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The first sections of these lecture notes follow the ideas in Chapters 3 and 4
of An Introduction to Probabilistic Graphical Models by Michael Jordan. In
addition, many of the figures are taken these chapters.

The inference problem

Consider two sets of nodesE and F . We would like to calculate the conditional
distribution p.xF j xE /. This is the inference problem.

This amounts to three computations. First we marginalize out the set of vari-
ables xR, which are the variables except xE and xF ,

p.xE ; xF / D
X
xR

p.xE ; xF ; xR/: (1)

From this we then marginalize xF to obtain the marginal probability of xE ,

p.xE / D
X
xF

p.xE ; xF /: (2)

Finally we take the ratio to compute the conditional distribution

p.xF j xE / D p.xE ; xF /=p.xE /: (3)

Our goal is to efficiently compute these quantities.

What is the problem? Suppose R contains many nodes, each taking on one of k
values. Then marginalizing them out, in the first calculation, requires summing
over kjRj configurations. This will usually be intractable.
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Elimination

The first algorithm we will discuss is called elimination. It is a stepping stone
to a more useful algorithm.

First, we introduce some notation. We will need to differentiate between vari-
ables that we are summing over or are arguments to a function we are calculating
and variables that are clamped at specific values, e.g., because they are part of
the evidence.

So, Nx6 will refer to a specific value that the variable x6 can take on. We will
use a delta function, what is called an evidence potential, ı Nx6

.x6/ as a function
whose value is equal to one if x6 D Nx6 and zero otherwise. You will see how
this is useful.

An example

We will demonstrate the Eliminate algorithm by an example. Consider the ex-
ample graphical model from the last lecture,

1X

2X

3X

X 4

X 5

X6

Let us compute p.x1 j Nx6/.

We multiply the evidence potential at the end of the joint (to clamp x6) and then
compute the marginal p.x1; Nx6/ by summing out all the variables except x1.

p.x1; Nx6/ D
X
x2

X
x3

X
x4

X
x5

X
x6

p.x1/p.x2 j x1/p.x3 j x1/p.x4 j x2/p.x5 j x3/p.x6 j x2; x5/ı Nx6
.x6/
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Normally, one would sum out all except x1 and x6, but we use the summation
to harness the evidence potential and select the right value of x6 from the table.1

Notice, thanks to the factorization, that we can move some of these summations
inside,

p.x1; Nx6/ D p.x1/
X
x2

p.x2 j x1/
X
x3

p.x3 j x1/
X
x4

p.x4 j x2/
X
x5

p.x5 j x3/
X
x6

p.x6 j x2; x5/ı Nx6
.x6/

Let’s make an intermediate factor involving the summation over x6,

m6.x2; x5/ ,
X
x6

p.x6 j x2; x5/ı Nx6
.x6/

Note that this is a function of x2 and x5 because they are involved in the terms
we summed over. We now rewrite the joint

p.x1; Nx6/ D p.x1/
X
x2

p.x2 j x1/
X
x3

p.x3 j x1/
X
x4

p.x4 j x2/
X
x5

p.x5 j x3/m6.x2; x5/:

We have eliminated x6 from the RHS calculation.

Let’s do the same for the summation over x5,

m5.x2; x3/ ,
X
x5

p.x5 j x3/m6.x2; x5/:

This is a function of x2 and x3. We rewrite the joint,

p.x1; Nx6/ D p.x1/
X
x2

p.x2 j x1/
X
x3

p.x3 j x1/
X
x4

p.x4 j x2/m5.x2; x3/:

Notice that the intermediate factor m5.x2; x3/ does not depend on x4. Thus we
rewrite the joint again

p.x1; Nx6/ D p.x1/
X
x2

p.x2 j x1/
X
x3

p.x3 j x1/m5.x2; x3/
X
x4

p.x4 j x2/:

We continue in this fashion, defining intermediate functions, moving them to
the right place in the summation, and repeating. Note that the next function

1In more detail, our goal is to have p. Nx6 j x5; x2/ in the expression. This is achieved withP
x6
p.x6 j x5; x2/ı Nx6

.x6/. Thus we can treat all of the non-query node variables identically,
not differentiating between evidence and non-evidence.
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m4.x2/ actually equals one. But, to keep things programmatic, we will include
it anyway.

p.x1; Nx6/ D p.x1/
X
x2

p.x2 j x1/
X
x3

p.x3 j x1/m5.x2; x3/m4.x2/

D p.x1/
X
x2

p.x2 j x1/m4.x2/
X
x3

p.x3 j x1/m5.x2; x3/

D p.x1/
X
x2

p.x2 j x1/m4.x2/m3.x1; x2/

D p.x1/m2.x1/

We can further marginalize out x1 to find the probability p. Nx6/,

p. Nx6/ D
X
x1

p.x1; Nx6/:

And finally we can take the ratio to find the conditional probability.

Discussion of the example

Let us ask the question: What drives the computational complexity of the cal-
culation we just made?

In each iteration we form a function by summing over a variable. That function
is defined on some number of the other variables. The complexity has to do with
forming that function. Functions of few variables are easier to form; functions
of many variables are more difficult.

In our example, none of the intermediate functions had more than two argu-
ments. If, for example, each variable is binary then we would never be manipu-
lating a table of more than four items.

[FOR NEXT TIME: WE WILL ELIMINATEX2 FIRST; WHEN DONE COR-
RECTLY, ELIMINATING X4 FIRST DOES NOT NECESSARILY LEAD TO
WORSE COMPLEXITY.]

Consider this alternative, where we eliminate x4 first

p.x1; Nx6/ D
X
x2

X
x3

p.x1/p.x2 j x1/p.x3 j x1/
X
x6

X
x5

X
x4

p.x4 j x2/p.x5 j x3/p.x6 j x2; x5/ı Nx6
.x6/

D

X
x2

X
x3

p.x1/p.x2 j x1/p.x3 j x1/
X
x6

X
x5

m4.x2; x3; x5; x6/

4



Here the intermediate function is

m4.x2; x3; x5; x6/ ,
X
x4

p.x4 j x2/p.x5 j x3/p.x6 j x2; x5/ı Nx6
.x6/

It is still a summation over x4, but contains many more cells than the first inter-
mediate function from the first example. This is suggestive that the complexity
of the algorithm depends on the order in which we eliminate variables.

The elimination algorithm

We will now describe the algorithm. At each iteration, we take the sum of
a product of functions. These functions can be conditional probability tables
p.xi j x�i

/, delta functions on evidence ı Nxi
.xi/, and intermediate functionsmi.xSi

/.
The algorithm maintains an active list of functions currently in play.

Our goal is to compute p.xF j xE /.

1. Set an elimination ordering I , such that the query node F is last.

2. Set an active list of functions. Initialize with

� Each conditional probability table p.xi j x�i
/

� Evidence potentials ı Nxi
.xi/ for each evidence node

3. Eliminate each node i in order:

(a) Remove functions from the active list that involve xi .

(b) Set �i.Ti/ equal to the product of these functions, where Ti is the
set of all variables involved in them.
Sum over xi to compute the intermediate function

mi.Si/ D
X
xi

�i.Ti/:

The arguments to the intermediate function are Si (i.e., Ti D Si[i ).

(c) Put mi.Si/ on the active list.

4. In the penultimate step, we have the unnormalized joint distribution of
the query node and the evidence. Marginalizing out the query node gives
us the marginal probability of the evidence.

This algorithm gives us insights into how to use a graph to perform an inference.
We defined it for one query node, but it generalizes to computing the conditional
distribution of multiple nodes.
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Undirected graphs

Recall the semantics of an undirected graph,

p.x/ D
1

Z

Y
C2C

 .xC /: (4)

The elimination algorithm works on undirected graphs as well. Rather than
placing conditional probability tables on the active list, we place the potential
functions. See the book for a good example.

One nuance is the normalizing constant. Reusing the example above, we first
compute p.x1; Nx6/ D .1=Z/m2.x1/. (This m2 is different from above, calcu-
lated using the undirected elimination algorithm.) We than compute p. Nx6/ DP
x1
.1=Z/m2.x1/. Taking the ratio gives the conditional of interest. Note we

did not need to compute the normalizing constant Z because it cancels in the
ratio. (Question: If we were interested in Z, how would we compute it?)

Graph eliminate

As we saw, the complexity of the elimination algorithm is controlled by the
number of arguments in the intermediate factors. This, in turn, has to do with
the number of parents of the nodes and the elimination ordering.

We can reason about the complexity of eliminate using only the graph. The
idea is that the graph can represent the number of arguments in the interme-
diate functions and as we eliminate nodes we make sure that it represents the
arguments of the intermediate functions.

Let’s do the directed case. (The undirected case is easier.) First create an undi-
rected version of the directed graph where we fully connect the parents of each
node. (This captures that arguments to p.xi j x�i

/. In our example, here is the
so-called “moralized” graph,
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1X

2X

3X

X 4

X 5

X6

We can run an elimination algorithm graphically. Set the elimination ordering
and consider the moralized undirected version of the graphical model. At each
iteration, remove the next node and connect the nodes that were connected to it.
Repeat.

The elimination cliques are the collection of nodes that are the neighbors of
xi at the iteration when it is eliminated. Of course, these are the arguments to
the intermediate functions when doing inference. If we record the elimination
cliques for an ordering then we see that the complexity of the algorithm is driven
by the largest one.

(Formally, the complexity of the elimination algorithm is exponential in the
smallest achievable value, over orderings, of the largest elimination clique.
However, finding the ordering is an NP-hard problem.)

Examples: Run graph eliminate with f6; 5; 4; 3; 2; 1g; run graph eliminate with
f2; 3; 4; 5; 6; 1g. Record the elimination cliques.

Example: Consider this hub and spoke graph,

(a) (b)
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What happens when we remove the center node first; what happens when we
remove the leaf nodes first?

Tree propagation

The elimination algorithm gives insight and generalizes to any (discrete) graph-
ical model. But it is limited too, especially because it only computes a single
query. We might have multiple inferences to calculate. Further, finding the elim-
ination ordering is a hard problem and has large computational consequences.

We will next discuss the sum product algorithm, an inference algorithm for
trees.

1. Trees are important; many modern graphical models are trees.

2. This is the basis of the junction tree algorithm, a completely general exact
inference method.

3. It is the basis for approximate inference.

Tree graphical models

An undirected graphical model is a tree if there is only one path between any
pair of nodes.

A directed graphical model is a tree if its moralization is an undirected tree, i.e.,
there are no v-structures in the graph.

Here are some examples
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Parameterization. Let’s consider undirected trees. We will use a parameter-
ization on singleton “cliques” and pairs (i.e., maximal cliques),

p.x/ D
1

Z

Y
i2V

 .xi/
Y

.i;j /2E

 .xi ; xj /: (5)

This is parameterized by singleton and pair-wise potential functions.

Now consider directed trees. We’ll see that, for trees, these represent the same
class of graphical models. Define the root node to be xr . The joint in a directed
tree is

p.x/ D p.xr/
Y

.i;j /2E

p.xj j xi/: (6)

Note that we can set potentials equal to these conditional probabilities,

 .xr/ , p.xr/ (7)

 .xi/ , 1 for i ¤ r (8)

 .xi ; xj / , p.xj j xi/ (9)

The directed tree is a special case of the undirected tree. Any algorithm for
undirected trees can be used for the directed tree.

We will only consider undirected trees.

Evidence. Just as we can consider undirected trees without loss of generality,
we also will not need to pay special attention to evidence. Consider the evidence
nodes xE . Define

 E .xi/ ,
 .xi/ı Nxi

.xi/ i 2 E

 .xi/ i 62 E
: (10)

Notice that
p.x j NxE / D

1

ZE

Y
i2V

 E .xi/
Y

.i;j /2E

 .xi ; xj / (11)

This has the exact same form as the unconditional case.

We will not need to consider if the distribution is conditional or unconditional.

Elimination on trees

First we set an elimination ordering of the nodes such that x1 is the last element.
(We will discuss the implications of this ordering later.)
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Recall the elimination algorithm:

1. Choose an ordering I such that the query node is last.
2. Place all potentials on the active list.
3. Eliminate each node i

(a) Take the product of active functions that reference xi . Pop them off
the active list.

(b) Form the intermediate function mi.�/ by summing over xi .
(c) Put the intermediate function on the active list

Now we consider elimination on a tree. Set up the following ordering:

� Treat the query node f as the root.
� Direct all edges to point away from f . (Note this is not a directed GM.)
� Set the ordering such that each node is eliminated only after its children

(e.g., order the nodes by depth first).

Let’s look at a tree and consider the complexity of the elimination algorithm (by
running the graph elimination algorithm).

Working backwards from the leaves, we see that the elimination cliques have
maximum size 2. Thus this is an efficient algorithm. (Consider removing a
child of the root node first to see an inefficient elimination ordering.)

But we will see that elimination on trees leads to a general algorithm for
computing the (conditional) probability of any query node.

Let’s look at the elimination step in more detail. Consider a pair of nodes .i; j /,
where i is closer to the root than j .
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According to our algorithm, j will be eliminated first.

What is the intermediate function that we create when j is eliminated? To
answer this, consider what we know about the potentials that will be on the
active list when j is eliminated:

�  .xj /

�  .xi ; xj /

� no functions including k, a descendant of j
� no functions including `, outside of the subtree of j

Therefore, when xj is eliminated we add an intermediate function that is only a
function of xi . We call this function mj!i.xi/ as a “message” from j to i .

What will this message be? It will involve

� the singleton potential  .xj /
� the pair-wise potential  .xi ; xj /
� and the other messages mk!j .xj / for other neighbors k 2 N .j /ni

The message is

mj!i.xi/ ,
X
xj

 .xj / .xi ; xj /
Y

k2N .j /ni

mk!j .xj /: (12)

Once we have computed messages up the tree, we compute the final quantity
about the query node f ,

p.xf j NxE / /  .xf /
Y

k2N .f /

mk!f .xf / (13)

Note there is no pair-wise potential because f is the root.
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Equation 12 and Equation 13 are the elimination algorithm for an undirected
tree. As the reading points out, inference involves solving a system of equations
where the variables are the messages. The depth-first ordering of the messages
ensures that each one is only a function of the messages already computed.

From elimination on trees to the sum-product algorithm

Let’s do an example. We have a four node tree and our goal is to compute p.x1/.
(Note: there is no evidence.)

We compute the following messages, in this order:

m3!2.x2/ D
X
x3

 .x3/ .x2; x3/ (14)

m4!2.x2/ D
X
x4

 .x4/ .x2; x4/ (15)

m2!1 D
X
x2

 .x2/ .x2; x1/m3!2.x2/m4!2.x2/ (16)

p.x1/ /  .x1/m2!1.x1/ (17)

Now let’s change our query and compute p.x2/. This becomes the root of the
tree and we compute messages m1!2, m3!2, m4!2, and finally p.x2/. Notice
that m4!2 is the same as above.

Let’s change our query again and compute p.x4/. It becomes the root and we
compute messages m1!2, m3!2, m2!4. Again, the messages are reused.

We are reusing computation that we did for other queries. This is the key insight
behind the sum-product algorithm.

The sum-product algorithm is based on Equation 12 and Equation 13 and
a message passing protocol. To quote from the reading, “A node can send
a message to its neighbors when (and only when) it has received messages
from all its other neighbors”

This lets us compute any marginal on the graph. It only requires computing 2
messages per node, and each is a function of just one argument.

Consider a six-node tree.
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We implement sum-product by propagating messages up and then down the
tree. We compute:

� m4!2, m5!2, m6!3
� m2!1, m3!1
� m1!2, m1!3
� m2!4, m2!5, m3!6

Now we can easily compute any marginal.

The max-product algorithm

Let’s consider a different problem, computing the configuration of the random
variables that has highest probability. When we condition on evidence, this is
called the maximum a posteriori problem. It arises in many applied settings.

First, let’s look at the simpler problem of finding the maximal achievable prob-
ability, maxp.x/. Like summation, maximization distributes over addition.
Consider (briefly) our old graphical model,

max
x
p.x/ D

max
x1

p.x1/max
x2

p.x2 j x1/max
x3

p.x3 j x1/max
x4

p.x4 j x2/max
x5

p.x5 j x3/max
x6

p.x6 j x2; x5/:

This looks a lot like computing a marginal. It turns out that all of the deriva-
tions that we’ve made with sums—the elimination algorithm, the sum-product
algorithm—can be made with maximums.
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Thus, we can define the max elimination algorithm on trees just as we defined
the marginal elimination algorithm. (Again, undirected trees subsume directed
trees and trees with evidence.) First set a root node. Then define the messages
in a depth-first ordering,

mmax
j!i.xi/ D max

xj

 .xj / .xi ; xj /
Y

k2N .j /ni

mmax
k!j .xj /: (18)

The last message gives us the maximal probability,

maxp.x/ D max
xr

 .xr/
Y

k2N .r/

mmax
k!r.xr/ (19)

Notice that we do not need to worry about reusing messages here. The maximal
probability is the same regardless of the root node.

(Practical note: When computing maximums of probabilities, underflow is a
problem. The reason is that when we have many random variables we are mul-
tiplying many numbers smaller than one. It’s always easier o work in log space.
Happily, we can consider max logp.x/. We define the max-sum algorithm—
max takes the place of sum, and sum takes the place of product—and use the
log of the potential functions to compute messages.)

We still have not computed the configuration of variables that achieves the max-
imum. Note that each message tells us what the maximum would be depending
on the value of its argument. To get the maximum configuration, we must also
store, again for each value of the argument, which value would achieve it. Thus
we define another function,

ıj!i.xi/ , arg max
xj

 .xj / .xi ; xj /
Y

k2N .j /ni

mmax
k!j .xj /: (20)

To obtain the maximizing configuration, first compute the messages and ı’s go-
ing up the tree. Then consider the value of the root that achieves the maximum
in Equation 19. Propagate that value as the argument to ı down the tree. This
gives the maximizing configuration.

Example: Discrete hidden Markov model

We can now look at a real example, the discrete hidden Markov model. (This is
the first real model we will discuss.)

A Markov model, as we’ve discussed, is a chain of random variables.
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[ markov model ]

This is parameterized by p.ztC1 j zt/, which is the probability of the next item
given the previous item.

A famous example is a language model. The random variables are one of some
number of terms in a vocabulary. The Markov model specifies the probability
of the next term given the previous term. This is called a bigram model. (When
there is no connection it is called a unigram model; when there are connections
beyond one step back it is called an n-gram model.) Note the parameterization:
We must specify a V � V matrix of probabilities. For each term there is a
distribution over the next term.

The hidden Markov model is a widely used model that builds on the Markov
models assumptions. The idea is that there is a Markov model of hidden ran-
dom variables—variables that we cannot observe—each of which governs an
observation. The hidden variables are called the hidden states.

[ hidden markov model from 1 to T, with t-1, t, t+1 in the middle]

In the HMM, the observations are a sequence of items. But what conditional
independence assumptions are we making about them? What marginal assump-
tions are we making? A: They are conditionally independent given the hidden
state; they are marginally dependent. You can see this with the Bayes ball algo-
rithm.

What are the parameters to this model? They are the transition probabilities
p.ztC1 j zt/ and the observation probabilities p.xt j zt/. (There is also an ini-
tial state probability p.z1/.) Though we have been imagining that each random
variable in a graphical model can have its own probability table, typically these
values are shared across t . Further, for this discussion we will take the proba-
bilities as fixed and given. We will discuss fitting them in a later lecture.

The inference problem is to compute the marginal of the hidden state or the
maximizing sequence of hidden states given a set of observations. Have you
seen this before? What are some applications that you know about?

HMMs are everywhere. Here are some examples (from Murphy’s book):

� Speech recognition. The hidden states are words, governed by a bigram
distribution. The observations are features of the audio signal (let’s sup-
pose they are discrete), governed by an observation model.
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� Part of speech tagging. The hidden states are parts of speech, governed
by a distribution of the next POS given the previous one. The observations
are words themselves. (Question: Suppose there are 10,000 vocabulary
words and 5 parts of speech. How does this compare, in terms of the
number of probabilities to specify, to the bigram model.)

� Gene finding. The observations are a sequence of nucleotides (A,G,C,T)
and the hidden states code whether we are in a gene-encoding region of
the genome or not. The observation probabilities and transition matrix
come from biological knowledge and data.

In all these cases we are interested in computing the marginal probability of a
hidden variable (e.g., “What word did she say at time step 4?”, “Is the nucleotide
at position 600 part of a gene-coding region?”) or the maximizing sequence
(“What sentence did he most likely just utter?”). These are inference problems,
just as we have been discussing.

Notice that the HMM is a tree. We can turn it into an undirected tree with the
following potentials:

 .zt�1; zt/ , p.zt j zt�1/

 .zt ; xt/ , p.xt j zt/

 .z1/ , p.z1/

 .zt/ , 1; t > 1

 .xt/ , ı Nxt
.xt/

Now consider the sum-product algorithm. Our goal is to compute any marginal
probability of a hidden state. There are a few kinds of messages. Let’s start
(arbitrarily) at the first time step,

mx1!z1
.z1/ D

X
x1

 .x1/ .x1; z1/ (21)

D

X
z1

ı Nx1
.x1/p.x1 j z1/ (22)

In general,

mxt!zt
.zt/ D

X
xt

 .xt/ .xt ; zt/ (23)

D

X
zt

ı Nxt
.xt/p.xt j zt/ (24)
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These messages all select the appropriate observation probability.

Now we can focus on the messages between the hidden states. Beginning with
the first time step,

mz1!z2
.z2/ D

X
z1

 .z1/ .z1; z2/mx1!z1
.z1/ (25)

D

X
z1

p.z1/p.z2 j z1/p. Nx1 j z1/ (26)

This lets us move on to the next time step. In general, we can go forward from
t � 1 to t with this message,

mzt�1!zt
.zt/ D

X
zt�1

 .zt/ .zt�1; zt/mxt�1!zt�1
.zt�1/mzt�2!zt�1

.zt�1/

D

X
zt�1

p.zt j zt�1/p. Nxt�1 j zt�1/mzt�2!zt�1
.zt�1/

We go backward from t C 1 to t with this message,

mztC1!zt
.zt/ D

X
ztC1

 .zt/ .zt ; ztC1/mxtC1!ztC1
.ztC1/mztC2!ztC1

.ztC1/

D

X
ztC1

p.ztC1 j zt/p. NxtC1 j ztC1/mztC2!ztC1
.ztC1/

This lets us compute any marginal,

p.zt/ / mzt�1!zt
.zt/mztC1!zt

.zt/ (27)

This is called the forward-backward algorithm or the alpha-beta algorithm. In
this case, these messages have probabilistic interpretations. (Exercise: figure
them out.) But what is important is that it’s an instance of sum-product. While
it was derived on its own, we see that it is a special case of a more general
algorithm.

Further, especially in speech recognition, we are often interested in the max-
imizing sequence of hidden states. (E.g., in speech recognition these are the
words that maximize the probability of the full utterance.) The max-product
algorithm (or max-sum on the log probabilities) gives us this. In the HMM lit-
erature, it is known as the Viterbi algorithm. Again, we see that it is a special
case of a more general algorithm.
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