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We have discussed probabilistic modeling, and have seen how the posterior distribu-
tion is the critical quantity for understanding data through a model.

The goal of probabilistic modeling is use domain and data-knowledge to build struc-
tured joint distributions, and then to reason about the domain (and exploit our knowl-
edge) through the posterior and posterior predictive distributions.

We have discussed tree propagation, a method for computing posterior marginals of
any variables in a tree-shaped graphical model. In theory, if our graphical model
was a tree, we could shade the observations and do useful inferences about the
posterior.

For many interesting models, however, the posterior is not tractable to compute.
Either the model is not a tree or the messages are not tractable to compute (because
of the form of the potentials). Most modern applications of probabilistic modeling
rely on approximate posterior inference algorithms.

We now discuss an important method for approximate posterior inference. In parallel,
we begin to discuss the building blocks of complex models.

Bayesian mixture of Gaussians

To lock ideas, and to give you a flavor of the simplest interesting probabilistic model,
we will first discuss Bayesian mixture models. Here is the Bayesian mixture of
Gaussians,
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(We haven’t yet discussed the multivariate Gaussian. But we don’t need to yet. Here
each mixture component is �k D Œ�x; �y� and we generate the x and y coordinates
independently from their respective distributions.)

To get a feel for what this model is about, we generate data from it.
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The posterior distribution

The posterior distribution is a distribution over the latent variables, the cluster lo-
cations and the cluster assignments. Let x D x1Wn, z D z1Wn, and � D �1WK . The
posterior is

p.z;� j x/: (1)

This gives an understanding of the data (at least, a grouping into K groups).

What is this posterior? The mixture model assumes that each data point came from
one of K distributions. However, it is unknown what those distributions are and how
the data were assigned to them. The posterior is a conditional distribution over these
quantities. Through the posterior, a mixture model tells us about a grouping of our
data.

The posterior is proportional to the joint. Let’s write down the log of the joint,

logp.�; x; z/ D log
KX
kD1

logp.�k/C
nX
iD1

logp.zi j�/C logp.xi j�; zi/: (2)

To gain intuition, assume that n is very large and so the likelihood term dominates
this expression. Also assume that the prior on the mixture assignments � is fixed, so
the term logp.zi/ does not play a role.
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We can see that this expression is dominated by the likelihood logp.xi j�; zi/. This
is equal to

logp.xi j�; zi/ D �
1

2�2
.xi � �zi

/2 C const. (3)

In other words, the posterior seeks configurations of mixture locations�k andmixture
assignments zi such that the data are close to their assigned locations. This is why
mixtures of Gaussians partitions the data in a sensible way.

The posterior is intractable to compute

We cannot compute the posterior exactly. Let’s see why.

Aside: The Gaussian is conjugate to the Gaussian. Consider a simple model,
where we draw a Gaussian mean � from a Gaussian prior N .0; �/ and then generate
n data points from a Gaussian N .�; �2/. (We fix the variance �2.) Here is the
graphical model

You have seen the beta-Bernoulli; this is another example of a conjugate pair. Given
x the posterior distribution of � is N . O�; O�/, where

O� D

�
n=�2

n=�2 C 1=�2

�
Nx (4)

O� D
�
n=�2 C 1=�2

��1
; (5)

where Nx is the sample mean.

Just as for the beta-Bernoulli, as n increases the posterior mean approaches the
sample mean and the posterior variance approaches zero. (Note: this is the posterior
mean and variance of the unknown mean. The data variance �2 is held fixed in this
analysis.)
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Back to the mixture of Gaussians. But now suppose we are working with a mixture
of Gaussians. In that case, p.� j x/ is not easy. Suppose the prior proportions � are
fixed and K D 3. Consider the posterior of the mixture components,

p.�1; �2; �3 j x/ D
p.�1; �2; �3; x/R R R

p.�01; �
0
2; �

0
3; x/d�01d�02d�03

: (6)

Note this implicitly marginalizes out the mixture assignments.

The numerator is easy,

numerator D p.�1/p.�2/p.�3/
nY
iD1

p.xi j�1; �2; �3/ (7)

where each likelihood term marginalizes out the zi variable,

p.xi j�1; �2; �3/ D

KX
kD1

�kp.xi j�k/: (8)

But consider the denominator, which is the marginal probability of the data,

p.x/ D
Z Z Z

p.�01/p.�
0
2/p.�

0
3/

nY
iD1

KX
kD1

�kp.xi j�
0
k/d�

0
1d�

0
2d�

0
3: (9)

This integral is difficult to compute. One way to see this is to notice (or be told that)
it is a type of hypergeometric function.

A more direct way to see that it’s difficult is to bring the summation to the outside of
the integral

p.x/ D
X

z

p.z/
Z Z Z

p.�01/p.�
0
2/p.�

0
3/

nY
iD1

p.xi j�
0
zi
/d�01d�

0
2d�

0
3: (10)

This can be decomposed by partitioning the data according to z,

p.x/ D
X

z

p.z/
3Y
kD1

0@Z p.�0k/
Y

fi WziDkg

p.xi j�
0
k/d�

0
k

1A : (11)

Each term in the product is an integral under the conjugate prior, which is an ex-
pression we can compute. (We will see that later on.) But there are 3n different
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assignments of the data to consider.

To use a Bayesian mixtures of Gaussians (and many other models), we need approxi-
mate inference.

The Gibbs sampler for a mixture of Gaussians

Gibbs sampling (and all of Markov chain Monte Carlo) approximates a distribution
with a set of samples. For example, in the mixture model,

p.�; z j x/ �
1

B

BX
bD1

ı.�.b/;z.b//.�; z/: (12)

We first discuss Gibbs sampling for mixtures of Gaussians. Later we see how it
generalizes to other models.

The Gibbs is an iterative algorithm. It maintains a value for each latent variable.
In each iteration, it samples from each latent variable conditional on the other la-
tent variables and the observations. Call each of these distributions a complete
conditional.

See Figure 1 for Gibbs sampling for Gaussian mixtures. This sampler iterates between
probabilistically assigning each data point to a mixture component and probabilisti-
cally updating the location of each mixture component. Notice that when we sample
a variable its value changes in what we subsequently condition on. E.g., when we
sample �1, this changes what �1 is for the subsequent samples.

The theory around Gibbs sampling says that if we do this many times, the resulting
sample will be a sample from the exact posterior. The reason is that we have defined
a Markov chain whose state space are the latent variables and whose stationary
distribution is the posterior we care about. After many iterations t , the marginal
distribution of �.t/ and z.t/ is the exact posterior. Doing this multiple times, we can
obtain B samples from the posterior.
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Input: data x and a number of components K.
Initialize mixture locations � randomly.
Maintain mixture locations � and mixture assignments z.
repeat

for each data point i do
Sample zi j f�; z�i ; xg (Equation 15)

end
for each mixture component k do

Sample �k j f��k; z; xg (Equation 17)
end

until

Figure 1: The Gibbs sampler for mixture of Gaussians.
.

Details about the complete conditionals

Let’s work out each step of the algorithm, beginning with the complete conditional
of zi . First, the graphical model implies a conditional independence,

p.zi j�; z�i ; x/ D p.zi j�; xi/: (13)

Now calculate the distribution,

p.zi j�; xi/ / p.zi/p.xi j�zi
/ (14)

D �zi
�.xi I�zi

; �2/: (15)

What is this? To keep things simple, assume �k D 1=K. Then this is a categorical
distribution where the probability of the the kth is proportional to the likelihood of
the i th data point under the kth cluster.

Notes:

� Categorical distributions are easy to sample from.
� This distribution requires that we know �.

Now derive the complete conditional of �k. Again, observe a conditional indepen-
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dence from the graphical model,

p.�k j��k; z; x/ D p.�k j z; x/: (16)

We calculate the distribution intuitively. If we know the cluster assignments, what is
the conditional distribution of �k? It is simply a posterior Gaussian, conditional on
the data that were assigned to the kth cluster.

Technically: Let zi be an indicator vector, a K-vector with a single one. Then,

�k j z; x � N . O�k; O�
2
k/ (17)

. Define

nk D

nX
iD1

zki (18)

Nxk D

Pn
iD1 z

k
i xi

nk
: (19)

and

O�k D

�
nk=�

2

nk=�2 C 1=�2

�
Nxk (20)

O�2 D
�
nk=�

2
C 1=�2

��1
: (21)

Important: Conjugacy helps us, even when we cannot compute the posterior.

This is an approximate inference algorithm for mixtures of Gaussians. At each
iteration, we first sample each mixture assignment from Equation 15 and then sample
each mixture location from Equation 17.

Discussion and practicalities:

� This sampler results in one sample from the posterior. To get B samples, we run
several times. In practice, we begin from an initial state and run for a fixed number
of burn in iterations. We then continue to run the algorithm, collecting samples a
specified lag.

Initialization, burn-in, and lag are important practical issues. There are no good
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principled solutions, but many ad-hoc ones work well. (We discuss initialization a
little bit below.)

� Notice that conditional independencies in the complete conditionals give us op-
portunities to parallelize. What can be parallelized here?

� Gibbs sampling closely relates to the expectation-maximization (EM) algorithm.

In the EM algorithm we iterate between the E-step and M-step. In the E-step we
compute the conditional distribution of each assignment given the locations. This
is precisely Equation 15.

In the M-step we update the locations at maximum likelihood estimates under
expected sufficient statistics. Aswe know, theMLE relates to the Bayesian posterior
in Equation 20.

� The theory implies that we need infinite lag time and infinite burn-in. Practical
decisions around Gibbs sampling can be difficult to make. (But, happily, in practice
it’s easy to come up with sensible unjustified choices.) One quantity to monitor is

logp.�.t/; z.t/; x/ D
KX
kD1

logp.�.t/
k
/C

nX
iD1

logp.z.t/i /C logp.xi j z.t/t ;�.t//:

(22)

This is the log joint of the assignments of the latent variables and observations.

This further relates to EM, which optimizes the conditional expectation (over the
mixture assignments z) of this quantity.

� The perfomance of the algorithm is sensitive to initialization. The best practical
advice is to initialize “mildly,” in a way that does not lead to confident estimates
of various latent variables. Here, for example, you might center the mixture
components at some random perturbation away from zero. (This assumes you
have centered the data.)

The collapsed Gibbs sampler

Sometimes we can integrate out hidden random variables from a complete conditional.
This is called collapsing.
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Input: data x and a number of components K.
Initialize mixture assignments z randomly.
Maintain mixture assignments z and two derived quantities

nk ,
Pn
iD1 z

k
i (number of items per cluster)

sk ,
Pn
iD1 z

k
i xi (cluster sum)

repeat
for each data point i do

“Knock out” xi from its currently assigned cluster zi .

nzi
 nzi

� 1

szi
 szi

� xi

Use nk and sk to sample zi from Equation 23.
end

until

Figure 2: Collapsed Gibbs sampling for Gaussian mixtures.

It is a good idea because it usually leads to faster convergence of the Markov chain to
the stationary distribution. (We discuss these concepts below.) But it is also usually
more costly per iteration.

In the mixture of Gaussians, consider collapsing the mixture locations,

p.zi D k j z�i ; x/ / p.zi D k/p.xi j z�i ; x�i ; zi D k/: (23)

The second term is simply a posterior predictive distribution

p.xi j z�i ; x�i ; zi/ D

Z
�k

p.xi j�k/p.�k j z�i ; x�i/: (24)

This is like immediately updating the mixture components after resampling the
mixture assignment. Figure 2 shows collapsed Gibbs sampling for Gaussian mix-
tures.

Collapsed Gibbs sampling can be more expensive at each iteration, but converges
faster. Typically, if you can collapse then it is worth it.
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The posterior predictive (optional)

As usual, the posterior also gives a posterior predictive distribution,

p.xnC1 j x/ D
Z
p.xnC1;� j x/d� (25)

D

Z
p.xnC1 j�; x/p.� j x/d� (26)

D

Z
p.xnC1 j�/p.� j x/d� (27)

D E Œp.xnC1 j�/ j x� : (28)

Note we removed x from the RHS of the conditional distribution. This is thanks to
conditional independence. From Bayes ball we have that

xnC1 ?? x j� (29)

In more detail, the posterior predictive distribution is

p.xnC1 j x/ D
Z

�

p.xnC1 j�/p.� j x/d� (30)

D

Z
�

 
KX
kD1

p.znC1 D k/p.xnC1 j�k/

!
d� (31)

D

KX
kD1

p.znC1 D k/

�Z
�k

p.xnC1 j�k/p.�k j x/d�k
�

(32)

What is this? We consider xnC1 as coming from each of the possible mixture
locations (one through K) and then take a weighted average of its posterior density
at each.

This is a multi-modal distribution over the next data point. Here is a picture:
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This predictive distribution involves the posterior through p.�k j x/, the posterior
distribution of the kth component given the data.

Contrast this with the predictive distribution we might obtain if we used a single
Gaussian to model the data. In that case, the mean will be at a place where there is
little data.

Gibbs sampling

Gibbs sampling constructs a Markov chain on the latent variables, defined by the
transition pgibbs.ztC1 j zt/. This transition implements what we described above,
iteratively sampling each latent variable conditional on all the others and the obser-
vations. (Notice the observations don’t appear in the transition probabilities, because
they are implicitly part of the definition of the chain.)

Define the t-th marginal distribution to be the distribution that marginalizes out
z1; : : : ; z.t�1/,

p
.t/
gibbs.zt/ D

X
z1W.t�1/

p.z1; : : : ; z.t�1/; zt/: (33)

Under certain conditions, a Markov chain “converges” in that the distribution of the
long-run marginals of the variables do not change. Suppose a Markov chain has
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converged to a distribution �.z/. Consider drawing from this distribution and then
taking one step in the chain. ThenX

z0
�.z0/pgibbs.z j z0/ D �.z/ (34)

For obvious reasons �.�/ is called the stationary distribution. The Gibbs sampler
defines a chain whose stationary distribution is p.z j x/.

The ease of implementing a Gibbs sampler depends on how easy it is to compute and
sample from the various complete conditionals. In a graphical model, the complete
conditional depends on the Markov blanket of the node.

Suppose the nodes are x1; : : : ; xk (observed and unobserved). In an undirected
graphical model, the complete conditional only depends on a node’s neighbors,

p.xi j x�i/ D p.xi j xN .i//: (35)

In a directed model, the complete conditional depends on a node’s parents, children,
and other parents of its children,

We can see these facts from the graphical model and separation / d-separation

Again, notice the theme. Difficult global computation is made easier by many local
computations. Gibbs sampling is a form of “message passing.”

A loose history of MCMC

Metropolis et al. (1953) introduces the Metropolis algorithm in the context of some
integrals that come up in physics. (He also invented simulated annealing in the
same paper.) This work stemmed from his work in the 40s (with others) in Los
Alamos.
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Hastings (1970) generalizes the algorithm to Metropolis-Hastings and sets it in a
more statistical context. He shows that the Metropolis algorithm (and Metropolis-
Hastings) works because they sample from a Markov chain with the appropriate
stationary distribution.

Geman and Geman (1984) developed the Gibbs sampler for Ising models, showing
that it too samples from an appropriate Markov chain. Gelfand and Smith (1990)
built on this work to show how Gibbs sampling can be used in many Bayesian settings.
This is also what we’ve shown in these notes.1

In the 90s, statisticians like Tierney, Kass, and Gelman (in a series of papers and
books) solidified the relationship between Metropolis, Metropolis-Hastings, and
Gibbs sampling. In parallel, the rise of computing power transformed where and
how these algorithms can be used.

Today, MCMC is a vital tool for modern applications of probabilistic models.
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