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Introduction

‘ We have been looking at models that posit latent structure in high dimensional data. We
use the posterior to uncover that structure.

‘ The two main types are mixtures (and variants, like mixed-membership) and factor
models (like PCA, factor analysis, and others).

‘ A nagging concern for these methods is model selection—how do I choose the number
of mixture components? the number of factors?

‘ This is a field unto itself. You have probably heard of cure-all techniques, like AIC, BIC,
and DIC. It can be fitted, for example, with cross-validation or Bayes factors. Sometimes
existing theory or problem constraints inform the number of components.

‘ Bayesian nonparametric modeling (BNP) provides an alternative solution. BNP methods
have enjoyed a recent renaissance in machine learning.

‘ Loosely, BNP models posit an “infinite space” of latent structure where (in the generative
process) the data only uses a finite part of it.

� BNP mixtures posit an infinite number of mixture components.
� BNP factor models posit an infinite number of latent factor loadings.

‘ The posterior thus expresses uncertainty about how much of the hidden structure is used
and what specific form does it take?

� How many mixture components are expressed in the data? What are they?
� How many factors are there in the data? What are they?
� How many topics are there in this corpus of documents?
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‘ OK, fine. But why the hype? Is it just yet another model selection technique? There are
a few properties that distinguish BNP models

‘ First, the predictive distribution allows for the next data point—the data point to be
predicted—to exhibit a previously unseen piece of the latent structure.

� Contrast this to classical model selection, for example, where the number of compo-
nents is fitted and fixed.

‘ Second, BNP methods can be adapted to model uncertainty over complicated latent
structures, like trees and graphs.

� Traditional model selection, which usually focuses on selecting a single integer, has
difficulty with these kinds of problems.
� This is particularly relevant in hierarchical settings, where we might have multiple

per-group model selection problems as well as global per-data problems.
� We can extend the idea of model selection—the inference of the structure of our latent

space—to depend on other variables.
� And think again about the first point—these complicated latent structures can grow

and change in the predictive distribution.

‘ Third (and related to above), casting the model selection & estimation parameters
together in a single model means that one posterior inference algorithm does both the
searching for a good model and filling in the details of that model.

� The algorithms don’t waste time on poor settings of the model selection parameter.

‘ In summary, BNP models are flexible and powerful. They are more relevant now because
the kinds of latent structure that we look for—and the kinds of data that we look at—are
more complex.

‘ But they too are not a cure-all! BNP models need also to be checked. We avoid choosing
the number of mixture components, but we make other choices that affect inference.

‘ A quick word on random measures—

� BNP models place a prior over the (infinite dimensional) space of distributions on an
arbitrary space. (This is why they are called “nonparametric.”)

2



� Imagine a Dirichlet—a random distribution over k elements—but for a distribution
on any space (including continuous spaces). This is a Dirichlet process.

– (Draw a draw from a Dirichlet.)
– (Draw a random measure.)
– (Draw a discrete random measure, and note the distinction.)

‘ The random distribution perspective is important for understanding properties of BNP
models and for deriving some inference algorithms, like variational inference.

‘ First we will discuss random structures, partitions in particular, and connect those to
mixture models. We will discuss random distributions later.

‘ (Talk about the roadmap here.)

The Chinese restaurant process

‘ More formally, BNP models give priors on structures that accommodate “infinite”
sizes.

‘ When combined with data, the resulting posteriors give a distribution on structures that
can grow with new observations.

‘ The simplest version is the Chinese restaurant process, a distribution on partitions that
can be used as a prior over clusterings.

� The posterior gives a distribution over the clustering of a given data set.
� Different data will use different numbers of clusters.
� New clusters can spawn from new data.

‘ Imagine a restaurant with an infinite number off tables and imagine a sequence of
customers entering the restaurant and sitting down. (Draw the picture.)

� The first customer enters and sits at the first table.
� The second customer enters and sits at the first table with probability 1

1C˛
, and the

second table with probability ˛
1C˛

, where ˛ is a positive real.
� When the nth customer enters the restaurant, she sits at each of the occupied tables

with probability proportional to the number of previous customers sitting there, and at
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Figure 1: Roadmap of BNP research
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Figure 2: Example of a draw from a CRP and CRP mixture components.

the next unoccupied table with probability proportional to ˛.
� At any point in this process, the assignment of customers to tables defines a random

partition.

‘ (Draw the figure here.)

‘ Let zi be the table assignment of the nth customer. A draw from this distribution can be
generated by sequentially assigning observations to classes with probability

P.zi D kjz1Wi�1/ /

(
mk

i�1C˛
if k � KC (i.e., k is a previously occupied table)

˛
i�1C˛

otherwise (i.e., k is the next unoccupied table)
(1)

where mk is the number of customers sitting at table k, and KC is the number of tables for
which mk > 0.

‘ The parameter ˛ is called the concentration parameter. Intuitively, a larger value of ˛
will produce more occupied tables (and fewer customers per table).

‘ The CRP exhibits an important invariance property: The cluster assignments under this
distribution are exchangeable.

‘ This means that p.z/ is unchanged if the order of customers is shuffled (up to label
changes). This may seem counter-intuitive at first, since the process in Eq. 1 is described
sequentially.

‘ (Compute the joint for the figure. Swap one partition and recompute the joint.)

‘ The second important property is about the probability of new customers. The next
customer sits at one of the previous tables with some probability. With other probability, she
sits at a new table. The partition can expand.
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The CRP and exchangeability

‘ We now prove exchangeability. Consider the joint distribution of a set of customer
assignments z1Wn. It decomposes according to the chain rule,

p.z1; z2; : : : ; zn/ D p.z1/p.z2 j z1/p.z3 j z1; z2/ � � �p.zn j z1; z2; : : : ; zn�1/; (2)

where each terms comes from Eq. 1.

‘ To show that this distribution is exchangeable, we will introduce some new nota-
tion.

� K.z1Wn/ is the number of groups in which these assignments place the customers,
which is a number between 1 and n.
� Ik is an ordered array of indices of customers assigned to the kth group.
� Nk is the number of customers assigned to that group (the cardinality of Ik).

‘ Now, examine the product of terms in Eq. 2 that correspond to the customers in group k.
This product is

˛ � 1 � 2 � � � .Nk � 1/

.Ik;1 � 1C ˛/.Ik;2 � 1C ˛/ � � � .Ik;Nk
� 1C ˛/

: (3)

To see this, notice that the first customer in group k contributes probability ˛
Ik;1�1C˛

because
he is starting a new table; the second customer contributes probability 1

Ik;2�1C˛
because he

is sitting a table with one customer at it; the third customer contributes probability 2
Ik;3�1C˛

,
and so on.

‘ The numerator of Eq. 3 can be more succinctly written as ˛.Nk � 1/Š

‘ With this expression, we now rewrite the joint distribution in Eq. 2 as a product over
per-group terms,

p.z1Wn/ D

KY
kD1

˛.Nk � 1/Š

.Ik;1 � 1C ˛/.Ik;2 � 1C ˛/ � � � .Ik;Nk
� 1C ˛/

: (4)

‘ Notice that the union of Ik across all groups k identifies each index once, because each
customer is assigned to exactly one group. This simplifies the denominator and lets us write
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the joint as

p.z1Wn/ D
˛K

QK
kD1.Nk � 1/ŠQn

iD1.i � 1C ˛/
: (5)

‘ Eq. 5 reveals that Eq. 2 is exchangeable. It only depends on the number of groups K
and the size of each group Nk. The probability of a particular seating configuration z1WN
does not depend on the order in which the customers arrived.

CRP mixtures

‘ The BNP clustering model uses the CRP in an infinite-capacity mixture model.

‘ Each table k is associated with a cluster and with a cluster parameter ��
k

, drawn from a
prior G0.

‘ There are an infinite number of clusters, though a finite data set only exhibits a finite
number of them.

‘ Each data point is a “customer,” who sits at a table zi and then draws its observed value
from the distribution F.yi j�zi

/.

‘ The concentration parameter ˛ controls the prior expected number of clusters (i.e.,
occupied tables) KC.

� This number grows logarithmically with the number of customers N ,

E ŒŒ� KC� D ˛ logN (6)

for ˛ < N= logN .
� If ˛ is treated as unknown, we can put a prior over it.

‘ When we analyze data with a CRP, we form an approximation of the joint posterior over
all latent variables and parameters.

‘ We can examine the likely partitioning of the data. This gives us a sense of how are data
are grouped, and how many groups the CRP model chose to use.

‘ We can form predictions with the posterior predictive distribution. With a CRP mixture,
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the posterior predictive distribution is

P.ynC1jy1Wn/ D
X

z1WnC1

Z
�

P.ynC1jznC1; �/P.znC1jz1Wn/P.z1Wn; � jy1Wn/d�: (7)

Since the CRP prior, P.znC1jz1Wn/, appears in the predictive distribution, the CRP mixture
allows new data to possibly exhibit a previously unseen cluster.

Collapsed Gibbs sampling for CRP mixtures

‘ For concreteness, lets make a CRP mixture of Gaussians.

‘ The model is

1. Draw ��
k
� N.0; �/ for k 2 f1; : : :g

2. For each data point i 2 f1; : : : ; ng

(a) Draw table zi j z1W.i�1/ � CRP.˛; z1W.i�1//.
(b) Draw data xi � N.��zi

; �2/

‘ Repeatedly drawing from this model gives data sets with different numbers of clusters.
Contrast to a traditional Gaussian mixture model, where K must be specified.

‘ When G0 is conjugate to p.xn j ��/ (i.e., the model above) then we can use collapsed

Gibbs sampling, only sampling the table assignments.

‘ We sample the i th table conditioned on the other tables and the data, p.zi j z�i ; x/.
(Recall this defines a Markov chain whose stationary distribution is the posterior.)

‘ The key to this is exchangeability. Because the table assignments are exchangeable, we
can treat zi as though it were the last table assignment sampled.

‘ Thus,

p.zi D k j z�i ; x/ D p.zi D k j z�i/p.x j z/ (8)

D p.zi j z�i/p.xŒIk.z�i/� [ xi j�/
Y
j¤k

p.xŒIj .z�i/� j�/ (9)

/ p.zi j z�i/
p.xŒIk.z�i/� [ xi j�/

p.xŒIk.z�i/ j�/
(10)
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where xŒIj .z�i/� denotes the observations that are assigned (in z�i ) to the j th table. Note
that the denominator likelihood term does not include xi ; the numerator does. The values
j; k run over the currently occupied tables and the next unoccupied table.

‘ The first term comes from the CRP. The second term is the usual likelihood integral that
we can write down in conjugate-likelihood settings.

‘ Operationally, consider each cluster in z�i and a new cluster.

� Compute the prior of zi for that cluster.
� Put the i th data point in that cluster and compute the integrated likelihood.
� Multiply these two terms

Finally, normalize and sample. Note again, this allows zi to start a new cluster.

‘ Exchangeability is key. If things weren’t exchangeable then

p.zi j z�i ; x/ D p.zi j z1W.i�1//p.z.iC1/Wn j zi/p.x j z/ (11)

and we would have to recompute partition probabilities in the second term for each possible
assignment of zi .

Dirichlet processes

‘ Next, we discuss Dirichlet process (DP) mixture models. We will reveal their connection
to CRP mixtures in a little while.

‘ The Dirichlet process is a distribution over distributions (or, more formally, a random
measure model).

‘ It has two parameters:

� The scaling factor ˛, which is a positive scalar.
� The base distribution G0, which is an arbitrary distribution.
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‘ We draw a random distribution G and then independently draw n values from it,

G � DP.˛G0/ (12)

�i � G i 2 f1 : : : ng: (13)

‘ The parameter ˛G0 is an unnormalized measure. We are construing it as a probability
distribution G0 multiplied by a scalar .

‘ Note how general this is. The distribution G is a distribution over whatever space G0 is
a distribution over. (But, of course, it is different from G0.)

� If G0 is Poisson, G is a random distribution over integers
� If G0 is multivariate Gaussian, G is a random distribution over reals.
� If G0 is Gamma, G is a random distribution over positive reals.

‘ G0 might be a simple distribution in the exponential family, but G is not.

‘ Two theorems about the DP

� E ŒŒ� G� D G0

� Draws from DP.˛G0/ are discrete. (Draw pictures.)

Definition of a DP based on finite dimensional distributions

‘ Consider a probability space ˝ and a finite partition A, such that
Sk
iD1Ai D ˝.

� For concreteness, think of the real line or the real plane.
� A finite partition will include an infinite piece, i.e., the “rest” of the plane or line.

‘ Now consider the vector hG.A1/; G.A2/; : : : ; G.Ak/i.

� G.Ai/ D
R
!2Ai

G.!/

� a point on the k � 1 simplex because A is a partition of the entire probability space.
� a random vector, because G is random

10



‘ Assume for all k and all possible partitions A,

hG.A1/; G.A2/; : : : ; G.Ak/i � Dir.˛G0.A1/; ˛G0.A2/; : : : ; ˛G0.Ak//: (14)

These are called finite dimensional distributions (FDD). According to the Kolmogorov
consistency theorem—and thanks to properties of these Dirichlets—there is a distribution of
G. This is the Dirichlet process (Ferguson, 1973).

‘ A stochastic process is a collection of indexed random variables. In a DP, the index are
the Borel sets of the probability space.

‘ This also shows you that E ŒŒ� G� D G0.

� Consider EŒG�.A/ for any set A. This is a probability.
� Put A in a partition with its complement Ac . By the FDD,

E ŒŒ� G�.A/ D
˛G0.A/

˛G0.A/C ˛G0.Ac/
(15)

D G0.A/ (16)

� Later, we’ll want to write this as

E ŒŒ� G� D
˛G0R

�
˛G0.�/

(17)

Conjugacy and the clustering effect

‘ Let’s consider the posterior of G when we draw a single data point,

G � DP.˛G0/ (18)

�1 � G (19)

‘ What is the distribution of G j �1?

� Consider an arbitrary partition A.
� By definition the distribution of G applied to each set is Dir.˛G0.A1/; : : : ; G0.Ak//.
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� The posterior is given by the posterior Dirichlet

hG.A1/; : : : ; G.Ak/i j �1 � Dir.˛G0.A1/Cı�1
.A1/; : : : ; ˛G0.Ak/Cı�1

.Ak// (20)

� The delta function equals 1 when �1 2 Ai . This adds the count to the right component
of the Dirichlet parameter.
� But, this is true for any partition. So

G j �1 � DP.˛G0 C ı�1
/: (21)

‘ The DP posterior is itself a DP. It is “conjugate to itself.” (Usually, conjugacy involves a
prior likelihood pair. In this case, the prior generates the likelihood.)

‘ Suppose we observe �1Wn � G. What is the predictive distribution?

‘ The predictive distribution is the integral,

p.� j �1Wn/ D

Z
G

G.�/p.G j �1Wn/dG (22)

Note that we abuse notation a little. Here G.�/ is the density (applied to a point) while
G.Ai/ denotes the integral of the density over the set Ai , i.e., p.Ai jG/. Above, we are
marginalizing out the random distribution G.

‘ This is the expectation of G under its posterior, G j �1Wn,

E ŒŒ� G j �1Wn� D
˛G0 C

P
ı�iR

˛G0.�/C
P
ı�i
.�/d�

(23)

D
˛G0 C

P
ı�i

˛ C n
(24)

‘ This is starting to look familiar. The distribution of the next � is

� j �1Wn �

(
A draw from G0 with probability ˛

˛Cn

�i with probability 1
˛Cn

: (25)

‘ Suppose that �1Wn exhibit K unique values, ��1WK . Then, the predictive distribution
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is

� j �1Wn �

(
A draw from G0 with probability ˛

˛Cn

��
k

with probability nk

˛Cn

; (26)

where nk is the number of times we saw ��
k

in �1Wn. Notice that which value it takes on (or
if it takes on a new value) is given by the CRP distribution.

‘ Consider the DP model with G marginalized out,

p.�1; : : : ; �n jG0; ˛/ D p.�1 jG0; ˛/p.�2 j �1; G0; ˛/ � � �p.�n j �1W.n�1/; G0; ˛/: (27)

Each term is a predictive distribution. The cluster structure of �1Wn, i.e., which are equal to
the same unique value, is given by a CRP with parameter ˛.

‘ This means we can draw from this joint distribution (again, with G marginalized
out),

��k � G0 for k 2 f1; 2; 3; : : :g (28)

zi j z1W.i�1/ � CRP.˛I z1W.i�1// (29)

�i D ��zi
(30)

‘ The DP mixture (Antoniak, 1974) is

G � DP.˛G0/ (31)

�i jG � G (32)

xi � f .� j �i/: (33)

We now know this is equivalent to a CRP mixture. Note, this also shows exhangeabil-
ity.

‘ (Draw the graphical model.)

‘ And it shows discreteness of the DP. The CRP reasoning tells us that a countably infinite
set of points (called atoms) have finite probability. (Contrast to a density, like a Gaussian,
where the probability of any particular point is zero.) This means that the distribution is
discrete.
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‘ Knowing these properties, we can think more about the parameters.

‘ What is the distribution of the atoms? It is G0. From the CRP perspective, these occur
when we sit at a new table.

‘ What affects their probabilities, i.e., how often we see them? It is ˛. If ˛ is bigger than
we revisit tables less often; if ˛ is smaller than we revisit tables more often.

‘ Why? Think about the random measure again. When ˛ is big—from our CRP
knowledge—this means that most �i are drawn new from G0. Thus, G will look more like
G0. When ˛ is small, we see old values more often. This means that more values have
higher probability (that usual, under G0) and G looks less like G0.

Hierarchical Dirichlet processes

‘ The hierarchical DP (HDP) is a distribution of grouped items,

G0 � DP.
H0/ (34)

Gj jG0 � DP.˛G0/ j 2 f1; : : : ; mg (35)

�ij jGj � Gj i 2 f1; : : : ; ng (36)

The parameters are a base measure H0 and two scaling parameters ˛ and 
 .

‘ Here is a schematic for the distributions underlying an HDP

G1 ∼ DP(αG0) G2 ∼ DP(αG0) G3 ∼ DP(αG0)

G0 ∼ DP(γH0)

� At the top, the atoms of G0 are drawn from H0.
� In each group, the atoms are drawn from G0.
� Since G0 is from a DP, the same atoms are shared across groups.

14



‘ Now imagine this in a mixture setting. Suppose we have grouped data xj D fx1j ; : : : ; xnj g.

G0 � DP.
H0/ (37)

Gj jG0 � DP.˛G0/ j 2 f1; : : : ; mg (38)

�ij � Gj i 2 f1; : : : ; ng (39)

xij j �ij � f .� j �ij / (40)

� Each group draws from the same set of atoms, but with different proportions.
� Each observation in each group exhibits exhibits one the per-group atoms.

‘ Does this sound familiar? It is a Bayesian nonparametric mixed membership model. The
number of components (i.e., the exhibited atoms of G0) is unknown in advance.

‘ (Draw the graphical model.)

‘ Suppose H0 is a Dirichlet over a vocabulary.

� The atoms of G0 are distributions over words. Lets call them topics.
� The atoms of Gj are the same topics, but with different (per-group) proportions.
� Each observation (word) is drawn by choosing a topic from Gj and then drawing from

its distribution. The distribution over topics changes from group to group.
� This is a Bayesian nonparametric topic model.

‘ We can integrate out the DPs in an HDP. This gives the “Chinese restaurant fran-
chise.”

‘ (Draw the picture of the CRF here.)

‘ Note that within each group, two tables can be assigned to the same atom. (Mathemati-
cally, they can be combined to one table.)

‘ There are several inference algorithms for the HDP. Chong Wang has Gibbs sampling
code for infinite topic models. Gibbs sampling uses the CRF representation, integrating out
the random distributions.

‘ The HDP is not restricted to two levels of hierarchy. Most applications only use
two.
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The stick-breaking representation

‘ We know that G is discrete. Therefore it can be represented as

G D

1X
kD1

�kı��
k
; (41)

where ��
k
� G0. Intuitively, the proportions of each atom �k should depend on the scaling

parameter ˛. They do.

‘ Consider an infinite collection of Beta random variables Vk � Beta.1; ˛/. Define

�k D Vk

k�1Y
iD1

.1 � Vi/: (42)

This is like a unit-length stick where V1 of the stick is broken off first, then V2 of the stick is
broken off of the rest of it, then V3 of the stick is broken off of the rest of that, etc. Since the
variables are Beta, there will always be a little stick left to break off.

‘ Draw a picture with this table:

Break off Segment length What’s left

V1 V1 .1 � V1/

V2 V2.1 � V1/ .1 � V2/.1 � V1/

V3 V3.1 � V2/.1 � V1/ .1 � V3/.1 � V2/.1 � V1/

etc.

‘ Sethuraman (1994) showed that the DP.˛G0/ is equal in distribution to

Vk � Beta.1; ˛/ k 2 f1; 2; 3; : : :g (43)

��k � G0 k 2 f1; 2; 3; : : :g (44)

�k D Vk

k�1Y
iD1

.1 � Vi/ (45)

G D

X
�kı��

k
(46)

‘ This is a constructive definition of the DP. It doesn’t rely on the Kolmogorov consistency
theorem and the random measure is not marginalized out.
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‘ This is useful for variational inference in DP mixtures.

‘ (Go back to the roadmap and discuss what I didn’t cover.)
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