in standard Bayesian inference.

This phenomenon is depicted in Figure 12, which clearly shows that the additional
uncertainty in the DVI parameter posteriors q∗DVI(θ|κ∗) is completely overshadowed by an
extreme degree of variance shrinkage in the corresponding posterior predictives. In other
words, the increased uncertainty in θ is outweighed by extremely small values for σ2. The
plot demonstrates this by comparing the push-forward F#q∗DVI(·|κ∗) with the posterior
predictives. Formally, the push-forward is given by

p(µ|xi) = (F#q∗DVI(·|κ∗)) (µ),

where the operation # is simply a formalization of the following two operations: (i) sample
θ ∼ q∗DVI(θ|κ∗), (ii) compute µ = F (θ). The posterior predictive then integrates the
push-forward measure p(µ|xi) over the likelihood function as

p(yi|xi) =

∫
Θ
pN (yi|xi, σ2, F (θ))q∗DVI(θ|κ∗)dθ =

∫
R
pN (yi|xi, σ2, µ)p(µ|xi)dµ.

As Figure 12 shows, the push-forward (i.e. the posterior predictive) behaves as expected for
both GVI and DVI. For DVI, the same cannot be said: specifically, the posterior predictive
generally has much less variance than that of standard VI.

This surprising phenomenon is due to hyperparameter optimization for σ2 and has an
intimate link with the modularity result of Theorem 10. Since variational inference on σ2

complicates the DVI objectives, both Hernández-Lobato et al. (2016) and Li and Turner
(2016) do not infer σ2 probabilistically. Instead, it is optimized over their objectives. This
approach poses an optimization problem which for D = D

(α)
A and D = D

(α)
AR is given by

σ̂2, q∗DVI(θ|κ∗) = arg min
σ2

{
arg min
q∈Q

D(q(θ|κ)||q∗B(θ|σ2, x1:n, y1:n))

}
. (21)

Crucially, the inner part of this objective conditions on the exact Bayesian posterior for a
fixed value of σ2 and then seeks to approximate the posterior belief given by

q∗B(θ|σ2, x1:n, y1:n) ∝ π(θ)
n∏
i=1

pN (yi|xi, σ2, F (θ)).

At the same time however, the outer part of the objective seeks to find a value for σ2 which
makes the posterior q∗B(θ|σ2, x1:n, y1:n) as easily approximable as possible. In other words,
an objective which is explicitly motivated as a projection of q∗B(θ|σ2, x1:n, y1:n) into Q also
changes the very point from which to project into Q.
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Though it would be computationally easy to perform probabilistic inference on σ2

within GVI, we also optimize σ2 as a hyperparameter for comparability. Thus, we pose the
alternative optimization problem

σ̂2, q∗GVI(θ|κ∗) = arg min
σ2

{
arg min
q∈Q

{
Eq

[
n∑
i=1

− log pN (yi|xi, σ2, F (θ))

]
+ D

(α)
AR(q||π)

}}
.(22)

As Figure 12 shows, the outcomes are drastically different: Unlike in the DVI case, the
predictive uncertainty for the GVI posteriors move in the same direction as parameter
uncertainty as α varies. The modularity of GVI makes it obvious what the optimization over
σ2 corresponds to in eq. (22): Rather than choosing a posterior q∗B(θ|σ2, x1:n, y1:n) which
minimizes the cost of projecting into Q via D

(α)
AR, the optimization problem simply seeks to

find the best possible loss `σ2(yi|xi, F (θ)) = − log p(yi|xi, σ2, F (θ)) over all σ2 ∈ R+.

6.2 Deep Gaussian Processes

Deep Gaussian Processes (DGPs) were introduced by Damianou and Lawrence (2013) and
extend the logic of deep learning to the nonparametric Bayesian setting. The principal idea
is to construct a hierarchy of Gaussian Process (GP) priors over latent spaces. Unlike with
BNNs, the priors in DGPs are usually refined at run-time by using various hyperparameter
optimization schemes. This is in fact crucial for DGPs as it ensures that the inputs X are
mapped into latent spaces which are informative for the outputs Y . As a consequence, and
unlike with BNNs, we expect there to be comparatively little merit in varying D for DGPs—a
suspicion we experimentally confirm in Appendix J.2.3. Accordingly, we instead focus on
experiments that vary the loss `. More specifically, we consider replacing the negative log
score with a robust scoring rule for the likelihood which is derived from the γ-divergence
(Hung et al., 2018), which drastically improves predictive performance.

In the remainder, we first introduce DGPs (Section 6.2.1). Next, we provide a brief
overview of the doubly stochastic inference procedure in Salimbeni and Deisenroth (2017)
(Section 6.2.2) and show how to adapt DGPs to GVI (Section 6.2.3). Lastly, we present
numerical experiments and their results (Section 6.2.4). These findings are also summarized
with a higher level of detail in a separate technical report (Knoblauch, 2019b).

6.2.1 Preliminaries for DGPs

Given observations (X,Y ) where X ∈ Rn×Dx and Y ∈ Rn×p, a DGP of L layers introduces
L latent functions {F l}Ll=1. Here, F l is matrix-valued and of dimension Dl ×Dl+1. Setting
F 0 = X, D0 = Dx and Dl+1 = p, one can write the DGP construction as

Y | F L ∼ p
(
Y
∣∣ F L

)
F L|F L−1 = fL(F L−1) ∼ GP

(
µL(F L−1),KL(F L−1,F L−1)

)
. . .

F 1 | F 0 = f1(F 0) ∼ GP
(
µ1(F 0),K1(F 0,F 0)

)
,

where the mean and covariance functions are µl : RDl → RDl+1
and Kl : RDl×Dl →

RDl+1×Dl+1
. Scalable inference strategies for this model generally rely on VI (Damianou and
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Lawrence, 2013; Dai et al., 2016; Salimbeni and Deisenroth, 2017; Hensman and Lawrence,
2014), Monte Carlo methods (Vafa, 2016; Wang et al., 2016) or more specialized approaches
(Cutajar et al., 2017a). In the remainder, we discuss the implications of Generalized
Variational Inference (GVI) in relation to the arguably most popular VI approach of Salimbeni
and Deisenroth (2017). Unlike previous VI methods, it encodes conditional dependence into
the variational family Q and outperformed Expectation Propagation (EP) based alternatives
(Bui et al., 2016).

6.2.2 Doubly stochastic VI in DGPs

First, define m inducing points Z l = (zl1, z
l
2, . . . ,z

l
m)T and their function values U l =

(f l(zl1), f l(zl2), . . . , f l(zlm))T (for details on inducing points, see Snelson and Ghahramani,
2006; Titsias, 2009; Bonilla et al., 2019; Matthews et al., 2016). For improved readability,
we drop X and Z l from the conditioning sets and denote the i-th row of F l as fLi . With
this, the joint distribution of the DGP is

p
(
Y , {F l}Ll=1, {U l}Ll=1

)
=

n∏
i=1

p(yi|fLi )︸ ︷︷ ︸
likelihood

×
L∏
l=1

p
(
F l
∣∣∣ U l,F l−1,Z l−1

)
p
(
U l
∣∣∣ Z l−1

)
︸ ︷︷ ︸

(DGP) prior

.

The posteriors p
(
{F l}Ll=1, {U l}Ll=1

)
and p

(
{F l}Ll=1

)
are intractable. The VI method pro-

posed in Salimbeni and Deisenroth (2017) overcomes this with the variational family given
by

q
(
{F l}Ll=1, {U l}Ll=1

)
=

L∏
l=1

p
(
F l
∣∣∣ U l,F l−1,Z l−1

)
q
(
U l
)

; q
(
U l
)

= N
(
U l
∣∣∣ml,Sl

)
.

This allows for exact integration over the inducing points {U l}Ll=1, yielding

q
(
{F l}Ll=1

)
=

L∏
l=1

N
(
F l
∣∣∣ µl,Σl

)
.

As shown in Salimbeni and Deisenroth (2017), this enables a doubly stochastic minimization
of the negative Evidence Lower Bound (ELBO) given by

Eq(FL)

[
n∑
i=1

− log p(yi|F L)

]
+ KLD

(
q({F l}Ll=1, {U l}Ll=1)

∥∥∥∥p({F l}Ll=1, {U l}Ll=1)

)

= −
n∑
i=1

Eq(fLi )

[
log p(yi|fLi )

]
+

L∑
l=1

KLD(q(U l)||p(U l)). (23)

For optimization, the samples for F l are drawn using the variational posteriors from the
previous layers so that approximating the expectations over q(fLi ) induces the first layer of
stochasticity. The second layer is due to drawing mini-batches from X = F 0 and Y . Because
of this large degree of stochasticity, it is appealing if Eq(fLi )

[
log p(yi|fLi )

]
is available in

closed form, which is for instance the case if p = pN is a normal likelihood.
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6.2.3 Adaption to GVI

The objective in eq. (23) suggests itself naturally to a GVI variant. This raises two questions:

(D) Do we still penalize the deviation from the global prior if we simply replace the
KLD-terms layer-wise?

(`) Can one derive closed forms for the expectations when the log scoring rule is replaced
by robust alternatives Lβ or Lγ derived from the β- and γ-divergence?

As shown next, we can give a positive answer to both these questions.

(D) Conveniently and as shown in Salimbeni and Deisenroth (2017),

KLD

(
q({F l}Ll=1, {U l}Ll=1)

∥∥∥∥p({F l}Ll=1, {U l}Ll=1)

)
=

L∑
l=1

KLD(q(U l)||p(U l)). (24)

A natural question is whether one can reverse-engineer this finding: If we simply pick a collec-
tion of other divergences Dl(q(U l)||p(U l)) for each layer l and combine them additively, does
the result define a valid divergence between q({F l}Ll=1, {U l}Ll=1) and p({F l}Ll=1, {U l}Ll=1)?
As the next Corollary shows, one can prove that reverse-engineering prior regularizers
inspired by eq. (24) is feasible so long as the layer-specific divergences Dl are f -divergences
or monotonic transformations of f -divergences. The proof relies on a technical Lemma and
is given in Appendix J.2.1

Corollary 18 In the DGP construction of eq. (23), replacing the sum of KLD-terms by

L∑
l=1

Dl(q(U l)||p(U l))

defines a valid divergence between q({F l}Ll=1, {U l}Ll=1) and p({F l}Ll=1, {U l}Ll=1) so long as Dl

is an f -divergence or a divergence obtained as a monotonic transform g of an f -divergence
for all l = 1, 2, . . . L.

(`) Next, we turn attention to modifying the loss terms in eq. (23). First, note that

Eq(FL)

[
n∑
i=1

− log p(yi|F L)

]
= −

n∑
i=1

Eq(fLi )

[
log p(yi|fLi )

]
.

This identity still holds if one replaces the negative log with other scoring rules. As the
next Proposition shows, we even retain closed forms for the expectations over q(fLi ) in the
regression case and for the scoring rules given by

Lβp(fLi ,yi) = − 1

β − 1
p(yi|fLi )β−1 +

Ip,β(fLi )

β

Lγp(fLi ,yi) = − 1

γ − 1
p(yi|fLi )γ−1 · γ

Ip,γ(fLi )
γ−1
γ

.
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Crucially, the integral term Ip,c(f
L
i ) =

∫
p(y|fLi )cdy is generally available in closed form

for exponential families. As the notation suggests, Lβp is linked to the β-divergence in the
same way we linked the log score to the KLD in Section 5.2.2, see also Basu et al. (1998).
Similarly, Lγp is derived from the γ-divergence as explained in Hung et al. (2018). As also
alluded to in Section 5.4.1, Lγp (Lβp) recovers the log score as γ → 1 (β → 1) and produces
robust inferences for γ > 1 (β > 1). Figure 6 depicts this for Lβp , and the behaviour is very
similar for Lγp .

Proposition 19 (Closed forms for robust DGP regression) If it holds that yi ∈ Rd,

p(yi|fLi ) = N
(
yi;f

L
i , σ

2Id
)

; q(fLi ) = N (fLi ;µ,Σ),

then for the quantities given by

Σ̃−1 =
( c
σs
Id + Σ−1

)
; µ̃ =

( c
σ2
yi + Σ−1µ

)
; I(c) = (2πσ2)−0.5dcc−0.5d

and for

E(c) =
1

c

(
2πσ2

)−0.5dc |Σ̃|0.5
|Σ|0.5 exp

{
−1

2

( c
σ2
yTi yi + µTΣ−1µ− µ̃T Σ̃µ̃

)}
the following expectations are available in closed form:

Eq(fLi )

[
Lβp(fLi ,yi)

]
= −E(β − 1) +

I(β)

β

Eq(fLi )

[
Lβp(fLi ,yi)

]
= −E(γ − 1) · γ

I(γ)
γ−1
γ

As shown in Appendix J.2.2, it is easy but tedious to derive this result. While the results
of using Lβp and Lγp are often virtually identical (see for instance Figure 22 in Appendix
J.1), our experiments on DGPs will exclusively use Lγp . This is done because unlike for Lβp ,
computations with Lγp can be performed in its numerically more stable log form.

6.2.4 Results

As with the experiments on BNNs in the previous section, we make comparisons as fair
as possible by using the gpflow (Matthews et al., 2017) implementation of Salimbeni and
Deisenroth (2017). Further, we use the same settings, meaning that all experiments use
20,000 iterations of the ADAM optimizer (Kingma and Ba, 2014) with a learning rate of 0.01
and default settings for all other hyperparameters. We perform inference for each of the UCI
data sets (Lichman, 2013) after normalization using the RBF kernel with dimension-wise
lengthscales, 100 inducing points, with batch sizes of min(1000, n) and Dl = min(Dx, 30).
As before, we use 50 random splits with 90% training and 10% test data to assess predictive
performance in terms of negative log likelihood (NLL) and root mean square error (RMSE).
With this, we compare two inference schemes:

(1) The state of the art standard VI techniques of Salimbeni and Deisenroth (2017);
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Figure 13: Best viewed in color. Top rows depict RMSE, bottom rows the NLL across a
range of data sets using DGPs. Dots correspond to means, whiskers to standard errors. The
further to the left, the better the predictive performance. For the depicted selection of data
sets, GVI comprehensively outperforms standard VI.

(2) A GVI variant of the same inference method which replaces the log score with the
robust γ-divergence based scoring rule Lγp .

For choosing γ, we note that inferences are robust for γ > 1 and that Lγp recovers the log
score as γ → 1. At the same time, the scoring rule will grow increasingly happy to ignore
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virtually all of the data as γ →∞. Accordingly, one will typically want to pick

γ = 1 + ε

for a small ε > 0. Choosing γ in this way encodes the intuition that a good scoring rule will
behave like the log score for all but the most extreme outliers. We thus pick ε ∈ {0.01, 0.05}.
We note that hyperparameter optimization might appear to be the natural choice for picking
γ, but will not perform well in practice: Rather than producing robust inferences, this will
select for a value of γ generally producing the smallest GVI objective values across Q12.

The results are depicted in Figure 13 and confirm our two main intuitions about
robustness: Firstly, the robust scoring rule provides a significant performance improvement.
Secondly, the smaller value of γ (which will be closer to the log score) generally outperforms
the larger value of γ, though both choices are equally good in many data sets13. We believe
that the performance gains of the robust scoring rule is due to large parts of the latent
spaces being non-informative. This implies that it is beneficial to implicitly down-weight the
influence of these non-informative parts of the latent space. It is clear that robust scoring
rules do exactly that (see for instance Figure 6), which explains their superior performance
in the DGP experiments. This intuition is further bolstered by the following observation:
Generally, performance improves with a larger number of layers L under the robust score
Lγp , but worsens under the log score. In other words: The more dispersed the prior over the
latent space (i.e., the DGP) becomes, the more inferential outcomes benefit from implicitly
ignoring its non-informative regions. In Appendix J.2 we provide a small batch of additional
results showing that as expected, modifying D is less beneficial for DGPs than it is for BNNs.
Most likely, this is due to hyperparameter optimization for the kernels of the DGP: together
with the fact that Gaussian Processes are far more informative priors than fully factorized
normals, careful selection of the hyperparameters ensures that unlike in the BNN case, the
prior is informative.

7. Discussion & Conclusion

In this work, we re-examined the working assumptions that have proven powerful and useful
in spreading Bayesian inference into virtually all domains of scientific endeavour. Studying
the challenges of contemporary inference, we concluded that the traditional assumptions
underlying Bayesian statistics are misaligned with the realities of modern large-scale problems.
At the same time, we adopted an optimization-centric view on Bayesian inference that endows
standard Vatiational Inference (VI) with a particular form of optimality relative to other
approximations. In spite of this, belief distributions computed as alternative approximations
to the Bayesian posterior often perform better in practice. This is because standard VI is
optimal only relative to a particular objective function—an objective function whose form is
based on the very assumptions that are misaligned with reality. Inspired by this insight, we
proceed to derive a new class of optimization-centric posterior belief distributions that do not

12. In practice, this means that hyperparameter optimization pushes γ → 1 or γ →∞, depending on the
magnitudes of {p(yi|fLi )}ni=1.

13. We expect this second finding about γ to generalize to new settings so long as the inputs are normalized
and the outputs are not high-dimensional (see also Figure 22 for some empirical evidence of this on
BNNs), which would make γ = 1.01 a decent default choice in such scenarios.
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rely on these assumptions. To do so, we first set out a new axiomatic foundation for Bayesian
inference culminating in the Rule of Three (RoT). The RoT is an optimization problem
with three arguments, each of which can address one of the shortcomings of the standard
Bayesian assumptions. Building on this mostly theoretical device, we introduce Generalized
Variational Inference (GVI) as the sub-class of tractable posteriors derived from the RoT.
We show that GVI satisfies a number of desirable theoretical properties: most notably, it
is modular (in the sense of Theorem 10) and consistent in the frequentist sense. On the
practical side, we show how GVI can be used to adjust posterior variances and produce
inferences that are robust to model and prior misspecification. Lastly, we demonstrate
the benefits of GVI posteriors on two model classes that encapsulate the misalignment
between the assumptions underlying the traditional Bayesian paradigm and the realities
of modern large-scale Bayesian inference: Bayesian Neural Networks (BNNs) and Deep
Gaussian Processes (DGPs).

The current work makes two major contributions. The first of these is conceptual: We
propose an optimization-centric generalization of Bayesian inference through the Rule of
Three (RoT). This aspect of our work stands in the tradition of previous generalizations of
Bayesian inference such as the one in Bissiri et al. (2016) and Jewson et al. (2018). Unlike
previous work however, we take the first step in the development of Bayesian inference
procedures that generalize beyond multiplicative belief updates. As explained in Sections 2
and 4, an immediate consequence of this generalization is a taxonomy of various variational
inference procedures: Unlike most other variational approximations to the Bayesian posterior,
VI is a special case of the RoT. More specifically, VI is the most conceptually appealing of
all approximations under an optimization-centric view (see Theorem 2).

The second contribution is methodological and consists in making the RoT useful for real
world inference problems via Generalized Variational Inference (GVI). We show that GVI

modularly addresses the three shortcomings associated with traditional Bayesian inference.
As Section 6 shows with two applications on large-scale inference problems, GVI posteriors
can yield significant predictive performance improvements in modern statistical machine
learning models.

With the provision of a new optimization-centric generalization on Bayesian inference,
the current paper is only the first step on a long road to designing posteriors that conform
with the demands of contemporary models and inferential problems. In the wake of this,
several important questions have been left unanswered. For example, it is unclear how to
choose hyperparameters occurring in the loss or prior regularizer beyond simplistic (albeit
well-working) rules of thumb. GVI also has an obvious intimate connections with PAC-
Bayesian approaches that we will be exploring in the near future. Moreover, the flexibility
in choosing different prior regularizers D brings about another interesting question: Given
that frequentist consistency holds, what impact does D have on the contraction rate? And
do certain special cases of D endow GVI with compelling geometric interpretations?

In summary, the current work is but the start of an investigation into the theoretical,
methodological and applied consequences of the RoT and GVI. It is clear that the ideas
introduced in the current paper—while barely scratching the surface of the possible—
have produced valuable insights and shown much promise in all three of these regards.
Consequently, it is with much excitement that we look forward to future contributions on
questions of theory, methodology and practice surrounding the RoT and GVI.
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Appendix A. Definitions for robust divergences

The following is an overview of definitions for the most important divergences that are used
throughout the paper.

Definition 20 (The αβγ-divergence D
(α,β,r)
G (Cichocki and Amari, 2010)) The αβγ-

divergence D
(α,β,r)
G Cichocki and Amari (2010) takes the form

D
(α,β,r)
G (q(θ)||π(θ)) =

1

α(β − 1)(α+ β − 1)r

[(
D̃

(α,β)
G (q(θ)||π(θ)) + 1

)r
− 1
]

where r > 0, α 6= 0, β 6= 1 and

D̃
(α,β)
G (q(θ)||π(θ)) =

∫ (
αq(θ)α+β−1 + (β − 1)π(θ)α+β−1 − (α+ β − 1)q(θ)απ(θ)β−1

)
dθ

Below we list some well-known special cases of the family of divergences defined by D
(α,β,r)
G

that we use in the main paper. This exposition is a summary of the review conducted in
Cichocki and Amari (2010).

Definition 21 (The α-divergence (D(α)
A ) (Chernoff, 1952; Amari, 2012)) The α-divergence

is defined as

D
(α)
A (q(θ)||π(θ)) =

1

α(1− α)

{
1−

∫
q(θ)απ(θ)1−αdθ

}
,

where α ∈ R \ {0, 1}. Note that D
(α)
A is recovered from D

(α,β,r)
G when r = 1 and β = 2− α.

D
(α)
A is also a member of the f -divergence family.

Definition 22 (Rényi’s α-divergence (D(α)
AR) (Rényi, 1961)) Rényi’s α-divergence is

defined as

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log

(∫
q(θ)απ(θ)1−αdθ

)
,

where α ∈ R \ {0, 1}. D
(α)
AR is recovered from D

(α,β,r)
G in the limit as r → 0 and β = 2 − α.

Note that we use the rescaled version proposed by Liese and Vajda (1987); Cichocki and
Amari (2010) rather than the original parameterization of Rényi (1961) because it links the
divergence more closely to other robust alternatives of the KLD.

Definition 23 (The β-divergence (D(β)
B ) (Basu et al., 1998; Mihoko and Eguchi, 2002))

The β-divergence (Mihoko and Eguchi, 2002) was originally introduced under the name ”den-
sity power divergence“ and is defined as

D
(β)
B (q(θ)||π(θ)) =

1

β(β − 1)

∫
q(θ)βdθ +

1

β

∫
π(θ)βdθ − 1

β − 1

∫
q(θ)π(θ)β−1dθ,

where β ∈ R \ {0, 1}. D
(β)
B is recovered from D

(α,β,r)
G when r = α = 1. D

(β)
B is a member of

the Bregman-divergence family.
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Definition 24 (The γ-divergence (D(γ)
G ) (Fujisawa and Eguchi, 2008)) The γ-divergence

(Fujisawa and Eguchi, 2008) is defined as

D
(γ)
G (q(θ)||π(θ)) =

1

γ(γ − 1)
log

(∫
q(θ)γdθ

) (∫
π(θ)γdθ

)γ−1(∫
q(θ)π(θ)γdθ

)γ ,

where γ ∈ R \ {0, 1}. D
(γ)
G is recovered from D

(α,β,r)
G in the limit as r → 0, α = 1 and β = γ.

The D
(γ)
G can be shown to be generated from the D

(β)
B applying the following transformation

c0

∫
g(x)c1f(x)c2dx→ c0 log

∫
g(x)c1f(x)c2dx

to all three of the D
(β)
B terms. This is of interest because the D

(α)
AR is generated by the D

(α)
A by

applying the same transformation of its two terms.

Remark 25 (Recovering the KLD) The D
(α)
A , D(α)

AR, D(β)
B and D

(γ)
G all recover the KLD in

the limit as α = β = γ → 1. This can be shown using the replica trick:

lim
x→0

Zx − 1

x
= log(Z).

Appendix B. Comparing robust divergences as prior regularizer

In order to understand the impact the choice of divergence used for regularization and its
hyperparameter have on the inference, this section studies variations in the argument D.
This investigation is conducted on a simple Bayesian linear regression example with two
highly correlated predictors given by

σ2 ∼ IG(a0, b0)

θ|σ2 ∼ N2

(
µ0, σ

2V0

)
(25)

yi|θ, σ2 ∼ N
(
Xiθ, σ

2
)
.

We choose this example because it provides a closed form exact Bayesian posteriors and
closed form objectives for the variational objectives of VI and GVI. Consequently, no sampling
is required—neither for calculating the exact posterior nor for the optimization of the GVI

and VI posteriors—so that numerical errors and uncertainties are kept to a minimum.

Studying the exact closed form Bayesian (normal) posterior for θ = (θ1, θ2)T , one
observes that if the two predictors are correlated, then the posterior covariance of θ will
inherit this correlation. As we wish to investigate the underestimation of marginal variances
for standard VI as well as the way in which GVI can address this, our numerical studies
leverage this finding. In particular, we simulate the highly correlated predictors

(x1, x2)T ∼ N2

((
0
0

)
,

(
1 0.9

0.9 1

))
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Figure 14: Best viewed in color. Marginal VI and GVI posterior for the θ1 coefficient
of a Bayesian linear model under the D

(α)
A prior regularizer for different values of α. The

boundedness of the D(α)
A causes GVI posteriors to severely over-concentrate if α is not carefully

specified. Prior Specification: σ2 ∼ IG(20, 50), θ1|σ2 ∼ N (0, 25σ2) and θ2|σ2 ∼ N (0, 25σ2).

and compare the performance of the different GVI and VI posteriors on the resulting Bayesian
linear regression. All posteriors are based on the the mean field normal variational family

Q = {q(θ1|σ2,κn)q(θ2|σ2,κn)q(σ2|κn)} so that κn = (an, bn, µ1,n, µ2,n, v1,n, v2,n)T

with an, bn, v1,n, v2,n > 0 and µ1,n, µ2,n ∈ R
q(σ2|κn) = IG(σ2|an, bn)

q(θ1|σ2,κn) = N
(
θ1|µ1,n, σ

2v1,n

)
q(θ2|σ2,κn) = N

(
θ2|µ2,n, σ

2v2,n

)
.

For all experiments, n = 25 observations are simulated from eq. (26) with θ = (2, 3) and
σ2 = 4. We use the negative log-likelihood of the correctly specified model as given in
eq. (26) as loss function. To investigate GVI’s behaviour across different prior regularizers,
we vary its choice as D ∈

{
D

(α)
A ,D(β)

B ,D(α)
AR,D

(γ)
G

}
. The results are depicted in Figs. 14 and

16-20. We summarize the most interesting results from these plots in the following three
subsections.

B.1 A cautionary tale: The boundedness of the α-divergence (D(α)
A )

Of the alternative divergences to the KLD contained within the D
(α,β,r)
G family defined in

Appendix A, D(α)
A is arguably the most well known. Our results in Figure 14 show that in

spite of its popularity in other contexts, the D
(α)
A is not a reliable prior regularizer within
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Figure 15: A comparison of the size of D(α)
A for various values of α between two bivariate

Normal Inverse Gamma distributions with an = 512, bn = 543, µn = (2.5, 2.5), Vn =
diag(0.3, 2) and a0 = 500, b0 = 500, µ0 = (0, 0), V0 = diag(25, 2).

GVI, at least for α ∈ (0, 1). In particular, the plot shows that the solutions to P (`,D(α)
A ,Q)

can produce essentially degenerate posteriors if α ∈ (0, 1). Note also that this happens in
spite of the relatively small sample size of n = 25. For example, when α = 0.5, P (`,D(α)

A ,Q)
is visually indistinguishable from a point mass at the maximum likelihood estimate. This
is a consequence of the boundedness of D

(α)
A for α ∈ (0, 1): Specifically, it holds that

D
(α)
A ≤ (α(1− α))−1 for α ∈ (0, 1). As α decreases from 1, this upper-bound initially also

decreases until reaching its minimum for α = 0.5. As a result, decreasing α from unity to
0.5 significantly decreases the maximal penalty for posterior beliefs far from the prior. In
turn, this forces the posterior to focus mostly on minimising the in-sample loss.

This phenomenon is depicted in Figure 15, which also shows that the divergence magnitude
increases again as α approaches zero or if α > 1. Comparing the plot with that in Figure
5, it is clear why hyperparameter selection for the other members of the D

(α,β,r)
G family of

divergences is a less complicated endeavour than for the α-divergence. This does not mean
that the D

(α)
A cannot be used for producing GVI posteriors: For example, in Figure 14, the

D
(α)
A is able to achieve marginal variances that more closely correspond to the exact posterior

for α = 1.25 and α = 0.01. Generally speaking, for values of α close to zero or above unity,
it is possible to achieve more conservative uncertainty quantification. Yet, the D

(α)
A also

functions primarily as a cautionary tale: Without understanding the properties of the prior
regularizer D sufficiently well, GVI may well yield unsatisfactory posteriors.

B.2 Larger divergences produce larger marginal variances

In this section, we summarize the impact that a selection of robust divergences have on the
marginal variances of the solution to P (`,D,Q), again using the Bayesian Linear regression
model from before. For a range of robust divergences, Figure 16 illustrates the impact that
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changes in D have on the marginal variances of the resulting posteriors. As one should expect
from re-examining Figure 5, the plot shows that D

(β)
B , D(α)

AR and D
(γ)
G are able to produce

larger posterior variances for β, α, γ < 1 and smaller posterior variances for β, α, γ > 1. This
is a manifestation of the posterior being penalized more heavily (β, α, γ < 1) or less heavily
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Figure 16: Best viewed in color. Marginal VI and GVI posterior for the first coefficient of a
Bayesian linear model under the D

(α)
AR, D(β)

B , D(γ)
G and 1

w
KLD prior regularizers. Correlated

covariates cause dependency in the exact Bayesian posterior of the coefficients and as
a result VI underestimates marginal variances. GVI has the flexibility to produce wider
marginal variances. Prior Specification: σ2 ∼ IG(20, 50), θ1 ∼ N (0, 52) and θ2 ∼ N (0, 52).

63



Knoblauch, Jewson and Damoulas

(β, α, γ > 1) for deviating from the prior than under the traditional VI. It follows that by
choosing the divergence appropriately, GVI can allow greater control over the uncertainty
quantification characteristics of the resulting posterior than what is possible under standard
VI. Note that Figure 16 also compares the robust divergences against the re-weighted
KLD. While the re-weighted KLD can prove a successful alternative for producing desirable
variational posteriors with larger variances robust divergences if the prior is well-specified,
this is no longer the case if the information contained in the prior cannot be relied upon.
We study this and related findings surrounding robustness to the prior in the next section.

B.3 Robustness to the prior

Next, we compare the impact of changing the prior regularizer on the posterior’s sensitivity
to appropriate specification of the prior. Specifically, we consider and compare D

(β)
B , D(α)

AR,
D

(γ)
G and 1

w
KLD. When comparing 1

w
KLD with D

(α)
AR and D

(γ)
G , we fixed α = γ = w. Setting

the values of these various hyperparameters to be the same is intuitively appealing for
comparison due to GVI’s interpretation as approximate Evidence Lower Bound (ELBO), see
Theorems 14 and 30. For the D

(β)
B , different values of β had to be selected to ensure its

availability in a closed form.

B.3.1 weighted KLD ( 1
w

KLD)

Figure 17 examines how changing the weight w affects the posteriors P (`, 1
w

KLD,Q). Notice
that this is equivalent to changing the negative log likelihood to a power likelihood with power
w. Further, it should be clear that choosing w < 1 leads to posteriors that encourage larger
variances, making them amenable to conservative uncertainty quantification. Unfortunately
and again unsurprisingly, this comes at the price of making posteriors more sensitive to the
prior: After all, one up-weights the term penalizing deviations from the prior. Conversely,
w > 1 will result in posteriors that are less sensitive to the prior than standard VI. At the
same time, they will also be more concentrated around the Maximum Likelihood Estimator.
This makes D = 1

w
KLD less attractive than it could be: Setting w to smaller values will

yield larger posteriors variances (at the expense of not being robust to the prior), while
setting w to larger values will make the posterior more robust to misspecified priors (but at
the expense of far more concentrated posteriors). As we shall see, this undesirable trade-off
is not shared by the other (robust) divergences considered in this section. Unlike the 1

w
KLD,

they often provide a way to have your cake and eat it, too.

B.3.2 Rényi’s α-divergence (D(α)
AR)

Figure 18 demonstrates the sensitivity of P (`,D(α)
AR,Q) to prior specification. For 0 < α < 1,

the posterior exhibits the kind of behaviour that is difficult to attain with standard VI: It
both produces larger marginal variances and is robust to badly specified priors. This is no
longer true if α > 1: For α > 1, D(α)

AR ≤ KLD, so that it is more sensitive to the prior than
the KLD. This flip in robustness as α crosses from (0, 1) into values larger than one may
seem strange, but can be understood by investigating the form of the D

(α)
AR:

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log

∫
q(θ)απ(θ)1−αdθ =

1

α(α− 1)
log

∫
q(θ)α

π(θ)α−1
dθ.
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Figure 17: Best viewed in color. Marginal VI and GVI posterior for the coefficient of a
Bayesian linear model under different priors using D = 1

w
KLD as prior regularizer ( 1

w
KLD

recovers KLD for w = 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ
2) with

σ2 ∼ IG(3, 5).
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Figure 18: Best viewed in color. Marginal VI and GVI posterior for the coefficient of a
Bayesian linear model under different priors using D = D

(α)
AR as prior regularizer (D(α)

AR recovers
KLD as α→ 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ

2) with σ2 ∼ IG(3, 5).
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It is clear that the magnitude of the divergence is determined by a ratio of two densities.
Glancing closer, for α > 1 this means that if q(θ) is large in an area where π(θ) is not, then
a severe penalty is incurred. This limits how far the q(θ) can move from the prior and thus
results in lack of prior robustness. Conversely, if α ∈ (0, 1), then π(θ)α−1 > π(θ) for regions
where π(θ) < 1, which allows the posterior to spread its mass in a less concentrated way
than for α > 1. In fact, this very finding is also implicitly stated in Theorem 14.
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Figure 19: Best viewed in color. Marginal VI and GVI posterior for the coefficient of a
Bayesian linear model under different priors using D = D

(β)
B as prior regularizer (D(β)

B recovers
KLD as β → 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ

2) with σ2 ∼ IG(3, 5).
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B.3.3 β-divergence (D(β)
B )

Figure 19 demonstrates the sensitivity of P (`,D(β)
B ,Q) to prior specification. The plot shows

that β > 1 is able to achieve extreme robustness to the prior, while β < 1 causes extreme
sensitivity to the prior. This phenomenon is a result of the fact that the D(β)

B decomposes into
three integrals, one containing just the prior, one containing just q(θ) and one containing an
interaction between them.

D
(β)
B (q(θ)||π(θ)) =

1

β

∫
π(θ)βdθ − 1

β − 1

∫
π(θ)β−1q(θ)dθ +

1

β(β − 1)

∫
q(θ)βdθ (26)

The integral depending only on the prior does not depend q(θ), so we can ignore it (since
the prior is fixed across the different values of β).

For β ∈ (0, 1) the signs of both of the remaining terms flip and it is instructive to rewrite

the middle term as + 1
1−β

∫ q(θ)
π(θ)1−β dθ with 1−β > 0. This shows that the prior appears as a

denominator. The consequences of this are similar to the behaviour of the D
(α)
AR for α > 1, if

q(θ) has density where the prior has little density, then we divide a not-so-small number by
a very small number and a huge penalty is incurred for this. As a result, the corresponding
posterior will be very close to the prior. (In fact, notice that that two of the four posteriors
for β = 0.75 in Figure 19 favour the prior so much that the density around the maximum
likelihood estimate is virtually zero.) For β > 1 the opposite effect is observed. The prior
no longer appears as a denominator and therefore deviations from the prior are punished
in a milder manner by the middle term. This allows the third term, which depends on
q(θ) independently of the prior, to have greater influence on how uncertainty is quantified.
This third integral will become very large if the variance of q(θ) gets very small, which
prevents it from quickly converging to a point mass at the maximum likelihood estimate. As
a consequence, the D

(β)
B is able to provide virtually prior-invariant uncertainty quantification

for β > 1.

B.3.4 γ-divergence (D(γ)
G )

Lastly, Fig. 20 demonstrates the sensitivity of P (`,D(γ)
G ,Q) to prior specification. For γ < 1

it appears as though the D
(γ)
G reacts similarly to the 1

w
KLD for w < 1. The D

(γ)
G with γ > 1

produces greater robustness to the prior than the 1
w

KLD prior regularizer with w > 1, but
this robustness is less extreme as it was for D = D

(β)
B . The reason for this is that although the

D
(γ)
G consists of the same three integral terms as the D

(β)
B , these terms are now transformed

into the logarithmic scale. This means that the three integrals are combined multiplicatively
(in the D

(γ)
G ) rather than additively (in the D

(β)
B ), which makes the variation across γ much

smoother than across β: Unlike for the D
(β)
B , minimising the D

(γ)
G no longer disregards any

one term in order to minimise the others.

Appendix C. Proof of Theorem 10

Before we can prove Theorem 10, we first formally define the notion of robustness to model
misspecification. Our understanding of robustness to model misspecification is aligned with
Hampel et al. (2011) and Tukey (1960). In the words of the latter, robustness stands for
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Figure 20: Best viewed in color. Marginal VI and GVI posterior for the coefficient of a
Bayesian linear model under different priors using D = D

(γ)
G as prior regularizer (D(γ)

G recovers
KLD as γ → 1). The prior specification is given by θ1|σ2 ∼ N (µπ, σ

2) with σ2 ∼ IG(3, 5).
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a tacit hope in ignoring deviations from ideal models was that they would not matter;
that statistical procedures which are optimal under the strict model would still be
approximately optimal under the approximate model. Unfortunately, it turned out that
this hope was often drastically wrong; even mild deviations often have much larger
effects than were anticipated by most statisticians.

Formalizing this, we arrive at the following definition.

Definition 26 (Robustness) Let Mj = P (Dj , `j ,Π) with θ∗j = arg minθ {EX [`j(θ,X)]}
for j = 1, 2. Then, M1 is more robust for θ than M2 relative to the (implicit) assumptions
A on the data generating mechanism of X if (i) θ∗1 is a better result than θ∗2 if A is untrue
and (ii) θ∗1 = θ∗2 if A is true.

Remark 27 It is hard to say what a better result means, but we note that regardless of
its precise meaning, this definition requires that robust inference directly affects θ∗, i.e.
that θ∗1 6= θ∗2 unless A is true. While one could substantially strengthen this definition by
formalizing what exactly a better result means, this would necessarily be context-dependent,
complicate matters substantially and obfuscate the point of robustness.

Proof First, we prove claim (i) about robustness to model misspecification: By Definition
26, robustness implies a change in θ∗ = arg minθ {EX [`(θ,X)]} if distributional assumptions
aboutX are incorrect. Notice that θ∗ is not affected by D or Π, but is affected by `. Next, we
turn to the claims (ii) and (iii) about uncertainty quantification and prior robustness:
First, note that Π and π are not allowed to change by assumption and so cannot affect
uncertainty quantification. Next, while ` is allowed to change, the parameter of interest
it not allowed to change. In other words, ` may only be changed in a ways that leave θ̂n
and θ∗ unaffected. Notice that changing ` to `′ will affect θ̂n = arg minθ

{
1
n

∑n
i=1 `(θ, xi)

}
and θ∗ = EX [`(θ,x)] unless `′ = C + w · ` for some constants C and w > 0. Since
P (`,D,Π) = P (` + C,D,Π) for any C, we can disregard C and turn to w. Indeed, the
uncertainty quantification of P (`,D,Π) will be different from that of P (w · `,D,Π) for any
constant w 6= 1. However, dividing by w in eq. (10) shows that P (w · `,D,Π) = P (`, 1

wD,Π).

Hence, any change in the loss that does not affect θ̂n and θ∗ can be rewritten as a change in
D. It follows that changing the uncertainty quantification or making the RoT robust to the
prior belief amounts to changing D.

Appendix D. Link to the Predictive Information Bottleneck

First, one can rewrite eq. (14) as an unconstrained optimization problem by a well-known
argument. For a scalar β = β(I0,x1:n) derived as in Theorem 1 of Tishby et al. (2000), we
have that

q∗(θ|x1:n) = arg min
p(θ|x1:n)∈ΠPIB

{−I(θ,xn+1:∞) + (1− β)I(θ,x1:n)} .

But we can do even better: by noting that any distribution on θ is obtained by compress-
ing (i.e. training on) x1:n only, we also know that θ and xn+1:∞ are independent once
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conditioned on x1:n. This means that p(θ,xn+1:∞|x1:n) = p(θ|x1:n)p(xn+1:∞|x1:n), so that
I(θ,xn+1:∞|x1:n) = 0. By elementary operations (see Alemi, 2019), this implies that we can
rewrite

I(θ,xn+1:∞) = I(θ,x1:n)− I(θ,x1:n|xn+1:∞),

which we can plug into the unconstrained form to find that

q∗(θ|x1:n) = arg min
p(θ|x1:n)∈ΠPIB

{I(θ,x1:n|xn+1:∞)− βI(θ,x1:n)} . (27)

Though this may not be immediately obvious, eq. (27) has a close relationship with the
RoT. To see how this conclusion can be reached, first note that

βI(θ,x1:n) = βEp(θ|x1:n)p(x1:n)

[
log

(
p(θ|x1:n)���

�p(x1:n)

p(θ)���
�p(x1:n)

)]
= βEp(x1:n) [KLD (p(θ|x1:n)‖p(θ))] .

=: DPIB(p(θ|x1:n)‖πPIB(θ)),

where we have defined the marginal πPIB(θ) =
∫
Xn p(θ|x1:n)p(x1:n)dx1:n. Clearly, DPIB(p(θ|x1:n)‖πPIB(θ)) ≥

0 and DPIB(p(θ|x1:n)‖πPIB(θ)) = 0 ⇐⇒ p(θ|x1:n) = πPIB(θ). Notice that unlike in the
Bayesian paradigm, the prior πPIB here is not a free variable. Instead, it gives the distribu-
tion over θ which is obtained over all possible configurations of x1:n, which makes this prior
conceptually close to a bootstrap distribution.

Similarly, we can rewrite the first term as a loss function by noting that

I(θ,x1:n|xn+1:∞)

= Ep(xn+1:∞) [KLD (p(θ,x1:n|xn+1:∞)‖p(θ|xn+1:∞)p(x1:n|xn+1:∞))]

= Ep(xn+1:∞)

[
KLD

(
p(θ|x1:n)((((

((((p(x1:n|xn+1:∞)‖p(θ|xn+1:∞)((((
((((p(x1:n|xn+1:∞)

)]
= Ep(θ|x1:n)

[
Ep(x1:n) [log (p(θ|x1:n))]− Ep(xn+1:∞) [log p(θ|xn+1:∞)]︸ ︷︷ ︸

=Ln,PIB(p(θ|x1:n))

]
.

While this loss is not computable in practice, it has a clear interpretation. Specifically,
it jointly minimizes (i) the information that θ loses on future data xn+1:∞ and (ii) the
difference between the information that θ loses on x1:n versus xn+1:∞. The loss Ln,PIB

has two properties that set it apart from the losses we have considered thus far: first of,
Ln,PIB does not depend on a sample x1:n (but the distributions of the underlying random
variables x1:n,xn+1:∞). Second, Ln,PIB is not summable. Neither of these properties affect
the axiomatic development in Section 4.1, since any empty sample is a finite sample and
because summability was imposed for presentational purposes only.

Putting everything together, we can rewrite the PIB as

q∗(θ|x1:n) = arg min
q∈ΠPIB

{Eq [Ln,PIB(q)] +DPIB(q‖πPIB)} .
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Appendix E. Experimental Details for Figure 4

For Figure 4, n observations are generated from the d-dimensional Bayesian Mixture Model
with two equally likely normal mixture components z = 1, 2 with dimension-wise unit
variance and mean given by

µz = (µz1, µ
z
2, . . . µ

z
d)
T =

{
2 · ed if z = 1

−2 · ed if z = 2
,

where ed = (1, 1, . . . 1)T is the d-dimensional column vector of ones. The n observations xoi
are drawn with equal probability from two mixture, meaning that

zi
i.i.d.∼ Bernoulli(0.5)

xoi |{zi = zi} i.i.d.∼ N (xoi |µzi , Id). (28)

Notice in particular that this generates n latent variables z1:n that indicate mixture mem-
berships for xo1:n, but are unobserved. With this, inference is conducted on µc for c = 1, 2
via the negative log likelihood loss of the correct model. For θ = (µ1,µ2), this is given by

`(θ, xoi , zi) = − log pN (xoi |µzi , Id).

The benefits of alternative choices of D are explored for the fixed number of observations
n = 50. To this end, B = 100 artificial data sets are generated according to the above
description.

If the prior is poorly specified, D = KLD will produce posterior beliefs that place the
same weight on the prior as they do on the data. In contrast, robust alternatives to the
KLD do not suffer this problem: They can produce posterior beliefs that take the prior
into account, but are robust to prior misspecification, see also Knoblauch et al. (2019).
To illustrate the phenomenon empirically, the next experiment compares the KLD with
Rényi’s α-divergence (D(α)

AR) for α = 0.5 under two settings: A well-specified prior π1(θ) and
a misspecified prior π2(θ), which are given as normal distributions

π1(θ) = N
(
θ; 0d,

√
10Id

)
π2(θ) = N

(
θ;−10 · ed,

√
0.1Id

)
To evaluate the experiments, 100 data sets are generated with n = 50 observations each.
Across these, Figure 4 reports the average posterior computed as

N (m̄, s̄) , m̄ =
1

100

2d∑
j=1

B∑
b=1

mb,j , s̄ =
1

100

2d∑
j=1

B∑
b=1

sb,j .

Here, sb,j corresponds to the standard deviation computed for the j-th dimension of the
mean field normal posterior on the b-th artificial data sets. Similarly, mb,j corresponds to
the mean of the same parameter posterior, albeit re-centered around the true value of the
inferred parameter.
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As Figure 4 shows, D(α)
AR is an interesting alternative to the KLD in finite samples: If the

prior is misspecified (top row), the KLD produces belief distributions that take the prior
too strongly into account and are far from the truth. In contrast, the D

(α)
AR provides both

prior robustness as well as better uncertainty quantification under misspecification. At the
same time, D(α)

AR has no tangible disadvantage relative to the KLD if the prior is well-specified
(bottom row).

Appendix F. Proof of Theorem 14 and additional lower bounds

This section of the Appendix provides proofs for the lower bound interpretation of certain
GVI objectives. First, we prove the result stated in the main paper. Next, we show equivalent
results for the case of the β-divergence (D(β)

B ) and γ-divergence (D(γ)
G ). While the following

results and corresponding proofs are somewhat tedious to read, they are conceptually simple:
In fact, all that is needed to derive the results is some basic algebra, Jensen’s inequality and
a further inequality involving the logarithm, see Lemma 28.

F.1 Proof for D
(α)
AR (Theorem 14)

Firstly, we recall explicit forms for the function quoted in Theorem 14

S1(α, q, π) =

{
D

(α)
AR(q(θ)||π(θ)− KLD(q(θ)||π(θ)) if 0 < α < 1

0 if α > 1.
(29)

Next we provide a proof of the Theorem

Proof For this proof we have to consider two cases for α as the positivity and negativity of
α− 1 affect the results that can be used.

Case 1) α > 1: Jensen’s inequality and the concavity of the natural logarithm give us that

Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

α(α− 1)
logEq(θ)

[(
q(θ)

π(θ)

)α−1
]

≥ Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

α
Eq(θ)

[
log

(
q(θ)

π(θ)

)]

=
1

α
KLD(q(θ)||πα`(θ|x))− 1

α
log

∫
π(θ) exp

(
−α

n∑
i=1

`(θ,xi)

)
dθ.
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Case 2) 0 < α < 1: Here the negativity of 1
α(α−1) means we cannot apply Jensen’s inequality

in the above way. Instead, we can write

Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+ D

(α)
AR(q(θ)||π(θ))

= Eq(θ) [log(π(θ))]− Eq(θ)

[
log

(
π(θ) exp(−∑n

i=1 `(θ,xi))∫
π(θ) exp(−∑n

i=1 `(θ,xi))dθ

)]
− log

∫
π(θ) exp(−

n∑
i=1

`(θ,xi))dθ + D
(α)
AR(q(θ)||π(θ))

= KLD(q(θ)||π`(θ|x))− log

∫
π(θ) exp(−

n∑
i=1

`(θ,xi))dθ

+D
(α)
AR(q(θ)||π(θ))− KLD(q(θ)||π(θ)).

Combined these two cases provides the term in Eq. (17) and (29)

Next we state, prove and interpret equivalent results for the D
(β)
B and D

(γ)
G prior regularisers.

But before we do so we need the following lemma

Lemma 28 (A Taylor series bound for the natural logarithm) The natural logarithm
of a positive real number Z can be bounded as follows{

log(Z) ≤ Zx−1
x if x > 0

log(Z) ≥ Zx−1
x if x < 0.

Proof Using the series expansion of exp(x) and the Lagrange form of the remainder we see
that

Zx − 1

x
=

exp (x logZ)− 1

x
=

(x logZ) + 1
2! (x logZ)2 + 1

3! (x logZ)3 + . . .

x

=
(x logZ) + 1

2 exp(c) (x logZ)2

x
= logZ +

1
2! exp(c) (x logZ)2

x

where c ∈ [0, x log(Z)]. Now the numerator of the remainder term
1
2!

exp(c)(x logZ)2

x is always
positive and therefore the sign of x determines whether this remainder term forms an upper
or lower bound for log(Z).

F.2 The D
(β)
B prior regulariser

Theorem 29 (GVI as approximate Evidence Lower bound with D = D
(β)
B ) The ob-

jective of a GVI posterior based on P (`,D(β)
B ,Q) has an interpretation as lower bound on the

c(β)-scaled (generalized) evidence lower bound of P (w(β) · `,KLD,P(Θ)):

Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+ D

(β)
B (q(θ)||π(θ)) ≥ −c(β)ELBO

w(β)`(q) + S1(β, q, π) (30)
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where ELBOw(β)` denotes the Evidence Lower Bound associated with standard VI relative to
the generalized Bayesian posterior given by

q
w(β)`
B (θ) ∝ π(θ) exp

(
−w(β)

n∑
i=1

`(θ,xi)

)
,

where c(β) = min{1, β−1}, w(β) = max{1, β} and where S1(β, q, π) is a closed form slack
term with

S1(β, q, π) =

{
1

β(β−1)Eq(θ)

[
q(θ)β−1

]
− Eq(θ) [log q(θ)]− 1

β−1 if 0 < β < 1
1
βEq(θ) [log π(θ)]− 1

β−1Eq(θ)

[
π(θ)β−1

]
− 1

β(β−1) if β > 1.
(31)

Proof Firstly we note that the objective function associated with the RoT P (D(β)
B , `n, Q)

can be simplified by removing the terms in the D
(β)
B that don’t depend on q(θ)

arg min
q∈Q

{
Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+ D

(β)
B (q(θ)||π(θ))

}

=arg min
q∈Q

{
Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

β(β − 1)
Eq(θ)

[
q(θ)β−1

]
− 1

(β − 1)
Eq(θ)

[
π(θ)β−1

]}
.

We have to consider two cases for β as the positivity and negativity of β − 1 affect which
part of Lemma 28 we use.
Case 1) 0 < β < 1: Lemma 28 gives us that for β − 1 < 0, Zβ−1

β−1 ≤ log(Z) + 1
β−1 therefore

= Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

β(β − 1)
Eq(θ)

[
q(θ)β−1

]
− 1

(β − 1)
Eq(θ)

[
π(θ)β−1

]
≥ Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

β(β − 1)
Eq(θ)

[
q(θ)β−1

]
− Eq(θ) [log(π(θ))]− 1

β − 1

= KLD(q(θ)||π`(θ|x))− log

∫
exp(−

n∑
i=1

`(θ,xi))π(θ)dθ

+
1

β(β − 1)
Eq(θ)

[
q(θ)β−1

]
− Eq(θ) [log(q(θ))]− 1

β − 1
.

Case 2) β > 1: Lemma 28 gives us that for β − 1 > 0, Zβ−1

β−1 ≥ log(Z) + 1
β−1 therefore

= Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

β(β − 1)
Eq(θ)

[
q(θ)β−1

]
− 1

(β − 1)
Eq(θ)

[
π(θ)β−1

]
≥ Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

β

(
Eq(θ)

[
log

(
q(θ)

π(θ)

π(θ)

)]
+

1

β − 1

)
− 1

(β − 1)
Eq(θ)

[
π(θ)β−1

]
=

1

β
KLD(q(θ)||πβ`(θ|x))− 1

β
log

∫
π(θ) exp(−β

n∑
i=1

`(θ,xi))dθ

+
1

β
Eq(θ) [log(π(θ))]− 1

(β − 1)
Eq(θ)

[
π(θ)β−1

]
+

1

β(β − 1)
.

75



Knoblauch, Jewson and Damoulas

Combined these two cases provides the term in Eq. (30) and (31)

F.3 The D
(γ)
G prior regulariser

Theorem 30 (GVI as approximate Evidence Lower bound with D = D
(γ)
G ) The ob-

jective of a GVI posterior based on P (`,D(γ)
G ,Q) has an interpretation as lower bound on the

c(γ)-scaled (generalized) evidence lower bound of P (w(γ) · `,KLD,P(Θ)):

Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+ D

(γ)
G (q(θ)||π(θ)) = −c(γ)ELBO

w(γ)`(q) + S(γ, q, π) (32)

where ELBOw(γ)` denotes the Evidence Lower Bound associated with standard VI relative to
the generalized Bayesian posterior given by

q
w(γ)`
B (θ) ∝ π(θ) exp

(
−w(γ)

n∑
i=1

`(θ,xi)

)
,

where c(γ) = min{1, γ−1}, w(γ) = max{1, γ} and where S1(γ, q, π) is a closed form slack
term with

S1(γ, q, π) =

{
1

γ(γ−1) logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log q(θ)] if 0 < γ < 1

1
γEq(θ) [log π(θ)]− 1

γ−1 logEq(θ)

[
π(θ)γ−1

]
if γ > 1.

(33)

Proof Firstly we note that the objective function associated with P (D(γ)
G , `n, Q) can be

simplified by removing the terms in the D
(γ)
G that don’t depend on q(θ)

arg min
q∈Q

{
Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+ D

(γ)
G (q(θ)||π(θ))

}
=

arg min
q∈Q

{
Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]}
.

We have to consider two cases for γ as the positivity and negativity of γ− 1 affect the results
we can use.
Case 1) 0 < γ < 1: Jensen’s inequality and the concavity of the natural logarithm applied
to Eq(θ)

[
π(θ)γ−1

]
provides

= Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
≥ Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− Eq(θ) [log π(θ)]

= KLD(q(θ)||π`(θ|x))− log

∫
π(θ) exp

(
−

n∑
i=1

`(θ,xi)

)
dθ

+
1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
+−Eq(θ) [log q(θ)] .
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Case 2) γ > 1: Jensen’s inequality and the concavity of the natural logarithm applied to

Eq(θ)

[
q(θ)γ−1 π(θ)γ−1

π(θ)γ−1

]
provides

= Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

γ(γ − 1)
logEq(θ)

[
q(θ)γ−1

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
≥ Eq(θ)

[
n∑
i=1

`(θ,xi)

]
+

1

γ
Eq(θ)

[
log

q(θ)π(θ)

π(θ)

]
− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
=

1

γ
KLD(q(θ)||πγ`(θ|x))− 1

γ

∫
π(θ) exp

(
−γ

n∑
i=1

`(θ,xi)

)
dθ

+
1

γ
Eq(θ) [log π(θ)]− 1

(γ − 1)
logEq(θ)

[
π(θ)γ−1

]
.

Combined these two cases provides the term in Eq. (32) and (33)

F.3.1 Interpretation

Theorems 29 and 30 provide a lower bound on an objective function that is to be minimised
so that interpreting this lower bound provides some insight into the behaviour of the GVI

posterior. First, we investigate the case where the hyperparameters β and γ are in (0, 1).
As expected, the form of the GVI objective leads us to conclude that the variance will be
larger than that for standard VI within this range of values. Next, we investigate the case
where the hyperparameters β and γ are > 1. Again unsurprisingly, this leads to a shrinkage
of the posterior variance relative to standard VI.

Case 1: 0 < β = γ < 1. For 0 < β = γ < 1 the terms c(β) = c(γ) and w(β) = w(γ)
produce an objective equivalent to standard VI. This suggests that GVI continues to minimise
the KLD between the variational and standard Bayesian posterior. Unlike standard VI

however, GVI with D = D
(β)
B or D = D

(γ)
G additionally minimises the slack terms S1(β, q, π)

or S1(γ, q, π). It is easy to show that the these adjustment terms encourage the solution to
P (D(β)

B , `, Q) with 0 < β < 1 and P (D(γ)
G , `, Q) with 0 < γ < 1 to have greater variance than

the standard VI posterior given by P (KLD, `n, Q). For the D
(β)
B , we can see this by rewriting

S(0,1)(β, q, π) = − 1

β
h

(β)
T (q(θ)) + hKLD(q(θ)) +

1− β
β

.

Here, hKLD(q(θ)) is the Shannon entropy of q(θ) and h
(β)
T (q(θ)) is the Tsallis entropy

of q(θ) with parameter β. Again applying Lemma 28, we find that for 0 < β < 1,

h
(β)
T (q(θ)) > hKLD(q(θ)). It immediately follows that minimising − 1

βh
(β)
T (q(θ)) + hKLD(q(θ))

for 0 < β < 1 will make h
(β)
T (q(θ)) large—an effect that is achieved by increasing the variance

of q(θ).
Applying the same type of logic to the D

(γ)
G , one can rewrite

S(0,1)(γ, q, π) = −1

γ
h

(γ)
R (q(θ)) + hKLD(q(θ)).
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As before, hKLD(q(θ)) is the Shannon entropy of q(θ), but unlike before h
(γ)
R (q(θ)) is now the

Rényi entropy of q(θ) with parameter γ. With this, one can extend Theorem 3 in Van Erven

and Harremos (2014) to show that h
(γ)
R (q(θ)) is decreasing in γ. Since it is also well-known

that limγ→1 h
(γ)
R (q(θ)) = hKLD(q(θ)), it follows that minimising − 1

γh
(γ)
R (q(θ)) + hKLD(q(θ))

for 0 < γ < 1 will make h
(γ)
R (q(θ)) large—an effect that is again achieved by increasing the

variance of q(θ).

Case 2: β = γ = k > 1. For k = γ = β > 1, c(k) = 1
k and w(k) = k. Minimising

KLD(q||q∗k) for k > 1 will encourage P (D(β)
B , `, Q) or P (D(γ)

G , `, Q) to be more concentrated

around the empirical risk minimizer θ̂n of ` than the standard VI posterior given by
P (KLD, `, Q). Additionally, one can show that minimising the adjustment term also favours
shrinking the variance of q(θ). To see this for the case of D(β)

B , rewrite

S(1,∞)(β, q, π) =
1

β
Eq(θ) [log(π(θ))]− 1

β − 1
Eq(θ)

[
π(θ)β−1 − 1

]
− 1

β
. (34)

Applying Lemma 28 then shows that for β > 1,

1

β − 1
Eq(θ)

[
π(θ)β−1 − 1

]
≥ Eq(θ) [log(π(θ))] ≥ 1

β
Eq(θ) [log(π(θ))] .

From this, it follows that minimising Eq. (34) will make 1
β−1Eq(θ)

[
π(θ)β−1

]
large. Fixing

π(θ), maximising 1
β−1Eq(θ)

[
π(θ)β−1

]
plus 1

β× the Tsallis entropy of q(θ) is equivalent to

minimising D
(β)
B (q(θ)||π(θ)). Because D(β)

B is a divergence, this maximization would naturally
seek to choose q(θ) close to π(θ). The Tsallis entropy term in this formulation would have
acted to increase the variance of q(θ). But since we maximize only 1

β−1Eq(θ)

[
π(θ)β−1

]
—i.e.

without adding the Tsallis entropy of q(θ)—choices of β > 1 will lead to shrinking the
variance of q(θ) relative to standard VI.

For the D
(γ)
G , Jensen’s inequality shows that for γ > 1,

1

γ − 1
logEq(θ)

[
π(θ)γ−1

]
≥ Eq(θ) [log(π(θ))] ≥ 1

γ
Eq(θ) [log(π(θ))] .

As a result, minimising S(1,∞)(γ, q, π) will seek to make 1
γ−1 logEq(θ)

[
π(θ)γ−1

]
large. Fix-

ing again π(θ), maximising 1
γ−1 logEq(θ)

[
π(θ)β−1

]
plus 1

γ× the Rényi entropy of q(θ) is

equivalent to minimising D
(γ)
G (q(θ)||π(θ)), and thus seeks q(θ) close to π(θ). The Rényi

entropy term would have acted to increase the variance of q(θ). Therefore and similarly to
the case of D(β)

B , maximising 1
γ−1 logEq(θ)

[
π(θ)γ−1

]
without adding the Rényi entropy will

lead to shrinkage of the variance of q(θ).

Appendix G. Proof of Proposition 16

Proof Proposition 16 considers the following forms of the prior and likelihood

π(θ|κ0) = h(θ) exp
{
η(κ0)TT (θ)−A(η(κ0))

}
q(θ|κ) = h(θ) exp

{
η(κ)TT (θ)−A(η(κ))

}
p(x|θ) = h(θ) exp(g(x)TT (θ)−B(x)),
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where A(η(κ)) = log
∫
h(θ) exp

{
η(κ)TT (θ))

}
dθ and h(θ) = 1∫

exp(g(x)TT (θ)−B(x))dx
.

The GVI objective function in this scenario, which we term an ELBO as we use the KLD

prior regulariser is

ELBO(κ) = Eq(θ|κ)

[
n∑
i=1

`
(γ)
G (θ,xi)

]
+ KLD(q(θ|κ)||q(θ|κ0))

=
n∑
i=1

∫
`
(γ)
G (θ,xi)︸ ︷︷ ︸
C1(κ,θ,xi)

q(θ|κ)dθ

︸ ︷︷ ︸
C2(κ,xi)

+ KLD(q(θ|κ)||π(θ|κ0))︸ ︷︷ ︸
C3(κ,κ0)

.

We have decomposed this into three terms that we need to check are closed forms of κ.
Firstly

C1(κ,θ,xi) = `
(γ)
G (xi,θ) = − 1

γ − 1
p(xi;θ)γ−1 γ[∫

p(z;θ)γdz
] γ−1

γ

,

and in order for this to be a closed form function of κ, θ, and xi requires that

I(γ)(θ) =

∫
p(z|θ)γdz =

∫
h(θ)γ exp(γg(z)TT (θ)− γB(z))dz,

where the theorem statement ensures that I(γ)(θ) is a closed form function of θ. Next

C2(κ,xi)

=− γ

γ − 1

∫
h(θ)γ−1 exp((γ − 1)g(xi)

TT (θ)− (γ − 1)B(xi))
1[

h(θ)γI(γ)(θ)
] γ−1

γ

q(θ|κ)dθ

=− γ

γ − 1

exp ((1− γ)B(xi) +A (η(κ) + (γ − 1)g(xi)))

exp (A(η(κ)))
Eq(θ|(η(κ)+(γ−1)g(xi)))

[
I(γ)(θ)

1−γ
γ

]
,

where the theorem statement ensures that (η(κn) + (γ − 1)g(xi)) ∈ N for all xi and that

F2(κ∗) = Eq(θ|κ∗)
[
I(γ)(θ)

1−γ
γ

]
is closed form function of κ∗ for all κ∗ ∈ N . Lastly

C3(κ, κ0) =

∫
h(θ) exp

{
η(κ)TT (θ)−A(η(κ))

}
log

h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
h(θ) exp {η(κ0)TT (θ)−A(η(κ0))}dθ

=A(η(κ0))−A(η(κ)) + (η(κ)− η(κ0))T Eq(θ|κ) [T (θ)] ,

where the theorem statement ensures that F1(κ∗) = Eq(θ|κ∗) [T (θ)] is a closed form function
of κ∗ for all κ∗ ∈ N .

Appendix H. Black Box GVI (BBGVI)

The following sections first recall the (implicit and explicit) assumptions one typically makes
for black box VI. They are then compared to assumptions that are reasonable for black box
GVI (BBGVI). The corresponding methods, their special cases and the relevant black box
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variance reduction techniques are then derived and elaborated upon. While there are many
black box VI strategies, we center attention on the framework provided for by Ranganath
et al. (2014). Throughout, we denote q(θ) = q(θ|κ) as a posterior distribution in a set of
variational families Q and parameterized by some parameter κ ∈K.

H.1 Preliminaries and assumptions

The variance reduction techniques of Ranganath et al. (2014) crucially rely on three implicit
assumptions that are reasonable for many applications of standard VI.

(A1) Structured mean-field variational inference is used, which means that we can factorize
the variational family as Q = {q(θ|κ) =

∏k
j=1 qj(θj |κj) : κj ∈ Kj for all j}.

(A2) For all factors θj , we have a Markov blanket θ(j) for which we can additively decompose

`(θ, xi) = `(j)(θj ,θ(j), xi) + `(−j)(θ−j , xi). Here, `(j) is an additive component of the

loss ` that only depends on the j-th factor and its Markov blanket, while `(−j) is
an additive component of the loss that may depend on all of θ except for its j-th
factor. Note that such additivity holds for standard VI for which the likelihood and
the prior are such that the components θj are conditionally independent. In this case,
the conditioning set is the Markov blanket.

(A3) D = 1
w · KLD (with w = 1 for standard VI).

Note that (A1) is always satisfied for both standard VI and GVI, because any variational
family factorizes into at least a single factor. In contrast, note that (A2) does not even
necessarily hold for standard VI unless one imposes some conditional independence structure
on the θj . For GVI, both (A2) and (A3) do not necessarily hold. If they do however, they
can greatly simplify BBGVI or improve its numerical performance. In the remainder of this
section, we discuss different constellations of assumptions and their consequences for BBGVI.

H.2 Standard black box VI with (A2) and (A3)

If the regularizer used is still a rescaled version of the KLD, one recovers an internally rescaled
version of the objective in (Ranganath et al., 2014). Namely, the gradient is given by

Eq(θ|κ)

[
∇κ log(q(θ|κ))

(
−

n∑
i=1

`(θ, xi)− w log π(θ)− w log(q(θ|κ))

)]
.

and can be approximated in a smart way by sampling from q(θ|κ), see for instance Ranganath
et al. (2014) for details and the viable strategies for variance reduction. Next, we turn
attention to the cases that are more interesting: If (A3) does not hold (so that D 6= KLD)
and when the losses are not necessarily negative log likelihoods, meaning that (A2) requires
more careful consideration.

H.3 BBGVI under (A2)

If the losses are decomposable along the factors, two cases need to be distinguished:

(D1) ∇κD(q‖π) has closed form for all q ∈ Q;
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(D2) D(q‖π) = Eq(θ|κ)

[
`Dκ,π(θ)

]
for some function `Dκ,π : Θ→ R.

Under each condition, we find a different solution using as much of the available information
as possible to improve inference outcomes. For simplicity, we first explain how the derivation
works without using the additional information that (A2). In a second step, we shall see how
this additional information can be used for variance reductions in the Rao-Blackwellization
spirit also used by Ranganath et al. (2014).

H.3.1 Gradients if (D1) holds, not using (A2)

In this case, we can obtain the objective given in the main paper. Define L(q) to be the GVI

objective function of q(θ|κ). It holds that

∇κL(q) = ∇κ
[∫
θ

n∑
i=1

`(θ, xi)q(θ|κ)dθ +D(q||π)

]
=

∫
θ
`n(θ,x)∇κq(θ|κ)dθ +∇κD(q||π)

= Eq(θ|κ)

[
n∑
i=1

`(θ, xi)∇κ log(q(θ|κ))

]
+∇κD(q||π).

Correspondingly, the gradient can then be estimated without bias and computing the
corresponding sample average 1

S

∑S
s=1G(θ(s)), where the individual terms are given by

G(θ(s)) =
n∑
i=1

`(θ(s), xi)∇κ log(q(θ(s))) +∇κD(q||π)

H.3.2 Gradients if (D2) holds, not using (A2)

If the prior regularizer is not available in closed form, one instead can rely on

∇κL(q) = ∇κ
[∫
θ

[
n∑
i=1

`(θ, xi) + `Dκ,π(θ)

]
q(θ|κ)dθ

]

=

∫
θ

[
n∑
i=1

`(θ, xi) + `Dκ,π(θ)

]
∇κq(θ|κ)dθ +

∫
θ

[
∇κ`Dκ,π(θ)

]
q(θ|κ)dθ

= Eq(θ|κ)

[(
n∑
i=1

`(θ, xi) + `Dκ,π(θ)

)
∇κ log(q(θ|κ))

]
+ Eq(θ|κ)

[
∇κ`Dκ,π(θ)

]
.

This derivation is a more general case of the one given in Ranganath et al. (2014), but
further simplifies to the one therein if D = KLD. The gradient is estimated without bias by
sampling θ(1:S) from q(θ|κ) and again computing 1

S

∑S
s=1G(θ(s)) for the slightly different

G(θ(s)) =

[
n∑
i=1

`(θ(s), xi) + `Dκ,π(θ(s))

]
∇κ log(q(θ(s)|κ)) +∇κ`Dκ,π(θ(s)).
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H.3.3 Rao-Blackwellization for variance reduction, using (A2)

If the losses define a markov blanket over the factors θj , one can employ Rao-Blackwellization

for variance reduction. This is done by rewriting for q−j(θ−j |κ−j) =
∏k
l=1,l 6=j ql(θl|κl) the

partial derivatives as

∇κjL(q) = ∇κjEqj(θj |κj)
[
Eq−j(θ−j |κ−j) [L(q)|θj ]

]
.

The hope is then to get around computing as many of the inner expectations over q−j(θ−j |κ−j)
as possible. Assume for the moment that at least (D2) holds. Further, denote q−j(θ−j |κ−j) =
q−j , qj(θj |κj) = qj , and in similar fashion the distributions q(j), q−(j), q. Moreover, denote

`i = `(θ, xi), `
D = `Dκ,π(θ) and in a similar fashion `

(j)
i , `

−(j)
i . Now, assuming that (A2)

holds relative to the factors θj of the variational family Q, one finds

∇κjL(q) = Eqj

[
∇κj log(qj)

(
Eq−j

[
n∑
i=1

`
(j)
i

]
+ Eq−j [`

−j
n ] + Eq−j [`

D]

)]
+ Eq−j [∇κj`D].

Observing that Eqj [∇κj log(qj)] = 0 and that Eq−j [`−(j)] is constant in θj by (A2), this
drastically simplifies to

∇κjL(q) = Eqj

[
∇κj log(qj)Eq−j

[
n∑
i=1

`
(j)
i

]
+ Eq−j

[
`D +∇κj`D

]]
.

Next, observe that by virtue of how `(j) was constructed, it holds that we can also simplify

Eqj

[
∇κj log(qj)Eq−j

[
n∑
i=1

`
(j)
i

]]
= Eq(j)

[
n∑
i=1

`
(j)
i

]
.

Putting the above together, we finally arrive at

∇κjL(q) = Eqj

[
∇κj log(qj)

(
Eq−j

[
n∑
i=1

`
(j)
i

]
+ Eq−j [`

D]

)
+ Eq−j [∇κj`D]

]

= Eq(j)

[
∇κj log(qj)

n∑
i=1

`
(j)
i

]
+ Eq

[
∇κj log(qj)`

D +∇κj`D
]
.

which is the final form under (D1). Should (D1) to hold, one can instead use the lower
variance estimate

∇κjL(q) = Eq(j)

[
∇κj log(qj)

n∑
i=1

`
(j)
i

]
+∇κjD(q‖π).

These derivations are very similar to the ones in the supplement of Ranganath et al. (2014),
but importantly the former are restricted to negative log likelihood losses. The more general
version presented here holds for arbitrary decomposable losses. The J terms ∇κjL(q) can
be combined into a global gradient estimate simply by setting

∇κL(q) = (∇κ1L(q),∇κ2L(q), . . .∇κJL(q))T .

To make the meaning of (A2) more tangible for the case of general losses, we next provide a
short example in the context of multivariate regression.
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Example 5 (Markov blankets without conditional independence) Suppose each xi =
(xi,1, xi,2, xi,3)′ consists of three measurements that we wish to relate to some other observables
yi through

xi,1 = a+ yib+ ξ1

xi,2 = b+ yic+ ξ2

xi,3 = d+ ξ3

where ξj are unknown slack variables (or errors), the parameters of interest are θ =
(a, b, c, d, e) and we wish to produce a belief distribution over θ that is informative about good
values of θ relative to some prediction loss

`(θ, xi) = ‖f1
1 (θ1,θ(1), yi)− xi,1‖pp + ‖f2

2 (θ1,θ(1), yi)− xi,2‖pp + ‖f3
2 (θ2,θ(2), yi)− xi,3‖pp,

where ‖ · ‖pp denotes some p-norm for p ≥ 1 and f jl seeks to predict only the l-th dimension

of xi by means of the l-th factor of θ and its blanket. Suppose that f jl will correspond to the
l-th row written down in the above model for xi (excluding of course the error term), which
means that

f1
1 (θ1,θ(1)) = a+ yib

f2
2 (θ1,θ(1), yi) = b+ yic

f3
2 (θ2,θ(2), yi) = d

In this case, the two factors of θ will clearly be given by

θ1 = (a, b, c)T , θ2 = (d).

As before, one will in practice need to approximate the gradients with a sample θ(1:S) drawn
from q(θ|κ). For one of the fixed samples θ(s), the relevant terms are computed as

Gj(θ
(s)) = ∇κj log(qj(θ

(s)
j |κj))

n∑
i=1

`(j)(θ
(s)
j ,θ

(s)
(j), xi) + D̃(s, j)

for some function D̃(s, j). If (D2) holds and there is no closed form for the prior regularizer,
this function is given by

D̃(s, j) = ∇κj log(qj(θ
(s)
j |κj))`Dπ,κ(θ(s)) +∇κj`Dπ,κ(θ(s))

and in case the stricter requirement (D1) holds, it is simply given by the closed form

D̃(s, j) = ∇κjD(q‖π).

H.4 BBGVI if neither (A2) nor (A3) hold

It is of course possible that neither (A2) nor (A3) hold. Alternatively, it may simply
be convenient to build an implementation that can work reliably without imposing any
assumptions. In this case, one will have to use the naive version of BBGVI that is given in
the main paper and only depends on the distinction between (D2) and (D1). However—even
though we do not do so in our experiments–there still are valid black box variance reduction
techniques for this case. The next section presents these techniques, again by adapting
notation and logic from Ranganath et al. (2014).
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H.5 Generically applicable variance reduction

While the Rao-Blackwellization variance reduction will generally be more effective, some
variance reduction techniques can work in circumstances where Rao-Blackwellization does
not. Conversely, this means that if the Rao-Blackwellization is applicable, one can actually
deploy two variance reduction schemes at once to substantially speed up convergence. The
control variate we use is simply

h(θ) = ∇κ log q(θ|κ)

with an optimal scaling parameter that can be estimated as

â∗ =

∑S
s=1 Ĉov(L(θ(s)), h(θ(s)))∑S

s=1 V̂ar(h(θ(s)))
.

Based on this, one may now compute the variance reduced term GVR(θ(s)) from G(θ(s)) as

GVR(θ(s)) = G(θ(s))− â∗ · h(θ(s)).

Of course, the exact same logic can be applied to the Rao-Blackwellized terms Gj(θ
(s)) to

reduce the variance a second time.

Appendix I. Closed forms for divergences & proof of Proposition 17

This section proves various closed forms for the prior regularizers in the GVI problem. We
do so by proving conditions for closed forms of the αβγ-divergence (D(α,β,r)

G ) introduced
in Appendix A. Note that the special case of these results for the D

(α)
AR has been derived

before (see Gil et al., 2013; Gil, 2011; Liese and Vajda, 1987). Unlike previous work, our
results apply to a range of other divergences, too. This is convenient because all other robust
divergences we discuss throughout the paper are special cases of D(α,β,r)

G .

I.1 High-level overview of results and preliminaries

Summarizing some of the most important findings of this section, we find that if both q(θ)
and π(θ) are in the same exponential variational family Q,

• D
(α)
AR(q||π) and D

(α)
A (q|π) are always available in closed form if α ∈ (0, 1) (see Corollary

35)

• D
(α)
AR(q||π) and D

(α)
A (q|π) are available in closed form if α > 1 for most exponential

families (see again Corollary 35)

• D
(β)
B (q||π) and D

(γ)
G (q||π) are available in closed form for β > 1 and γ > 1 for most

exponential families (See Corollary 41).

We note that these findings are interesting because closed forms for the divergence term
drastically reduce the variance of black box GVI, see also Appendix H. The remainder of this
section is devoted to tedious but rigorous derivations of these findings. Before stating any
results, it is useful to state the definition of an exponential family and its natural parameter
space upon which the proofs rely.
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Definition 31 (Exponential families) Object θ ∈ Θ ⊂ Rd, d ≥ 1 has an exponential
family distribution with parameters κ ∈ K ⊂ Rp′, p′ ≥ 1 if there exist functions η : K →
N ⊂ Rp, p ≥ 1, T : Θ→ T ⊂ Rp, h : Θ→ R≥0 and A : N → R such that

p(θ|η(κ)) = h(θ) exp
{
η(κ)TT (θ)−A(η(κ))

}
,

where A(η(κ)) = − log
(∫
h(θ) exp

{
η(κ)TT (θ)

}
dθ
)
. The set N is called the natural

parameter space and is defined to ensure p(θ|η(κ)) is a normalised probability density,
N = {η(κ) : A(η(κ)) <∞}.

Throughout the rest of this section, we assume that the following condition holds for both
the prior and the variational family Q.

Condition 1 (The prior and variational families) It holds that

i) the variational family Q = {q(θ|η(κ))} is an exponential family of the form given by
Definition 31

ii) the prior π(θ|η(κ0)) is a member of that variational family.

Amongst other things, this implies that the log-normalising constant is a closed form function
of the natural parameters and that we can derive generic conditions for closed forms by using
the canonical representation of exponential families.

To showcase the implications of the derived results, we use the Mulitvariate Gaussian (MVN)
to provide examples along the way.

Definition 32 (The MVN exponential family) The density of the MVN exponential
family for vector θ of dimension d is p(θ|η(κ)) = h(θ) exp

{
η(κ)TT (θ)−A(η(κ))

}
where

η(κ) =

(
V −1µ
−1

2V
−1

)
T (θ) =

(
θ
θθT

)
h(θ) = (2π)−d/2 A(η(κ))=

[
1

2
log |V |+ 1

2
µV −1µ

]
and the natural parameter space requires that µ is a real valued vector of the same dimension
as θ and V is a d× d symmetric semi-positive definite matrix.

I.2 Results, proofs & examples

The remainder of this section is structued as follows: First, we give the main result for the
αβγ-divergence (D(α,β,r)

G ) in Proposition 33. This “master result” is then applied to various
special cases for D(α,β,r)

G that are of practical interest, namely the α-divergence (D(α)
A ), Rényi’s

α-divergence (D(α)
AR), the β-divergence (D(β)

B ) as well the γ-divergence (D(γ)
G ).

I.2.1 Master result for D
(α,β,r)
G

While the following result and corresponding proof are somewhat tedious to read, they are
conceptually simple: In fact, all that is needed to derive the results is some basic algebra
and the canonical form of the exponential family.
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Proposition 33 (Closed form D
(α,β,r)
G between exponential families) The D

(α,β,r)
G be-

tween a variational posterior q(θ|κn) and prior π(θ|κ0) is available in closed form under
the following conditions

i) η(κ0), η(κn) ∈ N ⇒ (αη(κ0) + (β − 1)η(κn)) ∈ N ;

ii) Ep(θ|η(κ))

[
h(θ)α+β−2

]
is a closed form function of η(κ) ∈ N .

If these conditions hold the D
(α,β,r)
G can be written as

D̃
(α,β)
G (q(θ|κn)||π(θ|κ0))

= αB(κn, (α+ β − 1))E(κn, (α+ β − 1)) + (β − 1)B(κ0, (α+ β − 1))E(κ0, (α+ β − 1))

− (α+ β − 1)C(κn,κ0, α, (β − 1))Ẽ(κn,κ0, α, (β − 1))

where

B(κ, δ) =
exp {A(δη(κ))}
exp {A(η(κ))}δ

, C(κ1,κ2, δ1, δ2) =
exp {A (δ1η(κ1) + δ2)η(κ2))}

exp {A(η(κ1))}δ1 exp {A(η(κ2))}δ2

E(κ, δ) = Ep(θ|δη(κ))

[
h(θ)δ−1

]
, Ẽ(κ1,κ2, δ1, δ2) = Ep(θ|δ1η(κ1)+δ2η(κ2))

[
h(θ)δ1+δ2−1

]
we suppress the dependence of these functions on A(·) and h(·) as these derive form the
definition of the exponential family (Definition 31).

Proof The D(α,β,r)
G is a closed form function of D̃(α,β)

G given in Definition 20. Hence if D̃(α,β)
G is

available in closed form, then so is D(α,β,r)
G . In order to ensure that D̃

(α,β)
G (q(θ|κn)||π(θ|κ0))

has closed form, we need to make sure the three integrals below are available in closed form
for the exponential family.

G1 :=

∫
q(θ|κn)α+β−1dθ, G2 :=

∫
π(θ|κ0)α+β−1dθ,

G3 :=

∫
q(θ|κn)απ(θ|κ0)β−1dθ.

First we tackle G1.

G1 =

∫
h(θ)α+β−1 exp

{
(α+ β − 1)η(κn)TT (θ)− (α+ β − 1)A(η(κn))

}
dθ

= exp {A((α+ β − 1)η(κn))− (α+ β − 1)A(η(κn))}Ep(θ|(α+β−1)η(κn)

[
h(θ)α+β−2

]
,

where condition (i) with η(κ0) = η(κn) ensures that

A((α+ β − 1)η(κn)) =

∫
h(θ) exp

{
(α+ β − 1)η(κn)TT (θ)

}
dθ <∞,

which in turn ensures that p(θ|(α+ β− 1)η(κn) is a normalised probability density and that
Ep(θ|(α+β−1)η(κn)

[
h(θ)α+β−2

]
is a valid expectation. Now, condition (ii) guarantees this is a

closed form function of η(κn). Similarly for G2,

G2 =

∫
h(θ)α+β−1 exp

{
(α+ β − 1)η(κ0)TT (θ)− (α+ β − 1)A(η(κ0))

}
dθ

= exp {A((α+ β − 1)η(κ0))− (α+ β − 1)A(η(κ0))}Ep(θ|(α+β−1)η(κ0)

[
h(θ)α+β−2

]
,
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where in analogy to G1, conditions (i) and (ii) with η(κk) = η(κ0) ensure this has a closed
form. Lastly for G3,

G3 =

∫
h(θ)α exp

{
αη(κn)TT (θ)− αA(η(κn))

}
·h(θ)β−1 exp

{
(β − 1)η(κ0)TT (θ)− (β − 1)A(η(κ0))

}
dθ

= exp {A (αη(κn) + (β − 1)η(κ0))− αA(η(κn))− (β − 1)A(η(κ0))}
·Ep(θ|(αη(κn)+(β−1)η(κ0))

[
h(θ)α+β−2

]
,

where once again in analogy to G1 and G2, conditions (i) and (ii) ensure this is a closed
form function of η(κn) and η(κ0).

Therefore, provided conditions (i) and(ii) hold, the integrals G1, G2 and G3 are available
in closed form, implying that the same holds for D(α,β,r)

G (q(θ|κn)||π(θ|κ0)).

Remark 34 (Conditions of Proposition 33 for the MVN exponential family) In or-
der to illuminate the meaning and generality of the conditions of Theorem 33, we apply them
to the MVN exponential family described in Definition 32. In this case the two conditions
become:

i) For µ∗ :=

{
µ1 + µ2 −

((
1
αV1

)−1
+
(

1
β−1V2

)−1
)−1((

1
αV1

)−1
µ2 +

(
1

β−1V2

)−1
µ1

)}
we require that

α

(
V −1

1 µ1

−1
2V
−1

1

)
+ (β − 1)

(
V −1

2 µ2

−1
2V
−1

2

)
=


(

1
αV1

)−1
µ1 +

(
1

β−1V2

)−1
µ2

−1
2

{(
1
αV1

)−1
+
(

1
β−1V2

)−1
}


=


{(

1
αV1

)−1
+
(

1
β−1V2

)−1
}
µ∗

−1
2

{(
1
αV1

)−1
+
(

1
β−1V2

)−1
}
 ∈ N

ii) Ep(θ|η(κ))

[
(2π)−d/2(α+β+2)

]
= (2π)−d/2(α+β+2) = f(η(κ)) where f is a closed form

function.

Part ii) shows that the second condition is trivially satisfied for the MVN exponential family.
Part i) shows that for the MVN exponential family, the first condition is satisfied provided

(V ∗)−1 =

{(
1
αV1

)−1
+
(

1
β−1V2

)−1
}

is a positive definite matrix. This condition is enough

to ensure that V ∗ is invertible and thus that µ∗ is well-defined. We elaborate further on what
this means for certain parametrisations below.
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I.2.2 Corollary: The special cases of D
(α)
A , D(α)

AR

Next, we consider the D(α)
A and D

(α)
AR special cases of the D(α,β,r)

G family. Definitions 21 and 22
can be used to show that the D

(α)
AR is available as the following closed form function of the

D
(α)
A . In particular, it holds that

D
(α)
AR(q(θ)||π(θ)) =

1

α(α− 1)
log
{

1 + α(1− α)D(α)
A (q(θ)||π(θ))

}
. (35)

Thus, as demonstrated in Corollary 36 below, the D
(α)
A being available in closed form

immediately provides the D
(α)
AR in closed form. Before stating these results, we note that Gil

et al. (2013); Gil (2011); Liese and Vajda (1987) have shown our closed form results for the
D

(α)
AR (and thus implicitly the D

(α)
A ) before. We nevertheless think there is merit in stating

them, since our results refer to the D
(α,β,r)
G and thus are more general, recovering both the

D
(α)
A and D

(α)
AR only as a special case.

Corollary 35 (Closed form D
(α)
A for exponential families) The D

(α)
A between a varia-

tional posterior q(θ|κn) and prior π(θ|κ0) is available in closed form under the following
conditions

i) (αη(κn) + (1− α)η(κ0)) ∈ N

and in this case the D
(α)
A can be written as

D
(α)
A (q(θ|κn)||π(θ|κ0) =

1

α(1− α)
[1− C(κn,κ0, α, (1− α))] ,

where C(κ1,κ2, δ1, δ2) was defined in Proposition 33 .

Proof Following Cichocki and Amari (2010) the single-parameter D(α)
A is recovered as a

member of the D
(α,β,r)
G family when r = 1 and β = 2− α. In this situation, Condition (ii) of

Theorem 33 holds automatically and we are left with Condition (i). Substituting β = 2− α
provides Condition (i) of the Theorem above.

If α ∈ (0, 1) then the convexity of the natural parameter space ensures that providing
η(κn) ∈ N and η(κ0) ∈ N then αη(κn) + (1− α)η(κ0) ∈ N . If α < 0 or α > 1, then this
can no longer be guaranteed.

Corollary 36 is then an immediate consequence of Corollary 35.

Corollary 36 (Closed form D
(α)
AR for exponential families) The D

(α)
AR between a varia-

tional posterior q(θ|κn) and prior π(θ|κ0) will have closed form providing the D
(α)
A between

the same two densities for the same value of α has closed form.

Proof The proof of this follows immediately from the fact that the D
(α)
AR can be recovered

using the closed form function of the D
(α)
A shown in eq. (35)

Remark 37 (Conditions for Corollary 35 for the MVN exponential family) The con-
dition that αη(κn) + (1− α)η(κ0) ∈ N can only be guaranteed for α ∈ (0, 1). However we
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can see from Remark 34 that provided V ∗ =

((
1
αV1

)−1
+
(

1
β−1V2

)−1
)−1

is a symmetric

semi-positive definite ( SPD) matrix for β = 2− α then this condition will be satisfied. For
α > 1 or α < 0 we cannot guarantee that V ∗ is SPD. However, we implement the D

(α)
AR to

quantify uncertainty for α > 1 in the main paper. Corollary 35 demonstrates that these
parameters will still produce a closed form divergence provided the prior has sufficiently large
variance, which can always be guaranteed to hold in practice.

I.2.3 Corollary: The special cases of D
(β)
B , D(γ)

G

Next, we turn attention to the β- and γ-divergence families. Definition 24 shows that the D(γ)
G

can be recovered as a closed form function of the terms of the D(β)
B and thus, as demonstrated

in Corollary 39 below, the D
(β)
B being available in closed form immediately provides that the

D
(γ)
G is available in closed form While the conditions for these are slightly more restrictive

than they were for the D
(α)
A and D

(α)
AR, one can still obtain closed form prior regularizers for a

large range of settings.

Corollary 38 (Closed form D
(β)
B for exponential families) The D

(β)
B between a varia-

tional posterior q(θ|κn) and prior π(θ|κ0) is available in closed form under the following
conditions

i) η(κ1), η(κ2) ∈ N ⇒ ((β − 1)η(κ1) + η(κ2)) ∈ N

ii) Ep(θ|η(κ))

[
h(θ)β−1

]
is a closed form function of η(κ) ∈ N .

and in this case the D
(β)
B can be written as

D
(β)
B (q(θ|κn)||π(θ|κ0)) =

1

β(β − 1)
B(κn, β)E(κn, β) +

1

β
B(κ0, β)E(κ0, β)

− 1

(β − 1)
C(κn,κ0, 1, (β − 1))Ẽ(κn,κ0, 1, (β − 1)),

where the functions B(κ, δ), C(κ1,κ2, δ1, δ2), E(κ, δ) and Ẽ(κ1,κ2, δ1, δ2) are defined in
Proposition 33.

Proof Following Cichocki and Amari (2010), the single-parameter D(β)
B is recovered as a

member of the D
(α,β,r)
G family when r = 1 and α = 1. In this situation, Condition (i)-(ii) of

Theorem 33 become (i)-(ii) above.

Corollary 39 is then an immediate consequence of Corollary 38.

Corollary 39 (Closed form D
(γ)
G for exponential families) The D

(γ)
G between a varia-

tional posterior q(θ|κn) and prior π(θ|κ0) will have closed form providing the D
(β)
B between

the same two densities with β = γ has closed form.

Proof The proof of this follows immediately from the fact that the D
(γ)
G can be recovered

from the D
(β)
B using closed form function as outlined in Definition 24.
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Remark 40 (Conditions for Corollary 38 under the MVN exponential family) Fol-

lowing Remark 34, Corollary 38 is satisfied providing V ∗ =

(
(Vn)−1 +

(
1

β−1V0

)−1
)−1

is a

symmetric SPD matrix. The sum of two symmetric SPD matrices is symmetric SPD and
additionally the inverse of a symmetric SPD matrix is also SPD. Therefore provided β > 1
we can be sure that Condition iii) will be satisfied. Similarly to Remark 37, when β < 1
closed forms will require that the prior has a sufficiently large variance.

In fact Remark 40 can be extended to many other exponential families if we constrain
β = γ > 1, this is formalised in Corollary 41.

Corollary 41 (Closed form D
(β)
B and D

(γ)
G for exponential families when β = γ > 1)

When β = γ > 1, the conditions for Corollary 38 are satisfied by any exponential family
whose h(θ) is a constant function of θ and whose natural parameter space is closed under
addition and scalar multiplication. This includes the Beta, Gamma, Gaussian, exponential
and Laplace families.

Proof The proof of Corollary 41 follows straight from that of Corollary 38.

Appendix J. Experiments

While the most interesting findings of our numerical studies can be found in the main paper,
here we give a brief overview over additional results. More importantly, we state the proofs
for the theoretical groundwork necessary to deploy GVI on DGPs.

J.1 Bayesian Neural Networks (BNNs)

We provide two more sets of experiments for further insights into BNNs. The first set
consists in three more data sets with the same settings as used in the main paper. While
these findings do not change the overall picture, they do require more careful analysis and
dissemination. The second set of results investigates the interaction between robustifying
inference relative to the loss with robustifying it relative to the prior. The results suggest a
clear relationship for predictive performance as measured by the root mean square error:
If robust losses are used, the KLD generally performs better. Moreover, the combination
of robust loss and D = KLD outperforms VI and the investigated DVI methods on all data
sets studied. The relationship is less clear for the predictive negative log likelihood, both
between loss and prior regularizer as well as between the performance to be expected under
GVI, VI and DVI.

J.1.1 First set of additional experiments (Figure 21)

Figure 21 provides the predictive outcomes on three more data sets using the exact same
settings and experimental setup as described in the main paper. The findings generally
reinforce the findings of the main paper. First, while the GVI methods with α > 1 still
perform as good as or better than standard VI on the kin8mn data set, DVI methods
show a clear performance gain relative to either of the two. Crucially, it is not clear what
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Figure 21: Top row depicts RMSE, bottom row the NLL across a range of data sets using
BNNs. Dots correspond to means, whiskers the standard errors. The further to the left,
the better the predictive performance. For the depicted selection of data sets, no common
pattern exists for the performance differences between standard VI, DVI and GVI.

leads to this improvement gain, though the fact that the best-performing DVI method is
the one recovering EP (D(α)

A for α = 0) suggests that there is tangible merit in producing
mass-covering approximations to the posterior of θ on this data set. While the deployment
of DVI methods looks tempting on the kin8mn data set, the results on the naval data set are
a reminder that the behaviour of these methods is in many ways unpredictable. Moreover, it
shows that the risks we identified in Example 3 readily translate into real world applications:
By using DVI methods, we may accidentally conflate the role of the loss and the role of
uncertainty quantification. If the loss is well-suited for the data at hand—as the RMSE

panel suggests it is in the naval case—the mass-covering behaviour of DVI methods can
be extremely detrimental. Lastly, the wine data set provides a very similar picture to the
results in Figure 11: Varying α introduces a banana-shaped curve for the GVI methods. As
it so happens, the ideal choice of α on the wine data set appears to be around α = 1 (i.e.,
standard VI). Taking into account the predictive uncertainty in form of the whiskers, it is
doubtful if any of the methods is dominating another one on wine. Presumably, the reason
for this is that the true posterior is relatively well approximated with the mean field normal
family, yielding very similar results across all settings.

J.1.2 Second set of additional experiments (Figure 22)

In a second set of additional experiments, we varied the loss function to be a robust scoring
rule. Specifically, we used scoring rules based on the β-divergence and the γ-divergence.
See Section 6.2.3 for the definition and more detail on these robust scoring rules. As for
the DGP examples, we choose values of the scoring rule that are close to the log score, but
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Figure 22: Top row depicts RMSE, bottom row the NLL across a range of data sets using
BNNs. Dots correspond to means, whiskers the standard errors. The further to the left, the
better the predictive performance. For the depicted selection of data sets, patterns exists for
the interplay between the loss and prior regularizer for GVI.

sufficiently far to induce robust behaviour. All settings for optimization, initialization as
well as the code are the same as for the results provided in the main paper. Figure 22
shows the results: For the RMSE, the results are unambiguous: Combining a robust scoring
rule with the standard prior regularizer D = KLD appears to be the winning combination
across all four data sets. The picture is less clear for the NLL: Relative to both VI and DVI,
the performance gains depend on the data set. Even within the class of GVI posteriors, it
is data-set dependent which prior regularizer should be chosen: For example, it is clearly
beneficial to choose the D

(α)
AR as prior regularizer in the boston and concrete data sets, but

the opposite is true on the yacht data set. Above all other things, this highlights the need
for a good selection strategy of GVI hyperparameters: Oftentimes, intuitions about the
correct prior regularizer or the appropriate loss may be incorrect.

J.2 Deep Gaussian Processes (DGPs)

Unlike BNNs, DGPs require some theoretical groundwork before they are amenable to changes
in the loss and prior regularizer. Specifically, we need to show that it is valid to define
new divergences layer-wise. Moreover, while not required it is beneficial if one can obtain
closed forms for the robustified likelihood terms. The following sections proceed to do both.
Thereafter, we also show an additional short example to illustrate the effect of changing the
prior regularizer in DGPs.

92



An Optimization-centric View on Bayes’ Rule

J.2.1 Proof of Corollary 18

We first prove a Lemma that plays a key role in the proof of Corollary 18.

Lemma 42 (Divergence recombination) Let Dl be divergences and cl > 0 scalars for
l = 1, 2, . . . , L. Further, denote θ−l = θ1:l−1,l+t:L and let ql(θl|θ′−l) and πl(θl|θ′−l) be
the conditional distributions of θl for q(θ) and π(θ) conditioned on θ−l = θ′−l. Then,

Dθ
′
(q||π) =

∑L
l=1 clDl

(
ql(θl|θ′−l)||πl(θl|θ′−l)

)
is a divergence between q(θ) and π(θ) if (i)

Dθ
◦
(q||π) = Dθ

′
(q||π) for all conditioning sets θ◦, θ′ and (ii) a Hammersley-Clifford

Theorem holds for the collection of conditionals πl(θl|θ′−l) and ql(θl|θ′−l).

Proof First, observe by definition of a divergence, Dl(ql(θl|θ′−l)||πl(θl|θ′−l)) = 0 for all l and
over all potential conditioning sets θ′ holds if and only if ql(θl|θ′−l) = πl(θl|θ′−l). Next, note
that we have assumed that Dθ

′
(q||π) = Dθ

◦
(q||π) for all conditioning sets θ′, θ◦. In other

words, if Dθ
′
(q||π) = 0 for some θ′, then it will also be 0 for any conditioning set θ◦. This

immediately entails that for arbitrary θ′, Dθ
′
(q||π) = 0 if and only if ql(θl|θ′−l) = πl(θl|θ′−l)

for all l and for any choice of θ′−l. In other words, the conditionals are the same. Since
the positivity condition holds, we can then apply the Hammersley-Clifford Theorem to
conclude that the conditionals fully specify the joint. This finally yields the desired result:
Dθ
′
(q||π) = 0 if and only if q(θ) = π(θ).

With this technical result in hand, one can now prove Corollary 18, which shows that reverse-
engineering prior regularizers inspired by eq. (24) is feasible so long as the layer-specific
divergences Dl are f -divergences or monotonic transformations of f -divergences.
Proof Suppressing again Z l and X for readability, first recall that

q({U l}Ll=1, {F l}Ll=1) =

L∏
l=1

p(F l|U l,F l−1)q(U l)

p({U l}Ll=1, {F l}Ll=1) =
L∏
l=1

p(F l|U l,F l−1)p(U l)

and write for a fixed conditioning set {F l
◦}Ll=1 the new divergence

D{F
l
◦}Ll=1

(
q({Ul}Ll=1, {Fl}Ll=1)‖p({Ul}Ll=1, {Fl}Ll=1)

)
=

L∑
l=1

Dl
(
p(F l|U l,F l−1

◦ )q(U l)‖p(F l|U l,F l−1
◦ )p(U l)

)
=

L∑
l=1

Dl
(
q(U l)‖p(U l)

)
The first equality is simply the definition of the new divergence. The second equality follows
by virtue of Dl being a monotonic function of an f -divergences or an f -divergence for all l,
which ensures that the l-th term is given by

Dl
(
p(F l|U l,F l−1

◦ )q(U l)‖p(F l|U l,F l−1
◦ )p(U l)

)
(36)

= g

(
Ep(F l|U l,F l−1

◦ )p(U l)

[
f

(
p(F l|U l,F l−1

◦ )q(U l)

p(F l|U l,F l−1
◦ )p(U l)

)])
.

= g

(
Ep(U l)

[
f

(
q(U l)

p(U l)

)])
= Dl

(
q(U l)‖p(U l)

)
.

93



Knoblauch, Jewson and Damoulas

Now note that we can invoke Lemma 42: The first condition is satisfied because the derivation
was independent of the chosen {F l

◦}Ll=1. The second condition is satisfied as both conditionals
satisfy the positivity condition required for the Hammersley-Clifford Theorem to hold.

J.2.2 Proof of Proposition 19

Proof The likelihood is Gaussian with a fixed variance parameter σ2, i.e. for yi ∈ Rd with
i = 1, 2, . . . , n

p(yi|fLi ) = (2πσ2)−0.5d exp

{
− 1

2σ2
(yi − fLi )T (yi − fLi )

}
With this, note that integrating out the normal density yields

Ip,c(f
L
i ) = (2πσ2)−0.5dcc−0.5d. (37)

Note in particular that this is a constant and does not depend on f , which makes computing
the expectation over q(fLi ) depend only on the power likelihood. Next, we show that
the power likelihood is also available in closed form. This is laborious but not difficult
and relies on the same algebraic tricks in the Appendix of Knoblauch et al. (2018). To
simplify notation, we write f = fLi . Note also that the variational parameters µ and Σ are
(stochastic) functions of the draws of f1:L−1

i from the previous layers, but we suppress this
dependency, again for readability.

Eq(f |µ,Σ)

[
1

c
p(yi|f)c

]
=

1

c
(2πσ2)−0.5dc · Eq(f |µ,Σ)

[
exp

{
− c

2σ2
(yTi yi + fTf − 2fTyi)

}]
=

1

c
(2πσ2)−0.5dc exp

{
− c

2σ2
yTi yi

}
· Eq(f |µ,Σ)

[
exp

{
− c

2σ2
(fTf − 2fTyi)

}]
=

1

c
(2πσ2)−0.5dc(2πσ2)−0.5d|Σ|−0.5 exp

{
− c

2σ2
yTi yi

}
×∫

exp

{
−1

2

(
c

σ2
fTf − 2c

σ2
fTyi + (f − µ)TΣ−1(f − µ)

)}
df

=
1

c
(2πσ2)−0.5dc(2π)−0.5d|Σ|−0.5 exp

{
−1

2

( c
σ2
yTi yi + µTΣ−1µ

)}
×∫

exp

{
−1

2

(
c

σ2
fTf − 2c

σ2
fTyi + fTΣ−1f − 2fTΣ−1µ

)}
df

The integral suggests one can obtain a closed form through the Gaussian integral by
completing the squares. Defining Σ̃−1 =

(
c
σs Id + Σ−1

)
, µ̃ =

(
c
σ2yi + Σ−1µ

)
, µ̂ = Σ̃µ̃, one

indeed has
c

σ2
fTf − 2c

σ2
fTyi + fTΣ−1f − 2fTΣ−1µ = fT

(
Id

c

σ2
+ Σ−1

)
f − 2fT

( c
σ2
yi + Σ−1µ

)
= (f − µ̂)T Σ̃−1 (f − µ̂)− µ̃T Σ̃µ̃,

which allows us to finally rewrite the integral as∫
exp

{
−1

2

(
c

σ2
fTf − 2c

σ2
fTyi + fTΣ−1f − 2fTΣ−1µ

)}
df

= exp

{
−1

2
µ̃T Σ̃µ̃

}∫
exp

{
−1

2
(f − µ̂)T Σ̃−1 (f − µ̂)

}
df = exp

{
1

2
µ̃T Σ̃µ̃

}
(2π)0.5d|Σ̃|0.5.
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Putting everthing together and simplifying expressions, this means that

Eq(f |µ,Σ)

[
1

c
p(yi|f)c

]
=

1

c

(
2πσ2

)−0.5dc |Σ̃|0.5
|Σ|0.5 exp

{
−1

2

( c
σ2
yTi yi + µTΣ−1µ− µ̃T Σ̃µ̃

)}
Depending on whether one uses the β- or γ-divergence for robustifying the loss, one thus
obtains the closed form expressions

Eq(f |µ,Σ)

[
− 1

β − 1
p(yi|f)β−1 +

Ip,β(f)

β

]
= Eq(f |µ,Σ)

[
− 1

β − 1
p(yi|f)β−1

]
+
Ip,β(f)

β

Eq(f |µ,Σ)

[
− 1

γ − 1
p(yi|f)γ−1 · γ

Ip,γ(f)
γ−1
γ

]
= Eq(f |µ,Σ)

[
− 1

γ − 1
p(yi|f)γ−1

]
· γ

Ip,γ(f)
γ−1
γ

,

with the expectation over q(f |µ,Σ) as in and the integrals Ip,β(f), Ip,γ(f) as defined above.
Note that we have derived the general case for yi ∈ Rd, where Σ, f and µ are matrix- and
vector-valued.

In fact, we can simplify everything even further in the univariate case. We summarize this
in the next part.

Remark 43 Since the derivation of Salimbeni and Deisenroth (2017) shows that one in
fact only needs to integrate over the marginals fLi , if d = 1 (as in all experiments in both
this paper and (Salimbeni and Deisenroth, 2017)), the computation corresponding to the
expression above simplifies considerably as no matrix inverses and determinants are needed.
In particular, denoting the uni-variate mean and variance parameters as µ,Σ and defining
Σ̃ = 1

c
σs

+ 1
Σ

and µ̃ =
( cyi
σ2 + µ

Σ

)
, the expectation term over the posterior q simplifies to

Eq(f |µ,Σ)

[
1

c
p(yi|f)c

]
=

1

c
s
(
2πσ2

)−0.5c

√
Σ̃

Σ
· exp

{
−1

2

(
cy2
i

σ2
+
µ2

Σ
− µ̃2Σ̃

)}
.

J.2.3 Additional experiments varying D (Figure 23)

While we showed that DGPs allow for the variation of both losses and prior regularizers, the
main paper did not use the flexibility afforded by varying D. The main reason for this is
that much like for the BNNs, the results when jointly varying loss and prior regularizer are
less intuitively interpretable. We showcase this in Figure 23, which compares a number of
different GVI posteriors for DGPs with L = 3 layers. The loss is either the robust loss Lγp
for γ ∈ {1.01, 1.05} (top 8 entries in each row) or the standard log score (bottom 4 entries
in each row). We also compare D = 1

wKLD for w = 2.0, 1.0, 0.5 as well as the composite
layer-wise divergence

D(q‖π) =
3∑
l=1

Dl(ql‖πl), D1 = D2 = KLD, D3 = D
(α)
AR for α = 0.5.

Aligned with the intuition that the priors in DGPs are rather informative due to various
hyperparameter optimization schemes, changing the prior regularizer from the KLD to the
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Figure 23: Best viewed in color. Top row depicts RMSE, bottom row the NLL across a range
of data sets using DGPs with L = 3 layers. Dots correspond to means, whiskers the standard
errors. The further to the left, the better the predictive performance.

D
(α)
AR generally typically has either fairly little or even adverse impact. Similarly, up- or

down-weighting the KLD seems not to be beneficial across the board and will depend on
the loss function. For the case of the log score however, we find a consistent improvement
for down-weighting the KLD: Predictively, it improves the predictions on both metrics
and across all data sets relative to standard VI. Similarly, up-weighting the KLD term is
counterproductive under the log score and yields a performance deterioration across all data
sets. This indicates that despite best efforts to the contrary, DGPs are probably violating (P)
so that their predictive performance can be enhanced by ignoring more prior information,
ensuring posteriors that are concentrated around the empirical risk minimizer.
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Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Laviolette. Dichotomize and
generalize: Pac-bayesian binary activated deep neural networks. In Advances in Neural
Information Processing Systems, 2019.
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