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1 Linear Regression

One of the most important methods in statistics and machine learning is linear regression.
Linear regression helps solve the problem of predicting a real-valued variable y, called the
response, from a vector of inputs x, called the covariates.

The goal is to predict y from x with a linear function. Here is a picture.

Here are some examples.

� Given my mother’s height, what is my shoe size?
� Given the stock price today, what will it be tomorrow?
� Given today’s precipitation, what will it be in a week?
� Others? Where have you seen linear regression?
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In linear regression there are p covariates; we fit a linear function to predict the response,

f .x/ D ˇ0 C

pX
iD1

ˇixi : (1)

The vector ˇ contains the p coefficients; ˇ0 is the intercept. (Note the intercept can be seen
as a coefficient for a special covariate that is always equal to one.)

This set-up is less limiting than you might imagine. The covariates can be flexible:

� Any feature of the data

� Transformations of the original features, x2 D log x1 or x2 D
p
x1.

� A basis expansion, e.g., x2 D x21 and x3 D x31 . Here linear regression fits a polyno-
mial, rather than a line.

� Indicator functions of qualitative covariates, e.g., 1ŒThe subject has brown hair�.

� Interactions between covariates, e.g., x3 D x1x2.

Its simplicity and flexibility makes linear regression one of the most important and widely
used statistical prediction methods. There are papers, books, and sequences of courses
devoted to linear regression.

1.1 Fitting a regression

We fit a linear regression to covariate/response data. Each data point is a pair .x; y/, where
x are the covariates and y is the response. Given a data set D D f.xn; yn/g

N
nD1, our goal is

to find the coefficients ˇ that best predict ynew from xnew. For simplicity, assume that xn is
a scalar and the intercept ˇ0 is zero. (In general we can assume ˇ0 D 0 by centering the
response variables before analyzing them.) There is only one coefficient ˇ.

A reasonable approach is to consider the squared Euclidean distance between each fitted

response f .xn/ D ˇxn and the true response yn, �n D .yn � ˇxn/
2. Choose ˇ that
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minimizes the sum of the distances over the data,

Ǒ D arg min
1

2

NX
nD1

.yn � ˇxn/
2 (2)

This has a closed-form solution, both in the one-covariate case and the more general setting
with p covariates. (We get back to this later.)

[In the picture, point out the distances between predicted values and true responses.]

Given a fitted coefficient Ǒ, we plug it into the regression equation to predict the new
response,

Oynew D
Ǒxnew: (3)

1.2 Linear regression as a probabilistic model

Linear regression can be interpreted as a probabilistic model,

yn j xn � N.ˇ
>xn; �

2/: (4)

For each response this is like putting a Gaussian “bump” around a mean, which is a linear
function of the covariates. This is a conditional model; the inputs are not modeled with a
distribution.

[Draw the graphical model, training and testing]

The parameters of a linear regression are its coefficients, and we fit them with maximum like-
lihood.1 We observe a training set of covariate/response pairs D D f.xn; yn/g; we want to
find the parameter ˇ that maximizes the conditional log likelihood,

P
logp.yn j xn; ˇ/.

Finding this MLE is equivalent to minimizing the residual sum of squares, described above.
The conditional log likelihood is

L.ˇI x; y/ D
NX
nD1

�
1

2
log 2��2 �

1

2
.yn � ˇ

>xn/
2=2�2: (5)

1We will add priors later on.
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Optimizing with respect to ˇ reveals

Ǒ D arg max�
1

2�2

NX
nD1

.yn � ˇ
>xn/

2 (6)

This is equivalent to minimizing the residual sum of squares.

Return to the single covariate case. The derivative is

dL

dˇ
D

1

2�2

NX
nD1

.yn � ˇxn/xn (7)

In this case the optimal can be found analytically,

Ǒ D

PN
nD1 ynxnPN
nD1 x

2
n

: (8)

This is the empirical covariance between the covariate and response divided by the empirical
variance of the covariate. (There is also an analytic solution when we have multiple
covariates, called the normal equation. We won’t discuss it here.)

Foreshadow: Modern regression problems are high dimensional, which means that the
number of covariates p is large. In practice statisticians regularize their models, veering
away from the MLE solution to one where the coefficients have smaller magnitude. (This is
where priors come in.) In the next lecture, we will discuss why regularization is good.

Still in the probabilistic framework, let’s turn to prediction. The conditional expectation is
E Œynew j xnew�. This is simply the mean of the corresponding Gaussian,

E Œynew j xnew� D Ǒ
>xnew: (9)

Notice the variance �2 does not play a role in prediction.

With this perspective on prediction, we can rewrite the derivative of the conditional log
likelihood,

dL

dˇ
D

NX
nD1

.yn � E Œy j xn; ˇ�/xn: (10)

This form will come up again later.
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In the more general case, there are p covariates. The derivative is

dL

dˇi
D

NX
nD1

.yn � E ŒY j xn; ˇ�/xni : (11)

This is intuitive. When we are fitting the data well, the derivative is close to zero. If both
the error (also called the signed residual) and covariate are large then we will move the
corresponding coefficient.

2 Logistic regression

We have seen that linear regression corresponds to this graphical model.

[Draw the graphical model, training and testing]

We can use the same machinery to do classification. Consider binary classification, where
each data point is in one of two classes yn 2 f0; 1g. If we used linear regression to model
this data, then

yn j xn � N.ˇ
>xn; �

2/: (12)

This is not appropriate for binary classification.

Q: Why not? The reason is that yn needs to be zero or one, i.e., a Bernoulli random variable.
(In some set-ups, it makes more sense for the classes to be f�1; 1g. Not here.)

We model p.y D 1 j x/ as a Bernoulli whose parameter is a function of x,

p.y D 1 j x/ D �.x/y.1 � �.x//1�y : (13)

What form should �.x/ take?

Let’s go back to our line of thinking around linear regression. We can think of linear
regression as a Gaussian whose mean is a function of x, specifically, �.x/ D ˇ>xn. Is this
appropriate here? No, because we need �.x/ 2 .0; 1/.

Rather, we use the logistic function,

�.x/ D
1

1C e��.x/
: (14)
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This function maps the reals to a value in .0; 1/.

� Q: What happens when �.x/ D �1?
A: �.x/ D 0

� Q: What happens when �.x/ D C1?
A: �.x/ D 1

� Q: What happens when �.x/ D 0?
A: �.x/ D 1=2.

Here is a plot of the logistic function

0.2

0.4

0.6

0.8

-10 -5 0 5 10
x

f(x
)

(We can make it steeper by premultiplying the exponent by a constant; we can change the
midpoint by adding an intercept to the exponent.)

This specifies the model,
y � Bernoulli.�.ˇ>x//: (15)

Note that the graphical model is identical to linear regression.

Important: The covariates enter the probability of the response through a linear combination

with the coefficients. That linear combination is then passed through a function to make a
quantity that is appropriate as a parameter to the distribution of the response. In the plot, the
x axis is ˇ>x. In this way, the covariates and coefficients control the probability distribution
of the response.

Optional: Generative vs. discriminative modeling. As for linear regression we always
assume that xn is observed. Contrasting this with naive Bayes classification, this is a
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discriminative model. The folk wisdom, made more formal by Ng and Jordan (2002), is
that discriminative models give better performance as more data are observed. Of course
“more” must take into account dimension and number of data points. (For example, 100
1-dimensional points is “more” than 100 1000-dimensional points.)

Here is an example picture from their paper:
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The paper includes many such pictures, for many data sets.

2.1 Fitting logistic regression with maximum likelihood

Our data are f.xn; yn/g pairs, where xn are covariates (as for linear regression) and yn is a
binary response (e.g., email features and spam/not spam). We fit the coefficients of logistic
regression by maximizing the conditional likelihood,

Ǒ D arg max
ˇ

NX
nD1

logp.yn j xn; ˇ/: (16)

The objective is

L D

NX
nD1

yn log�.ˇ>xn/C .1 � yn/ log.1 � �.ˇ>xn//: (17)

Define �n , ˇ>xn and �n , �.�n/, but do not lose sight that both depend on ˇ. Define
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Ln to be the nth term in the conditional likelihood,

Ln D yn log�n C .1 � yn/ log.1 � �n/ (18)

The full likelihood is L D
PN
nD1 Ln.

Use the chain rule to calculate the derivative of the conditional likelihood,

dL

dˇi
D

NX
nD1

dLn

d�n

d�n

dˇi
: (19)

The first term is
dLn

d�n
D
yn

�n
�
.1 � yn/

1 � �n
(20)

We use the chain rule again to compute the second term. The derivative of the logistic with
respect to its argument � is

d�.�/

d�
D �.�/.1 � �.�//: (21)

(This is an exercise.) Now apply the chain rule

d�n

dˇi
D

d�n

d�n

d�n

dˇi
(22)

D �n.1 � �n/xni (23)

With this reasoning, the derivative of each term is

dLn

dˇi
D

�
yn

�n
�
1 � yn

1 � �n

�
�n.1 � �n/xni (24)

D ..yn.1 � �n/ � .1 � yn/�n/xni (25)

D .yn � yn�n � �n C yn�n/xni (26)

D .yn � �n/xni (27)

So, the full derivative is
dL

dˇi
D

NX
nD1

.yn � �.ˇ
>xn//xni (28)

Logistic regression algorithms fit the objective with gradient methods, such as stochastic

8



gradient ascent. Nice closed-form solutions, like the normal equations in linear regression,
are not available. But the likelihood is convex; there is a unique solution.

Note that E Œyn j xn� D p.yn j xn/ D �.ˇ>xn/. Recall the linear regression derivative.
(Warning: In the equation below yn is real valued.)

dL

dˇi
D

NX
nD1

.yn � ˇ
>xn/xni (29)

Further recall that in linear regression, E Œyn j xn� D ˇ>xn.

Both the linear regression and logistic regression derivatives have the form

NX
nD1

.yn � E Œy j xn; ˇ�/xni (30)

(Something is happening here... more later.)

Linear separators and the margin. Suppose there are two covariates and two classes.

[Draw a plane with “+” and “-” labeled points, separable.]

Q: What kind of classification boundary does logistic regression create?

� Q: When does p.Cj x/ D 1=2? A: When �.x/ D 0
� Q: Where does ˇ>xn D 0? A: A line in covariate space.
� Q: What happens when ˇ>x < 0? A: p.Cj x/ < 1=2
� Q: What happens when ˇ>x > 0? A: p.Cj x/ < 1=2

So, the boundary around 1/2 occurs where ˇ>x D 0. Thus, logistic regression finds a
linear separator. (Many of you have seen SVMs. They also find a linear separator, but
non-probabilistic.)

Furthermore, those of you who know about SVMs know about the margin. Intuitively,
SVMs don’t care about points that are easy to classify; rather, they try to separate the points
that are difficult.

Loosely, the same idea applies here (Hastie et al., 2009).
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� The argument to the logistic is ˇ>xn. It is the distance to the separator scaled by jjˇjj.

� What happens to the likelihood of a data point as we get further away from the separator?

See the plot of the logistic function. Suppose we are moving the boundary that changes a
(correctly classified) point from being 1 inch away to being 2 inches away. This will have
a large positive effect on the likelihood. Now suppose that same moves changes another
point from being 100 inches away to 101 inches away. The relative change in likelihood
is much smaller. (The reason: the shape of the logistic function.)

� This means that the probability of the data changes most near the line. Thus, when we
maximize likelihood, we focus on the margin.

Aside: Separable data. Here is some separable data:

Consider ˇ0 D ˇ

jjˇ jj
. Hold ˇ0 fixed and consider the likelihood as a function of the scaling,

c , jjˇjj. If we increase c then (a) the separating plane does not change and (b) the
likelihood goes up. Thus, the MLE for separable data is not well-defined.

3 Generalized linear models

Linear regression and logistic regression are both linear models. The coefficient ˇ enters the
distribution of yn through a linear combination of xn. The difference is in the type of the
response. In linear regression the response is real valued; in logistic regression the response
is binary.

Linear and logistic regression are instances for a more general class of models, generalized
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linear models (GLMs) (McCullagh and Nelder, 1989). The idea is to use a general exponen-
tial family for the response distribution. In addition to real and binary responses, GLMs can
handle categorical, positive real, positive integer, and ordinal responses.

The idea behind logistic and linear regression: The conditional expectation of yn depends
on xn through a function of a linear relationship,

E Œyn j xn; ˇ� D f .ˇ
>xn/ D �n

In linear regression, f is the identity; in logistic regression, f is the logistic. Finally,
these methods endow yn with a distribution that depends on �n. In linear regression, the
distribution is a Gaussian; in logistic regression, it is a Bernoulli.

GLMs generalize this idea with an exponential family. The generic GLM has the following
form,

p.yn j xn/ D log h.yn/ expf�>n yn � a.�n/g (31)

�n D  .�n/ (32)

�n D f .ˇ>xn/ (33)

Note:

� The input xn enters the model through ˇ>xn.

� The conditional mean �n is a function f .ˇ>xn/. It is called the response function or
link function.

� The response yn has conditional mean �n.

� Its natural parameter is denoted �n D  .�n/.

GLMs let us build probabilistic predictors of many kinds of responses.

There are two choices to make in a GLM: the distribution of the response y and the function
that gives us its mean f .ˇ>x/. The distribution is usually determined by the form of y
(e.g., Gaussian for real, Poisson for integer, Bernoulli for binary). The response function is
somewhat constrained—it must give a mean in the right space for the distribution of y—but
also offers some freedom. For example, we can use a logistic function or a probit function
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when modeling binary data—both map the reals to .0; 1/.

Recall our discussion of the mean parameter and natural parameter in an exponential family,
specifically, that there is a 1-1 relationship between the mean E ŒY � and the natural parameter
�. We denote the mapping from the mean to the natural parameter by  .�/ D �; we denote
the mapping from the natural parameter to the mean by  �1.�/ D E ŒY �.

We can use  �1 as a response function—this is called the canonical response function.
When we use the canonical response function, then the natural parameter is ˇ>xn,

p.yn j xn/ D h.yn/ expf.ˇ>xn/>t .yn/ � a.�n/g: (34)

The logistic function (for binary response) and identity function (for real response) are
examples of canonical response functions.

3.1 Fitting a GLM

We fit GLM methods with gradient optimization. It suffices to investigate the likelihood and
its derivative.

The data are input/response pairs f.xn; yn/g. The conditional likelihood is

L.ˇID/ D

NX
nD1

h.yn/C �
>
n t .yn/ � a.�n/; (35)

and recall that �n is a function of ˇ and xn (via f and  ).

Define each term to be Ln. The gradient is

rˇL D

NX
nD1

r�n
Lnrˇ�n (36)

D

NX
nD1

.t.yn/ � r�n
a.�n//rˇ�n (37)

D

NX
nD1

.t.yn/ � E ŒY j xn; ˇ�/.r�n
�n/.rˇ>xn

�n/xn (38)
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In a canonical GLM, �n D ˇ>xn and rˇ�n D xn. Therefore,

rˇL D

NX
nD1

.t.yn/ � E ŒY j xn; ˇ�/xn (39)

Recall that the logistic and linear regression derivatives had this form. These are examples
of generalized linear models with canonical links.

On small data, fitting GLM’s is easy in R: use the glm command.
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