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CONJUGATE PRIORS FOR EXPONENTIAL FAMILIES 

BYPERSIDIACONIS' AND DONALDYLVISAKER~ 

Stanford University and The University of California, Los Angeles 
Let X be a random vector distributed according to an exponential family 

with natural parameter 0 E O.We characterize conjugate prior measures on O 
through the property of linear posterior expectation of the mean parameter of 
X : E(E(XI0)IX = x )  = ax + b. We also delineate which hyperparameters 
permit such conjugate priors to be proper. 

1. Introduction. Modern Bayesian statistics is dominated by the notion of 
conjugate priors. The usual definition is that a family of priors is conjugate if it is 
closed under sampling (Lindley [1972], pages 22-23 or Raiffa and Schlaifer [1961], 
pages 43-57). Consider the following example: let Snbe the number of heads in n 
independent tosses of a coin with unknown parameter p .  The accepted family of 
conjugate priors forp is the beta family with densities 

Let h be any positive bounded measurable function on the unit interval and 
observe that a prior density proportional to h(p)f(p; a ,  ,8) leads to a posterior 
density ofp,  given S, = x, proportional to h(p)f(p; a + x, ,L3 + h - x). Thus, the 
family {h(.)f(.; a ,  P)Ia > 0, P > 0, h positive, bounded, measurable) with each 
member normalized to be a prior density, is closed under sampling. Now beta 
priors have the additional property that the posterior expectation of the mean 
parameterp is a linear function of Sn.That is, there are numbers a,, b, such that 

holds for k = 0, 1, 2, . . . ,n. A principal result of this paper is that, subject to 
regularity conditions, the conjugate priors typically used satisfy, and are char- 
acterized by, a similar relation of posterior linearity: 

The regularity conditions assumed below allow such standard examples as the 
normal prior for normal location, the gamma prior for the Poisson, the inverse 
Wishart prior for normal covariance, and the beta prior for the negative binomial. 
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The Dirichlet prior for the multinomial is also suitably characterized but requires 
separate treatment. Our results are also of interest in the following two contexts: 

Credibility theory and linear Bayesian analysis. Linear Bayes prediction has been 
used since 1920 by the actuarial professional under the heading of credibility 
theory (Kahn [1975]). Our Theorem 2, that (1.1) holds for exponential families with 
their customary conjugate priors, is a rigorous treatment of some recent results of 
Jewel1 [1974b] on what is there termed exact credibility. In work unconnected with 
credibility theory per se, Ericson [1969], [I9701 noted that when (1.1) holds, a and b 
can be given expression in terms of the means and variances of the underlying 
distributions. Independently, Hartigan [I9691 made essentially the same observa- 
tion and went on to use the a and b so determined to form a linear Bayes predictor. 
Efron and Morris [I9731 have an extension of the empihcal Bayes approach they 
developed for normal location problems to situations where the Bayes estimate is 
linear Bayes. Now, in fact, when Theorems 3, 4 and 5 below are in force, they 
imply that the assumption of (1.1) for fixed a and b is exactly the assumption of a 
specific prior distribution. 

Admissibility and Karlin's theorem. 'When'is the estimate a x  + b an admissible 
estimate of E(XI8)  with squared error as loss? A sufficient condition for one- 
dimensional exponential families was given by Karlin [1958] and discussed further 
by Ping [1964], Cohen [I9661 and Stone [1967]. Our Theorems 1 and 2 give a simple 
interpretation of Karlin's condition and n dimensional extensions when 0 < a < 1, 
and the parameter space O is open. Then, if 77b/ ( l -a) ,  denotes the conjugate 
prior defined in (2-3), Karlin's sufficient condition becomes 

- 1
13 b 1 - a ( 8 ) d 8  +w 

I - a '  a 

as u and v approach the boundary of O. It is easy to show that this is equivalent to 
asking that .rr , /( ,- ,) ,  be a proper prior. Theorems 1 and 2 show that if 
0 < a < 1 and b/(l - a)  is in the set 5% defined in Section 2, then a x  + b is a 
proper Bayes estimate with respect to .rr,/(, -,,, - a ) / a .  Since the Bayes risk can be 
seen to be finite, admissibility follows. Of course, Karlin's result leads to admissibil- 
ity when a = 1. Stein's result on the inadmissibility of the mean of a multivariate 
normal shows that a = 1 need not be admissible in three or more dimensions. 

The characterization theorems here have been given previously in special cases. 
Johnson [1956], [I9671 characterized the gamma prior for the Poisson mean and 
related results are given in Goldstein [I9751 and in Chapters 5 and 6 of Kagan, 
Linnik and Rao [1973]. The results given here are considerably more general and, 
in some cases, more precise than those previously found. 

Section 2 of this paper studies the usual notion of conjugate prior and establishes 
(1.1) under mild regularity conditions. Moreover, Theorem 1 gives precise condi- 
tions on the "hyperparameters" of the conjugate prior to guarantee integrability 
(see Novick and Hall [I9651 in this connection). Section 3 is devoted to a proof that 
(1.1) characterizes conjugate priors when the observation space is sufficiently rich. 
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Section 3 also comments on the possibility of (1.1) holding when a is a matrix. In 
Section 4 we consider problems particular to the case of a discrete observation 
space. 

2. Conjugate priors in exponential families. This section contains requisite nota- 
tion and terminology associated with a d-parameter exponential family of distribu- 
tions. Depending on the setting, Theorem 1 gives sufficient or necessary and 
sufficient conditions on the "hyperparameters" of a conjugate prior distribution for 
it to be proper. Theorem 2 then establishes linear posterior expectation under 
regularity conditions. Theorem 2 has been in the folklore of the subject and a full 
proof for the 1-dimensional case has recently appeared in Jewel1 [1974a], [1975]. 
The section closes with a brief Bayesian interpretation of Theorems 1 and 2. 

Start with a fixed a-finite measure p on the Borel sets o'f Rd. Consider the convex 
hull of the support set of the measure p, and then let % be the interior of this 
convex set. It will always be assumed that % is a nonempty open set in Rd, SO that 
the observation set is genuinely d-dimensional. For 9 E R ~ ,define M(9) = 
lnJe"xdy(x) and let O = (BJM(0)< co). The standard use of Holder's inequality 
in this context shows that O is a convex set-it is called the natural parameter 
space. It is further assumed that O is a nonempty open set in Rd-in the 
terminology of Barndorf-Neilson [1970], we restrict attention to regular exponential 
families. The openness of O is indeed a regularity condition on the measure p-one 
which is employed crucially in Theorem 2. 

The exponential family {P,) of probability measures through y is determined by 

Expectation under P, will be denoted by E, or E { 10). Now suppose X is a random 
vector with distribution P,. Then if one differentiates the identity J,dP,(x) = 1 in 
9 and makes admissible interchanges of differentiation and integration, one finds 

(i) E(X 19) = E,(X) =V M(9) = ("y,-. . . ,m)'= (M1(8), . . . ,Md(9))'
39, 

d
(ii) E,(X - V M(9))(X - V M(9))' = M"(9) = = (MJe));,j=l-

Because 5% is assumed open in Rd, the Hessian M"(9) must be positive definite at 
each 9-for otherwise there is a 9, and a vector c # 0 so that cf(X - V M(OO))= 0 
a.s. Pea and then a.e. p. Furthermore, from (2.2i), V M(9) must be in the convex 
hull of the support of p. It is then easy to see that V M(9) cannot be a boundary 
point of this convex set, so V M(9) E % for each 9 E O. 

Recall that O is to be a nonempty convex open set in Rd and let d9 denote the 
Lebesgue measure on the Borel sets of O. Define a family {ii,@xo) of measures on 
the same space according to 
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If ii,,,,, can be normalized to a probability measure T,,,, on 0 ,  it will be termed a 
distribution conjugate to the exponential family {Po) of (2.1). The province of the 
parameter (no, x,) which allows such a normalization is the subject matter of the 
first theorem. A Bayesian interpretation of the theorem appears at the end of this 
section. 

THEOREM If no > 0 and x, E %, then ii,,,,A@) < co. Conversely, if ii,,,,A@)1. 
< co and 0 = R~ then no > 0; while if ii,,,,,(@) < co with no > 0, then x, E %. 

PROOF. For the forward portion of the theorem, we first bound eCM(') as 
follows. Let A be a compact convex subset of R ~ .For 9 E 0 ,  jAe"8dp(z) < 
jez'8dp(z)< co and therefore p(A) < co. Moreover if p(A) > 0, write pA(B) = 

p(A n B)/p(A), xA = JzdpA(z), and use Jensen's inequality to get 

The full force of (2.4) comes from the observation that means of the form xA are 
dense in supp( p). 

If x, E %, one can write x, = E?fiAjx, where the $ are nonnegative and sum to 
1, the 3 are in supp(p) and do not lie in a (d - 1)-dimensional hyperplane. A 
dense set D of % can be so represented with the added requirement that the A, are 
positive. For x, E D we can then require positive A, together with compact convex 
sets A, so that 3 = x,,, j = 1, . . . , d + 1, since these means are dense in supp( p). 
If x, E D, write 0, = 0 n {Ole. xk = maxje. x,) and invoke (2.4) to obtain 

In the kth integral on the right side of (2.5), make the change of variable 
9 = 9 .  (xi - xk),j # k, with lJkl= lau/aBI, say. Since the x, do not fall in a 
(d - 1)-dimensional hyperplane, IJkI# 0 and the right side of (2.5) becomes 

Thus, ii,,,,A@) < co on a dense set D of %. For fixed no > 0,ii,@ < co on a xo(@)  

convex set of x, according to Holder's inequality-hence, it must be finite on all of 
x. 

For the converse direction, observe first that the integrand A,, ,,(9) = 
e"flo'8- ndM(8) 

(i) V f,,, ,,(9) = 4 x 0  - V M(g))fnm Xo(e) 
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If fno,xo were integrable with no < 0 and O = Rd, we would have by (2.6ii) the 
integrability of a positive convex function over all of R ~ ,  a contradiction. So 
suppose no > 0 and x, G %. Choose a unit vector 5, so that, by translating p if 
necessary, 5, . x, > 0 and [, . x < 0 for x E %. Let C,, . . . ,5, be orthonormal in 
R~ and make the change of variable ai = 5;. 0, i = 1, . . . ,d, in Jfno,,o(8)d0. Since 
V M ( 0 )  E %, [, . V fn& ,J8) > 0 for all 0 by (2.6i). Thus, integration with respect 
to a,  is integration of a positive nondecreasing function. For fno, xo to be integrable 
it is necessary that 5, . 0  be bounded above on O for almost every (d0) choice of 
a,, . . . ,ad. Let 0, E O so that 

Since 5, . z < 0 on !X, 0, + u[, must also be in O f o ~any positive u because 
ez'(8~+uEl) < ez"o on %. However, 5, (0, + u5,) = 8, + u and,= ez'8~+uz'El El  
therefore, 5, . 0 is not bounded above on O. This contradiction means that x, must 
be in !X and the proof of the theorem is complete. 

The following result unifies many standard Bayesian calculations. 

THEOREM2. Suppose O is open in Rd. If 0 has the distribution T,,~, no > 0 and 
x, E X,  then E(V M(0)) = x,. 

PROOF. The required result translates through (2.6) to 

(2.7) i e  Vfn0,xo(0)dO= 0 

Consider the first component of (2.7) and assume for now that Fubini's theorem 
applies in order to write 

= i . . i[lim81,~lfno,xo(~)lim inf0~,~, f~ , ,~(0)]d4,  - ,- . . 
where el = @,(0,,. . . ,0,) < 0, < 8, = 8,(8,, . . . ,0,) for 0 E O. The last two 
limits will be shown to be zero. Consider the first of them when 8, = + w. Use 
(2.4) in conjunction with a set A so that (x,), < (x,),, hold 0,, . . . ,0, fixed and let 
0, +w to see that the limit is zero in such a case. If &(0,, . . . ,0,) < w, take 0: so 
that (B:, 8,, . . . ,0,)' E O. Then 

Jxlsoe
B l x l + . . .  +Ox

d d ~ ( ~ )< Jx1s0e
8:xl + . . . +Odxdd

P(X) < 00. 

Now since M(&, 0,, . . . ,0,) = + w ,  

as 0: < 0, +8, = &(0,, . . . , B,), by monotone convergence. Thus M(0,, . . . , 0,) 
+w as 0, +6, and the first limit on the right side of (2.8) is zero. A similar 
argument applies to the second limit. 

It remains to be seen that Fubini's theorem has been correctly applied at (2.8). 
From (2.2ii) with 0,, . . . , 0, fixed, (a/a0,)M(0) is a strictly increasing function of 
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0,. Thus (a/aOl)f,o,xO(0) changes sign at most once from positive to negative as 8, 
varies over (g,, el), (from (2.6i)). In particular, one deduces from the argument 
of the previous paragraph that there is a unique point 0f = 0:(e2, . . . ,0,) at 
which (a/a81)f,o,xo(0)= 0 and fnmxJ8) has a maximum. Hence with 0* = 

(0:, 02, * * .,0d)', 

Absolute integrability in the left side of (2.8) evidently requires the integrability of 
fno,x,(O*) in 0,, . . . ,0,. To proceed on this, let x, = X?,';3xj where the Aj are 
nonnegative and sum to 1, the xj do not lie in a (d - 1)-dimensional hyperplane 
and xj = x for compact convex Aj, j = 1, . . . ,d + '1. Moreover, by translating y

A,
if necessary, choose x, = 0. Then from (2.4), 

< c/ . . Jexp(- n+n,lmaxkO xk)dB2,. . . ,dB,. 

For 0 # 0(2)= (02,. . . ,Bd)' = 1 1  0(2)11 one finds 

+gdxkd]= [ 11::)11 Imin,lmaxk[Olxkl+ g2xk2+ ' 118(2)llminolma~k-"I + 1.xi2) 

= 118(2)llmin,lma~k[8,~k,+ 1.xp)]. 

If 
infll,ii=lmin,lmaxk[Olxk,+ 1.xf)] = 6 

is positive, the right side of (2.9) is bounded by 

~ 1 ~ d - 1  . . . ,dBd < a.. . /e-no116(2)118d02, 
d+ 1To see that 6 is positive, observe that 0 = 8 .  2;: ;+xj = Xi= l + O .  xj so maxkO. xk 

2 0 for any 0. Then minOlmaxk8 xk > 0 for any 0(2). But min,lmaxkO. xk is a 
continuous function in 0(2) SO infll,ll- lrnin,lmaxk[Olxk,+ 1.xi2)]= 6 > 0 unless 
there is an q* with 11q*11 = 1 so that min,lmaxk[O,xk, + q* .xi2)]= 0. Now if this 
were the case, there would be a vector ( 4 ,  v*')' = 5 with maxk5 .xk = 0 and also, 
since XAJ .xk = 0, minkt .xk = 0. This contradicts the fact that the xk are not 
contained in a d - 1 dimensional hyperplane. The proof of Theorem 2 is com- 
pleted by applying the same arguments to the other coordinates in (2.7). 

REMARKS. TO apply Theorem 2 to a sample XI, , . . ,Xn of size n from Ponote 
that if is the prior distribution of 0, the posterior distributionrnmXO is 
7ino+n, (nd(o+ny),(no+with f the mean of the sample. Theorem 2 yields 

i.e., the conditional expectation of the mean parameter is a linear combination of 
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the prior expectation of the mean parameter xo and x.The weights in the linear 
combination are proportional to no and the sample size-in this sense no might be 
thought of as a prior sample size. The restrictions of Theorem 1 on no, xo to 
guarantee proper conjugate priors are generally consistent with thls interpretation. 

The openness of O is not used in the proof of Theorem 1. The situation there 
with no < 0 is inconclusive if O # R d . In fact, one can have finiteness with no < 0. 
For example, for the exponential family corresponding to the geometric distribu- 
tion on the nonnegative integers in dimension 1, ii,o,,o(0) < ca with no in (- 1, 0) 
as long as xo < 0. It can be shown that when no < 0 the Bayes rule (for squared 
error loss) has infinite Bayes risk. 

3. Characterization of conjugate priors-coatinuous cwe. This section is con- 
cerned with the converse to Theorem 2: can one conclude from the linearity at 
(2.10) that 9 had a conjugate prior? The answer is yes, if it is assumed that the 
support of y is sufficiently rich. The latter restriction will be clarified somewhat in 
Section 4. 

In the statement of Theorem 3 and that of Theorem 4, below, there is an 
assumed form for a conditional expectation. Each univariate expectation can be 
interpreted in the following way (cf. Strauch ([1965]): 

(3.1) E(Y1Z) = g(Z)  if and only if E(Y +IZ) - E(Y -1Z) = g(Z)  a.s. 

With such an interpretation in mind, we are able to avoid the explicit assumption 
that means are finite when we postulate the form of a conditional expectation. 

THEOREM Suppose O is open in R d .  Let X be a sample of size one from Poof3. 
(2.1) and suppose the support of y contains an open interval I, in R ~ .If 9 has a prior 
distribution which does not concentrate at a single point, and if 

(3.2) E(V M(9)lx) = a x  + b 

for some constant a and constant vector b, then a # 0, 7 is absolutely continuous (do) 
with d7(g) = cea-'b.Q-a-'tl -a)M(Q)dg. 

PROOF. From (3.1) and (3.2), E(M,+IX) - E(Ml-IX) is finite a s .  so E(Ml+IX) 
E(MlpIX) < ca for i = 1, . . . ,d, a s .  Since X has the positive density f(x) = 

~ e " ~ - ~ ( ~ ) d ~ ( 9 )with respect to y, E(M,+IX). E(M,-IX) < ca a.e. y for each i. 
Observe that 

with probability 1 in x for each i, and then that (3.3) holds a.e. y for each i. 
Therefore, all integrals on the right side of (3.3) are finite a.e. y and may be freely 
manipulated. From (3.2) one finds 

(3.4) 1V ~ ( B ) e " ' ~ - ~ ( ~ ) d r ( B )(ax + b)f(x) a.e. y.= 

Now if a = 0 in (3.4), j'(V M(9) - b)ex'0-M(0)dr(9)vanishes on an open interval I, 
of R d .  But then V M(9) - b must vanish on the support of 7 and so is zero on at 
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least two points. Such a conclusion violates the strict convexity of M (from (2.2) 
and below). 

In (3.4) replace x by z = x + iy and observe that 

Q ( z )  = J(V M ( 0 )  - az - b)ez '6 -M(6)dr (0)  

vanishes at least on Re z E I,. Then for a choice of x ,  = Re 2, E I,, Q(xo + iy) 
vanishes for ally and 

In (3.5), write m(0)' = ( m , ( 0 ) ,. . . , md(0))' = (V M ( 0 )  - ax, - b / a )  and let 
dF(0)  = exo.6-M(6)d~(0).Then one has 

(3.6) J e w ' 6 m ( e ) d ~ ( e )iyjeiy"dF(0).= 

The argument now proceeds from (3.6) along the lines of Lemma 6.1.1 of Kagan, 
Linnik and Rao [1973]. 

Begin with the first equation from (3.6). Multiply both sides of the equation by 
the factor 

d 1 - e - ' h ~  e-iw~- e - i b d ' k(t) iyk ,n:=1 iyk 

with cu, < pk, k = 1, . . . ,d ,  and then integrate over - T < yk < T ,  k = 1, . . . ,d. 
On the right hand side one finds 

-~ - ' * I Y I  - ~ - ; ( ~ I + ~ I ) Y Ie - i b ~ ~ ~e- i iPl+hl l~l  
- 41,.. . ,dyd

iy 1 

as T + co, where F [ ( a ,  P)] denotes the F measure of the d-dimensional interval 
( a ,  P). Proceeding in the same way with the left hand side of (3.6), one has 
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where d ~ ( ' ) ( 8 )  = m,(B)dF(B). In (3.7) and (3.8) let h, -+ - co, k = 1 ,  . . . ,d, to 
obtain 

= Jf; . . . J$'F(l)(~l, . . . ,ud)d~, ,. . . ,dud 

for all a,p. Now for fixed a , ,  PI it follows from (3.9) that 

(3.10) F(a,, u,, . . . ,u,) - F(P1, u,, . . . ,u,) = . . . ,ud)du1J~ ;F( ' ) (U~ ,  

for almost all u,, . . . ,u,. Hence (3.10) holds simultaneously for all rational (a,,  PI)  
except possibly for a set N of (u,, . . . , u,) of Lebesgue measure 0. Then aside from 
N, F(u,, . . . ,ud) must be absolutely continuous in u,. It will be argued that this 
conclusion holds for all u,, . . . , ud, i.e., that N = 0. 

Note first that since F is nondecreasing, continuous in u, for almost all 
u,, . . . ,u,, it is, in fact, a continuous function of all d variables. Hence for each 
fixed a , ,  PI,the left side of (3.10) is continuous in u,, . . . ,u,. But the right side of 
(3.10) is 

1%. . . jl"",j,P;j?,ml(8)dF(8) 

and so must also be continuous in u,, . . . ,u, since F is continuous. Finally then, 
(3.10) holds for all u,, . . . ,u, and, again from continuity, simultaneously for all a , ,  

PI. 
Given that F(ul, . . . ,u,) is absolutely continuous in u, for every u,, . . . ,u,, 

Fubini's theorem insures that F is absolutely continuous with respect to d-dimen- 
sional Lebesgue measure and, from (3. lo), aF/au, = - F(')(u,, . . . ,u,). From the 
remaining equations at (3.6) get the full relation: 

r =  1, . . . , d. 

Write dF(8) = f(0)dO = (ad/rIaOi)~(O,,. . . ,Bd)d8 and use (3.1 1) to see that 
aF/aur is also absolutely continuous with 

Now m = a-'(V m - ax,  - b) so 

(3.12) V f = (ba-' + x, - a - '  V ~ ) f  

from which it follows that f = cexp(ba-' - 8 + x, . 8  - a -'M(0)). Recall that 
dF(0) = eXo"- M(e)dr(0) and so find dr(8) = cexp(a - 'b . 8 - ((1 - a)/a) M(B)), 
the desired conclusion. 

REMARK. It is not generally possible to ask that (1.1) hold with a = A ,  a matrix, 
A not proportional to I. Here is a brief look at the situation for the present 
exponential family setting. Begin with the statement of Theorem 3 but with a 
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matrix A and a prior measure T not supported on a (d - 1)-dimensional hyper- 
plane. Proceed through the proof of Theorem 3 to (3.4). At this point one can argue 
that IAI # 0 since, if it were, there would be some vector 5 with 5 . (V M(8) - b) 
= 0 on the support of T, a contradiction. Continue through the proof to the 
conclusion 

(3.13) v f = -A- ' (v  M - AX, - b)f 

where f is the density of the measure exo'e-M(e)d~(8). NOW it is not generally true 
that (3.13) has a solution f, but then (3.2) could not have applied. For an example, 
take A to be a diagonal matrix with entries along the diagonal all distinct. It can be 
easily argued that (3.13) can be solved for such an A only if M(8) has the special 
form C;='=, ~ ~ ( 8 , ) .Other types of matrices lead to similar, though less agreeable, 
conditions on M. When (3.13) does allow a solution, the prior measures T which 
result are what Jewel1 [1974b] (in the context of the multivariate normal distribu- 
tion) refers to as enriched priors. 

4. Characterization of conjugate priors--discrete case. The converse of Theorem 
2 is less complete when the support of I*, does not contain an interval. Consider for 
instance the problem of estimating a binomial parameter p from a sample of size n. 
If T is a prior measure of the Bore1 sets of [0, 11, the conditions of posterior 
linearity become: 

(4.1) lApk+'(l - p ) n - k d ~ ( p )= (ak + b)jApk(l - p)n-k ~ T ( P )  

for k = 0 , 1 , 2  , . . . ,  n. 
These are merely restrictions on the first n + 1 moments of the measure T and any 
T which has the same first n + 1 moments as a beta measure will satisfy (4.1). In 
this section we give theorems characterizing the conjugate priors of all commonly 
occurring exponential families on the nonnegative integers. Theorem 4 specializes 
to a characterization of the beta distribution as the unique family allowing linear 
posterior expectation for negative binomial random variables for example. The case 
of Poisson variables is not covered by Theorem 4, but this has already been treated 
by Johnson [1957, 19671. Theorem 5 then deals with the assumptions needed to 
characterize the binomial distribution. 

Suppose X is a sample of size 1 from Po of (2.1) and let the support of p be the 
nonnegative integers. For this setting, O is always an interval which is unbounded 
to the left. Our regularity assumption would have O be an open interval, and for 
Theorem 4 it will be assumed that O = (- co, 8,) with 8, < co, i.e., that I*, does not 
have a moment generating function on all of R. Under this setup, we have 

THEOREM Suppose 8 has a prior distribution T on O (- co, 8,) with 0, < co,4. = 

and assume T is not concentrated on a single point. If 

(4.2) E(M'(8)IX = x) = ax + b for x = 0, 1, .  . . , 

then a > 0, T is absolutely continuous with respect to Lebesgue measure, and dr(8) = 

c e a ' b O - o ' ( l  - U ) M ( ~ ) ~ Q  
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PROOF. One may proceed as in the proof of Theorem 3 to the equation (3.4). If 
a were zero, (3.4) would give 

Make the change of variables t = e s  in (4.3) and so produce a signed measure on 
[0, eso] having all moments zero. This signed measure must in fact be the zero 
measure, since the moment problem is determined on a compact interval. This 
implies M'(8)  - b is zero on the support of 7, a contradiction. So a J; 0 and (4.2) 
can be written as 

Transform the left side of (4.4) as follows: 

In (4.5) the interchange of integrations can be easily justified and (4.4) has been 
invoked with x = 0 to produce the final equality. Replacing the left side of (4.4) by 
the right side of (4.5) one has 

for x = 1, 2 , .  . . . 

Make again the change of variable t = e s  in (4.6) to produce a signed measure on 
[0, eso] all of whose moments are zero except possibly the zeroth. Such a signed 
measure must concentrate on the origin and, in the present circumstance, puts no 
weight there. But then 

From (4.7), r is absolutely continuous with a density f which satisfies the differen- 
tial equation 

(4.8) af ' (8)  - a M 1 ( 8 ) f ( 8 )= - ( M ' ( 8 )- b ) f (8 ) .  

The conclusion follows easily from (4.8). 
As the discussion at the beginning of the section indicates, a different formula- 

tion is required if the beta distribution is to be characterized for binomial observa- 
tions. This is accomplished in Theorem 5. For simplicity, in the statement and 
proof of this theorem we use the notation of the mean parameter as opposed to the 
natural parameter. 

THEOREM5. Let r be a prior distribution for p on the Borel sets of [0, 11 and 
assume r does not concentrate on a single point. If for each n = 1 ,  2, . . . , {here are 
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numbers a, and b, for which 

(4.9) (Apk"(l - p)n-kdr(p) = (a,k + b,)(Apk(l - p)n-kdr(p) 

for k = 0, 1, . . . ,n, then 

with a > 0, b > 0, a + b < 1 and r is a beta distribution. 

PROOF. Ericson's [I9691 result, in conjunction with the linearity of (4.9), implies 
that 

This yields (4.10) with a = (Var(p)/ E(pE(1 - p))) and b = ( E  (p(l P))/E(~- 
p)). Take n = 1 in (4.9) and sum over k = 0, 1 to obtain jpdr(p) = b + ajpdr(p), 
so (pdr(p) = (b/ (1 - a)). Now take k = n in (4.9) to write 

In this way it is clear that all moments of r are determined by a and b, hence r is 
also. Moreover, (4.9) can be achieved by using the beta density with a = b/a and 
P = (1 - (a + b)/a). 

The proof of Theorem 5 generalizes in a straightforward way to yield a char- 
acterization of the Dirichlet family as the unique family allowing linear posterior 
expectation for multinomial observations. 
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