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1. INTRODUCTION

Reverse engineering executable code has received a lot of attention recently in the re-
search community. The demand for advanced executable-level tools is primarily fueled
by a rapid rise in zero-day attacks on popular proprietary applications that are avail-
able only in the form of executables [FireEye 2015]. Robust reverse-engineering tools
are required to completely analyze the impact of the latest cyberattacks on such ap-
plications, to define efficient counter strategies and to certify their robustness against
such attacks.

Analyzing vulnerabilities directly for binary executables allows rapid response to
cyberattacks. Modern threats such as APT3 attacks [FireEye 2015] compromise hosts
in a fraction of minutes. Techniques that rely on source code prove to be too slow in
responding to such attacks because most users do not have easy access to source code.
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Vulnerability analysis of binary code are likely to enables users to swiftly develop de-
fensive solutions against modern attacks.

Binary executable analysis also enables users to more accurately gauge the critical-
ity of each vulnerability. A binary executable code represents the actual code that runs
on a computer. A direct analysis of such a code can enable users to certify whether a
vulnerability allows attackers to remotely hijack a system or results in a less severe
situation of crashing a program. This aids in prioritizing the defenses against huge
number of cyberattacks. A similar analysis of source-code might not enable users to
certify the severity of attacks.

Reverse engineering tools are also essential for continuous software maintenance.
Various organizations such as US Department of Defense [Darpa 2012] have critical
applications that have been developed for older systems and need to be ported to future
versions in light of exposed vulnerabilities and in order to effectively exploit features
present on modern multicore and parallel systems. In many cases, the source code
is no longer accessible thereby engendering a need for advanced tools which enable
identification and extraction of procedural components for reuse in new applications.

The applicability of a reverse-engineering framework in such scenarios entails four
desired features: 1) The recovered intermediate representation (IR) should be workable
such that it can be employed to recover an accurate working source code to be analyzed
by reverse-engineers and recompiled to obtain a working rewritten binary. A workable
representation ensures that the program can be tested and modified using standard
debugging techniques. 2) Because executables mainly contain memory locations in-
stead of explicit program variables, the IR should have a precise memory abstraction to
effectively reason about memory operations by associating each operation with specific
memory locations. 3) The framework must support advanced analyses mechanisms on
the recovered IR, enabling the same kind of analysis that can be done on the original
source code. 4) The analysis implemented on recovered IR must be scalable to large
real-world programs. Unfortunately, presence of executable-specific features such as
indirect control transfer instructions (CTI) and lack of any symbolic or debugging in-
formation in stripped binary executables make it extremely challenging to conform to
such requirements.

This paper makes three main contributions to obtain a reverse-engineering frame-
work that simultaneously meets the above mentioned features. First, we present
MemRecovery, a hybrid static-dynamic mechanism for recovering a precise stack-
memory model and workable IR. Second, we employ this memory model and present
a novel symbolic analysis for executables, ExecSVA, which enables analysis similar to
source code. Next, we present DemandSym, a demand-driven mechanism to meet the
scalability requirements of executable analyses.
MemRecovery aims to solve the challenges arising due to executable-specific artifacts

such as indirect CTIs in recovering a precise stack-memory abstraction while main-
taining the workability of the IR. A stack-memory abstraction involves associating
each stack-memory reference to a set of variables on the memory stack. In order to re-
cover such an abstraction, we need to determine the value of the stack pointer at each
program point in a procedure relative to its value at the entry point. This is usually ac-
complished by analyzing each stack modification instruction in a procedure. Programs
typically contain several different calling conventions in which the target procedure
may modify the stack to add values because of returns, remove values because of stack
cleanup, or keep the stack unmodified. Typically in source code, the programmer must
specify the prototype of the target procedure for each indirect call. Hence, a compiler
knows the calling convention of the target and its impact on the stack. Unfortunately
executable code without any metadata lacks prototypes for procedures. The executable
analyzer cannot determine the amount of stack modification due to uncertainty about
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the calling convention, complicating the task of determining a stack-memory abstrac-
tion in the caller procedure after an indirect call.
MemRecovery formulates a set of constraints using control-flow constructs in a pro-

cedure to compute the value of stack modification at each call-site inside a procedure.
The constraints are solvable in most scenarios. When the constraints cannot be solved,
it embeds run-time checks to maintain the workability of IR.

In our second contribution, we employ this memory model and present a novel sym-
bolic analysis for executables, ExecSVA, which enables analyses similar to source code.
Symbolic analysis [Haghighat and Polychronopoulos 1996; Bodı́k and Anik 1998] is
employed for a variety of applications such as redundancy removal, data-dependence
analysis and security analysis. Symbolic analysis represents the values of program
variables as symbolic expressions in terms of previously defined symbols. The example
in Fig 2(a) demonstrates the symbolic abstraction1 resulting from such an analysis.
ExecSVA eliminates the limitations of existing symbolic analysis methods for exe-

cutables. Existing symbolic frameworks for executables ignore memory models while
recovering a symbolic abstraction [Debray et al. 1998; Amme et al. 2000; Cifuentes
and Emmerik 2000]. Existing source-level symbolic analysis methods [Haghighat and
Polychronopoulos 1996; Bodı́k and Anik 1998] are inadequate for executables because
these methods only focus on instructions involving program variables. ExecSVA com-
putes symbolic expressions for both variables and memory locations, thereby enabling
efficient analysis for executables.

Although ExecSVA effectively addresses the concern of memory locations in executa-
bles, it faces scalability issues for large programs. It computes a symbolic abstraction
over the complete program. As observed in several source-level frameworks, an ex-
haustive analysis of memory accesses might constrain the scalability of the underly-
ing system [Heintze and Tardieu 2001; Tripp et al. 2009; Shankar et al. 2001]. Hence,
these systems balance precision and scalability in the presence of pointer operations
by employing innovative frameworks such as thin slicing [Sridharan et al. 2007]. In-
stead of considering all the statements that affect a point of interest, such frameworks
only capture the program statements that directly compute the required value.

These existing methods for enhancing scalability rely on several pieces of source-
code semantic information and syntactic information that is not available in executa-
bles. For example, Sridharan et al. [Sridharan et al. 2007] determine a slice by only
focusing on statements updating the corresponding fields of the same data structure.
The lack of such structural information in executables limits the application of this
method to executables.

In our third contribution, we present DemandSym, a demand-driven mechanism, to
further enhance the scalability of ExecSVA for executables. Instead of doing an exhaus-
tive analysis over the complete program, DemandSym first computes the set of program
objects critical for enforcing a particular client analysis (for example, information-flow
violations) and henceforth computes symbolic abstraction for only these objects.

Our techniques are highly effective in meeting the above mentioned goals of reverse-
engineering frameworks. MemRecovery improves the precision of memory models by
25% in programs containing a significant number of indirect CTIs. The criterion for
significant number of indirect CTIs is presented in Section 8. ExecSVA without the
demand-driven enhancement is somewhat scalable and analyzes large programs such
as gcc (250,000 lines of code) in around 11 minutes. DemandSym achieves a 10x improve-

1In literature, symbolic abstraction has another usage. As presented by Reps et al. [Reps et al. 2004], sym-
bolic abstraction is described as the best value of a particular formula in a given abstract domain that
over-approximates its meaning. In current paper, symbolic abstraction refers to the abstraction obtained by
ExecSVA.
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ment in the scalability of ExecSVA and analyzes large programs such as gcc within a
minute. We extend our analysis for several applications such as security analysis and
program parallelization. We demonstrate that client applications become less effective
when memory tracking is not enabled. Our extensions for information-flow analysis
uncover five previously undiscovered vulnerabilities in popular file transfer and inter-
net relay chat programs.

2. MOTIVATION

In this section, we demonstrate limitations of existing binary executable frameworks
in obtaining a workable IR with a precise stack-memory model, the relative impor-
tance of considering a memory model for symbolic abstraction, and the efficacy of our
demand-driven framework in enhancing the scalability of symbolic abstraction com-
putation. We present several examples to demonstrate the limitations of existing bi-
nary analysis frameworks and establish a requirement of novel techniques in order
to achieve the goals mentioned in Section 1. In several scenarios, we also present how
existing source-level techniques would perform on executables if they are applied to ex-
ecutables without any modification. These source-code techniques will work perfectly
when they are applied to source-code. This discussion is presented only to motivate the
fact that source-level techniques need to be adapted properly before applying them to
binary executables. The following sections will describe in detail our method of adapt-
ing such techniques to binary executable code.

Precise and correct stack-memory abstraction: A source program has an ab-
stract stack representation where the local variables are assumed to be present on the
stack but their precise layout is not specified. In contrast, an executable has a fixed
physical stack layout.

To recreate an intermediate representation (IR), the physical stack must be decon-
structed to individual abstract frames per procedure. Since each such frame contains
variables from the source code, a memory model is defined as precise if each frame can
be divided into abstract locations analogous to the original variables.

Previous methods [Balakrishnan and Reps 2004] have approached this problem in
two steps. First, all the instructions in a procedure that can modify the stack pointer
are analyzed to compute the maximum size to which the stack can grow in a single
invocation of the procedure. Next, each such frame is further abstracted through a set
of a-locs. An a-loc is characterized by two attributes: its relative offset in the region
with respect to other a-locs, and its size. The a-loc representation requires the value
of the stack pointer to be determined at each program point in a procedure relative to
its value at the entry point.

As highlighted in Section 1, this is usually accomplished by tracking each update to
the stack pointer. However, several artifacts might result in a non-deterministic stack
modification, invalidating the inherent assumption in previous frameworks [Balakr-
ishnan and Reps 2004]. We characterize the impact of a control transfer instruction
(CTI) I on the value of the stack pointer using the following definition:

StackDiff(I) = Stack Pointer after I − Stack Pointer before I.

The term StackDiff can be applied to either a CTI or the procedure called by the
CTI, and represents the stack modification amount in either case. The StackDiff of a
CTI is positive if the called procedure cleans up its arguments, or zero if it does not. In
theory, it can be negative if the procedure leaves some local allocations on the stack, al-
though we have not observed this in compiled code. Previous approaches calculate the
value of StackDiff by symbolically evaluating all the stack modification instructions
in a procedure [Balakrishnan and Reps 2004]. As per these methods, StackDiff at an
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 main:         
1    sub 24, $esp              //Local Allocation 

2    mov $10, 8(%esp)      //Access (%esp+8) 
3    call *%eax                // An Indirect call 
4    mov $20, 12(%esp)   //Access   
                //(%esp+12+UNKNOWN) 
        …… 

Fig. 1: An example demonstrating the imprecision in the presence of indirect calls; sec-
ond operand in an instruction is the destination.

indirect CTI is deterministic if all possible targets have the same value of StackDiff.
Thereafter, the stack pointer in the caller procedure is adjusted by StackDiff amount.
This adjustment is imperative for maintaining the correctness of data-flow.

However, StackDiff cannot be determined statically in all scenarios. For example,
the possible targets of an indirect CTI might have different StackDiff, or an external
function with an unknown prototype might have a statically unknown StackDiff. In
such cases, existing frameworks either result in an imprecise memory abstraction or
fail to maintain the correctness. CodeSurfer/X86 just issues an error report if it cannot
determine that the change is a constant [Balakrishnan and Reps 2004]. IDAPro, a
widely-used binary analysis tool, applies a constraint-based mechanism to compute the
values of StackDiff. However, when the underlying method fails to determine a unique
solution, it compromises the correctness of the output IR by accepting one feasible
solution (which could be wrong) out of a potentially very large number of possible
outcomes [HexBlog 2006].

Figure 1 illustrates an example of a scenario where StackDiff cannot be determined
statically. In Fig. 1, a local region of size 24 is allocated in a procedure at Line 1.
Consequently, the memory access at Line 2 results in the discovery of an a-loc at offset
16. Suppose the possible targets of the indirect CTI at line 3 have different StackDiff
values. Consequently, esp after Line 3 has an unknown offset relative to its value
at the entry point of the procedure. Hence, no a-loc can be identified at Line 4. On
the other hand, if existing tools such as IDAPro choose a wrong value of StackDiff
from the set of possible solutions, it results in an incorrect data-flow at Line 4. For
example, if the actual value is 0 while existing tools assign a value of -4, then the
output representation will include a wrong data flow edge from Line 2 to Line 4.

Our hybrid mechanism, MemRecovery, achieves precision in the identification of stack
a-locs as well as the workability of the recovered IR. Our static mechanism enables
memory abstraction through a set of a-locs while our dynamic mechanism guarantees
correctness of the IR when StackDiff cannot be computed.

Symbolic abstraction: Executables extensively employ memory locations, hence,
not analyzing them for symbolic analysis results in imprecise symbolic relations. Fig-
ure 2(a) shows a source code example and the relations between various computations
determined through symbolic analysis. Figure 2(b) shows a sample code that might
arise when the example in Fig. 2(a) is converted to an executable. Here, variables a, b,
c and d are allocated to memory locations. Fig. 2(c) shows symbolic relations obtained
by applying previous symbolic analysis techniques for executables [Debray et al. 1998]
on the code in Figure 2(b). Since these techniques do not propagate symbolic expressions
across memory locations, a new symbol is defined at every memory reference instruction.
As evident, the resulting symbolic relations are conservative and yield imprecise pro-
gram information.

Similar imprecise results are obtained if existing symbolic analyses for source
code [Haghighat and Polychronopoulos 1996] are applied directly to the above code
without any modification. Symbolic analysis techniques for source-code also propagate
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int main(){ 
 int a,b,c,d; 
  
scanf(“%d”,&a); 
    if(a>0) 
      return; 
   b=a+2; 
   …… 
   c=a+12; 
   d=b+10; 
  } 
  
Symbolic 
Relations: 
b=a+2 
c=a+12 
d=a+12 

Allocations: a: -4(%ebp)    b:-8(%ebp)                         No              With        
                 c: -12(%ebp)   d:-16(%ebp)                       Memory      Memory 
                                                                                abstraction   abstraction 
main:         
1     mov $esp,$ebp 
2     sub 24,$esp                      //Local Allocation 
3     lea -4(%ebp),4(%esp)       //mov &a for arg 
4     mov ptr,(%esp)                  //mov “%d” for arg 
5     call scanf     
6     mov    -4(%ebp), %eax     //Load a                          x1           x1 
7     jg L1:                               //Return if a>0                                             
8     add    $2, %eax              //Compute a+2               x1+2        x1+2 
9     mov    %eax, -8(%ebp)     //Store b                         
      …  
10     mov    -4(%ebp), %eax      //Load a                       x2            x1 
11    add    $12, %eax              //Compute a+12         x2+12      x1+12 
12     mov    %eax, -12(%ebp)   //Store c 
 
13     mov    -8(%ebp), %eax      //Load b                       x3            x1+2 
14     add    $10, %eax              //Compute b+10         x3+10      x1+12 
15    mov    %eax, -16(%ebp)     //Store d 
L1: 
      ret 

 (a) (b) (c) (d) 

Fig. 2: (a) A sample C code (b) Corresponding assembly code; the second operand in an
instruction is the destination (c) Symbolic relations on the assembly code with no mem-
ory abstraction (d) Symbolic relations on the assembly code with memory abstraction.

symbolic relations only across variables because such techniques are typically applied
before register allocation. Hence, these techniques need to be adapted before applying
them to executables.

We observe that representing a symbolic abstraction for memory locations can elim-
inate this limitation. Figure 2(d) shows the symbolic relations when the abstraction is
maintained for memory locations as well. Suppose the variable a (-4(%ebp)) has value
x1 in the environment of symbolic abstraction. Hence, the representation of symbolic
abstraction for memory locations implies that the variable %eax at Line 6 and Line 10
is assigned value x1. Similarly, the memory location -8(%ebp) at Line 9 and the vari-
able %eax at Line 13 are assigned value x1+2. Propagation of these values results in
symbolic relations that are similar to those obtained for the original source code.

Demand-driven computation: ExecSVA framework computes symbolic abstraction
for all the program objects irrespective of the target client analysis for which it is em-
ployed. In several scenarios, such computation can be made more scalable by adapting
it to a client analysis. We demonstrate this potential for scalability using information-
flow violations as the target analysis.

Information flow violations collectively comprise one of the most critical security
vulnerabilities [Dalton et al. 2007]. Such violations subject the programs to severe se-
curity attacks, such as format-string attacks [Shankar et al. 2001], directory-traversal
attacks [Dalton et al. 2007] and SQL-injection [Tripp et al. 2009].

Various techniques, under the broad umbrella of taint propagation, have been pro-
posed to detect such information-flow violations. The basic idea is to taint the inputs
coming from an untrusted source, propagate the taint through the data and control
flow of the program and check if the taint ever reaches a sensitive sink without flowing
through a sanitization routine.

The symbolic abstraction computed through ExecSVA effectively captures the flow
of information between two locations in an executable while countering executable-
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(a) Pseudo source code snippet   (b) Pseudo assembly code snippet 

 

typedef struct temp{ 
int x;  
int y; 
}temp; 

 
1. int main(){ 
2. temp* z1, *z2; 
3. temp* x1 = 

malloc(sizeof(temp)); 
4. z1 = x1; 
5. z2= x1; 
6.  
7. (*z1). x = SOURCE(); 
8.  
9. if(z1==z2) 
10. { 
11.       
12.       SINK((*z2).x); 
13. } 
14. } 

 
 
 

 
1. main: 
2. subl $32, %esp 
3. %eax = call malloc 
4. store  %eax, 28(%esp) 
5. store  %eax, 24(%esp) 
6.  
7. %ebx = load 28(%esp) 
8. %ecx = call SOURCE() 
9. store %ecx, (%ebx) 
10.  
11. cmpl  24(%esp), %ebx 
12. jne L2 
13.  
14. %ecx = load 24(%esp) 
15. %edx = load (%ecx) 
16. call SINK(%edx) 
17. L2:   

Fig. 3: A small program to illustrate di-
rect data dependent statements, shown
as underlined.
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Fig. 4: Organization of the system.

specific challenges such as lack of variables and procedure prototypes. ExecSVA, there-
fore, provides an effective platform for implementing taint propagation in executables.

As mentioned in Section 1, several source-code frameworks employ mechanisms
such as thin slicing to enhance the scalability of taint propagation. As we described
above, such source-code techniques cannot be directly applied to executables. Fig-
ure 3(a) shows a simple source-code example containing a potentially unsafe flow from
an untrusted source to a sensitive sink. Figure 3(b) shows an assembly code corre-
sponding to the source-code in Fig. 3(a). The program statements which are most rele-
vant for determining the unsafe flow of information to the sensitive sink are underlined
in Fig. 3(a), which constitute the thin slice for this sink. The thin slice is computed by
detecting that the same field of a data structure is accessed at Line 7 and Line 12 [Srid-
haran et al. 2007]. As evident, the field information is not present in the assembly code
due to loss of syntactic information during the compilation process. Consequently, a di-
rect application of above thin slicing method without any modification will not capture
the statement at Line 9 in Fig. 3(b).

We formulate a set of rules which enable us to compute the set of direct data depen-
dent statements in executables, similar to existing thin slicing mechanisms in source-
code. In Fig. 3(b), the underlined program statements are the set of statements which
are considered for computing the symbolic abstraction at Line 16. This obviates the
need of computing symbolic abstraction for remaining data-objects in this program.

3. OVERVIEW OF OUR FRAMEWORK

Figure 4 presents an overview of our binary analysis framework. Our framework is
built over the existing SecondWrite framework [Anand et al. 2013a]. SecondWrite
translates the input x86 binary code to a workable program represented in the in-
termediate representation (IR) of the LLVM Compiler [Lattner and Adve 2004]. Sec-
ondWrite obtains an IR that contains features such as procedures, procedure argu-
ments and return values. This conversion back to a compiler IR is not a necessity for
the work we present; any binary system including IDAPro [IDAPro disassembler ] and
Code-surfer [Balakrishnan and Reps 2004] can use our analysis. LLVM IR recovered
by SecondWrite is passed through our analysis system.
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The binary reader module in SecondWrite implements several mechanisms [Smith-
son et al. 2013] to address code discovery problems in executables and to handle indi-
rect control transfers. Here, we briefly summarize these mechanisms.

A key challenge in executable frameworks is discovering which portions of the code
section are definitely code. SecondWrite [Smithson et al. 2013] implements speculative
disassembly, coupled with binary characterization, to efficiently address this problem.
SecondWrite speculatively disassembles the unknown portions of the code segments
as if they are code. However, it also retains the unchanged code segments in the IR
to guarantee the correctness of data references in case the disassembled region was
actually data.

SecondWrite employs binary characterization to limit such unknown portions of
code. It is based on an assumption that an indirect control transfer instruction (CTI)
requires an absolute address operand, and that these address operands should appear
within the code and/or data segments. This assumption holds true in compiled code
unless it is generated to be position-independent. The code and data segments are
scanned for values that lie within the range of the code segment. Under the assump-
tions of compiled code without any hand-coded assembly, the resulting values contain
all of the indirect CTI targets. The detailed set of assumptions behind this model are
discussed in Section 7.

Indirect CTIs arising due to switch statements in source-code also adhere to the
above restriction. Compilers typically use jump tables to implement dense switch
statements. The entry point address of each case is stored in a table and the input
value is used as an index into the table of absolute addresses. Although the address
used to access the table is calculated at runtime, it does not present a problem, as this
is a data reference. Importantly, the indirect control-flow target addresses are all stat-
ically calculated. Smithson et al [Smithson et al. 2013] provide detailed description of
handling other kinds of control transfers as well.

The indirect CTIs are handled by appropriately translating the original target to the
corresponding location in IR through a call translator procedure. The call translator
implements a mechanism similar to a switch statement to translate the procedure.
Each recognized procedure (through speculative disassembly) is initially considered a
possible target of the translator, which is pruned further using alias analysis.

4. RECOVERING PRECISE STACK-MEMORY MODEL

In this section, we discuss MemRecovery, our hybrid static-dynamic solution for obtain-
ing a workable representation with a precise stack-memory model. We first present
a symbolic constraint mechanism to determine the value of StackDiff for each CTI
where it is unknown. Next, we discuss our solution for maintaining the workability of
recovered IR even when StackDiff at some CTIs cannot be solved.

In case of a direct CTI, StackDiff of the CTI is equivalent to StackDiff of the called
procedure because each direct CTI is associated with a unique determinable procedure.
There is no such direct association in case of indirect CTI because an indirect CTI
might call several different procedures at runtime.

Our analysis employs StackDiff values of procedures for computing StackDiff
for indirect CTIs. The prototypes of well-known library functions, similar to the
IDAPro’s FLIRT database [IDAPro disassembler ], are employed for determining their
StackDiff value. Library functions whose prototypes cannot be found are handled cor-
rectly using our method of determining unknown StackDiff values. We assume that
existing methods [Balakrishnan and Reps 2004] are able to determine the value of
StackDiff for each procedure, which holds true under the assumptions of standard
compilation model [Balakrishnan and Reps 2004]. A standard compilation model as-
sumes that each procedure may allocate an optional stack frame in only one direction
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and each variable resides at a fixed offset in its corresponding region. This assumption
is explained in more detail in Section 7.

4.1. Static Computation

A CTI I can result in an unknown StackDiff in three cases, which we collectively refer
to as Unknown CTIs.
Case 1: I is a direct CTI to an external procedure with unknown prototype.
Case 2: I is an indirect CTI with unresolved targets.
Case 3: I is an indirect CTI and its targets have different StackDiff values.

In such scenarios, our mechanism employs several boundary conditions imposed by
the control-flow inside the corresponding caller procedure to determine StackDiff. The
proposed constraint formulation does not require us to determine the precise set of
targets of an indirect CTI, which itself is an undecidable problem.

We define symbolic values XI for representing StackDiff of CTI I and SI for rep-
resenting the local stack height at program point before I. Every stack modification
instruction in a procedure is analyzed to derive an expression of SI in terms of the XIs.
The resulting expressions are transformed into a linear system of equations that can
be solved to calculate XIs.

Figure 5 presents the rules for generating symbolic constraints and equations in a
particular procedure P. It presents rules for analyzing each stack modification instruc-
tion, a set of initialization and boundary conditions for solving the symbolic equations
and a set of conditions which invalidate our symbolic constraints for the current pro-
cedure.

In an x86 program, several instructions can modify the value of stack pointer. The lo-
cal frame in a procedure is usually allocated by subtracting a constant value from esp.
Similarly, the local frame is deallocated by adding a constant amount to esp. Push and
pop instructions implicitly modify the stack pointer by the size of amount pushed onto
the stack. The rules in Fig. 5 incorporate the deterministic modification at each CTI.
An indeterminate modification is modeled symbolically as XI. The dataflow rules in
Fig. 5 obtain an expression for SI considering each such stack modification instruction.

In order to solve the above symbolic equations, Fig. 5 generates two constraints
based on the control-flow in procedure P. These conditions hold true for every exe-
cutable following the standard compilation model [Balakrishnan and Reps 2004]:

→∀Pred ∈ PredBB, SBeginBB = SEndPred: This condition implies that at a merge point in the
control-flow of a procedure, the stack height at the end of every predecessor basic
block must be equal. Otherwise, any subsequent stack access might access different
stack locations depending on the path taken at run time, resulting in an indetermi-
nate behavior.

→ SI = 0 ∀ ret ∈ P: In an x86 program, a return instruction loads an address from
the location pointed by esp and sets the program counter to the loaded value. The
return address is pushed to the stack by the caller procedure and a compiled pro-
gram (without any hand-coded assembly) usually accesses the return address loca-
tion only through a return instruction. It does not access or modify this location di-
rectly through any other instruction. Hence, esp can refer to the return address only
if stack height SI is zero. Thereafter the return instruction may optionally specify an
operand to clean up incoming arguments, so StackDiff could be positive or zero.

Figure 5 also formulates the following conditions which invalidate the assumptions
behind our boundary conditions. In such situations, we discontinue our static mecha-
nism and rely on our dynamic mechanism to maintain correctness.
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Unknown Symbolic Values : XI , where XI = StackDiff of procedure call I
Initial/Helper Variables :

Targ(T): Set of procedures targeted by call target operand T
StackDiff(f): StackDiff of procedure f; Y SET(F) = {StackDiff(f) : f ∈ F}
Begin(P) = Entry point of procedure P; Pred(BB) = Predecessors of basic block BB;
Begin(BB),End(BB) = Entry point,terminator of basic block BB
S’I = Stack height after instruction I; SBB = Stack height at beginning of basic block BB;
Prev(I) = the previous instruction to I (I 6= Begin(BB))
SI = if (I 6= Begin(BB)) then SPrev(I) else SBB
R : A register, Size(R): Size of register R, N: A constant
Initial Conditions : SBegin(P) = 0
Data flow rules :

For every instruction I:
I = push R⇒ S’I = SI + size(R)
I = pop R⇒ S’I = SI - size(R)
I = add esp, N⇒ S’I = SI - N
I = sub esp, N⇒ S’I = SI + N
I = jmp L⇒ S’Begin(L) = SI
I = call Y⇒

if (Y SET(Targ(Y)) contains a single constant C)
S’I = SI + C

else
S’I = SI + XI

default (if not an invalidation condition)⇒ S’I = SI

Special Rules:
I = mov esp, ebp⇒ S’I = 0
I = leave⇒ S’I = 0

Boundary Conditions :

1. ∀ BB: ∀ P ∈ Pred(BB), SBegin(BB) = SEnd(P)
2. I = ret : Constraint SI = 0
Invalidation Conditions :
1. I = esp← ... /* Any assignment except in data-flow rules */
2. I accesses return address

Fig. 5: Data flow rules used to determine stack modifications in a procedure P.

→ I = esp ← ... : Any assignment to esp other than those in data-flow rules implies a
local frame allocation of variable size. In such a scenario, the boundary conditions
fail to obtain a solution for XI. However, this condition arises in extremely rare cir-
cumstances of variable size arrays on stack frame. We make two explicit exceptions
to the above constraint to handle common compilation procedure. Several compilers
such as gcc employ a frame pointer to save off the stack pointer at the beginning of a
procedure and restore the stack by assigning the saved value back to esp. Similarly,
several code segments contain x86 idioms such as leave instruction which implic-
itly assign a previously stored value to esp. This idiom is generally used in restoring
the value of the stack pointer that was saved on the stack at the entry on the pro-
gram. Even though these two scenarios violate this constraint, we model these two
instructions as setting SI to zero.

→ I accesses return address: In a usual compiled code, StackDiff is either zero or posi-
tive. In theory, procedures could have a negative StackDiff, implying that the proce-
dure leaves some local allocations on the stack. In such scenarios, esp would not point
to the return address at the point of return. Hence, a return must be implemented by
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 main:         
1  ESP = ALLOCA 24                    //Local Allocation 

2  8(ESP) = 10                             //Access (%esp+8) 
3  stackDiff = call CallTrans(EAX)  // An Indirect call 

4  ESP = ESP + stackDiff              //StackDiff Adjustment 

5  12(ESP) = 20                          //Access   
                            //(ESP+12+UNKNOWN) 
        …… 

Fig. 6: An example demonstrating the insertion of runtime check for computing stackD-
iff in presence of an indirect control transfer instruction, second operand in the instruc-
tion is the destination.

explicitly accessing the return address from the middle of the stack. This invalidates
the assumption behind our boundary condition 2 and we resort to run-time checks.

The resulting symbolic equations are solved by employing a custom linear solver
that categorizes the equations into disjoint groups based on the variables used in ev-
ery equation. A group is solved only if the number of equations is equal to the number
of unknowns. We keep propagating calculated values to other groups until no more
calculated values are present. Once we obtain a solution of XI for each I in a proce-
dure, we can obtain a safe abstraction of memory regions into a set of a-locs using the
methods in [Balakrishnan and Reps 2004].

Wazeer et al [ElWazeer et al. 2013b] present symbolic equations based framework
to obtain a solution for an orthogonal problem of recovering floating point variables
from floating point stack in x86 architecture. x86 machine code maintains floating
point variables in the form of a stack. These two methods might appear similar since
they employ the same underlying tool of symbolic equations but they have a number
of fundamental differences. For instance, these two methods make inferences about
usage of stack, but the above method determines the value of stack pointer at each
program point relative to its value at entry point of procedure while Wazeer et al.
present a method to determinate the top of floating point stack at every program point.
These two methods differ significantly in the kind of invalidation conditions that can
be applied. Wazeer et al. [ElWazeer et al. 2013b] argue that assuming a fixed solution is
sufficient to guarantee the accuracy in floating point stack. Hence, if a solution cannot
be determined through linear equations, Wazeer et al. assume one fixed solution out of
many possible solutions. On the other hand, we provide a runtime solution to handle
memory stack, as discussed next, to represent the scenarios accurately when solution
cannot be determined. In addition, Wazeer et al. only analyze instructions that modify
floating point stack (such as floating point push and pop) while the above method
present analysis for all the instructions that modify memory stack (such as push, pop,
sub, add etc).

4.2. Dynamic Mechanism

As mentioned above, the above method does not guarantee a solution for all the scenar-
ios. For example, it fails to determine the value of StackDiff in basic blocks containing
multiple CTIs each with an unknown XI value. Below, we discuss our dynamic mecha-
nism to correctly represent all the three cases of Unknown CTIs as part of a workable
IR.

An explicit representation of StackDiff is imperative to maintain the correctness
of the IR. Recall from Section 2, the physical stack is deconstructed into individual
abstract frames per procedure in our IR. Hence, all the modifications to stack must be
explicitly represented in the procedure body, otherwise it will lead to incorrect dataflow
representation in IR. This includes the modification to stack as a result of CTIs.
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Sym := Sym+T|T 

T :=T*F|F 
F := l | n 
l := [IR Variables] 
n := [Int]       

Fig. 7: Grammar for symbolic expressions. + and * are standard arithmetic operators,
Int is the set of all integers, IR Variables are symbols in the obtained intermediate rep-
resentation. IR Variables and integers constitute symbolic alphabets in this grammar.

Our dynamic mechanism statically inserts checks in the IR that determine
StackDiff value at runtime when IR will be employed for rewriting and debugging.
The correct representation of such scenarios does not directly aid static analysis. An
unknown modification to stack results in conservative treatment of subsequent stack
access instructions in the procedure. However, such a representation fulfills our goal
of obtaining a workable IR.
Case 1: Since this case represents control transfer to an external procedure, the body
of the called procedure cannot be modified. Such scenarios are represented in IR
through a trampoline for calling the external procedure. The trampoline computes the
shift in stack pointer value before and after the call using inline assembly instructions.
Case 2 and Case 3: Recall from Section 3, an indirect CTI is translated to the corre-
sponding location in IR using a switch statement inside a call translator procedure. In
such scenarios, StackDiff is declared as an explicit return variable in the call trans-
lator procedure. The definition of the call translator is modified to return the value of
StackDiff for the called procedure in each switch statement. The corresponding call-
site is updated by adjusting the stack pointer value with returned value of StackDiff.
Figure 6 shows an example where callsite of an indirect control transfer in Fig. 1 is up-
dated with StackDiff value. Line 4 in Fig. 6 shows the modification of the local stack
pointer with StackDiff value returned by the call translator procedure. As evident,
such a modification does not enhance the static analysis of subsequent stack accesses
(Line 5) but ensures the correctness of resulting IR.

5. SYMBOLIC VALUE ANALYSIS

Our technique for symbolic analysis for executables, ExecSVA, is a flow-sensitive, con-
text insensitive analysis which computes an approximation of a set of symbolic values
that each data object (variables and a-locs) can hold at each program point. ExecSVA
defines three kind of memory regions, associated with procedures (Stack), global data
(Global) and heaps (HeapRgn). Each memory region is further abstracted through a set
of a-locs (defined in Section 2) using methods proposed by Balakrishnan et al. [Bal-
akrishnan and Reps 2004]. MemRecovery mechanism enhances the precision of such
a-locs associated with Stack memory region. VSA is also employed as an underlying
pointer analysis mechanism for our analysis.

5.1. Symbolic Abstraction

Figure 7 presents the grammar for representing the symbolic expressions in our ab-
straction. As evident from Fig. 7, symbols in the obtained IR and integers constitute
symbolic alphabets in this grammar. Symbolic expressions are numeric algebraic poly-
nomials containing sums of product terms of variables. The grammar is designed to
capture most common computational instruction patterns present in an x86 binary
executable such as add, mov, sub and mul [Kankowski 2006]. The presence of mul-
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tiplication inside addition captures common pointer arithmetic expressions such as
base + scale*index present in a binary executable. Grammar based on most common
instructions ensures a balance between precision and efficiency of resulting symbolic
representation.
Symbolic Value Set: A symbolic value set is a finite set of symbolic expressions de-

fined by the Grammar in Fig. 7. It constitutes an approximation of the set of symbolic
values that each data object holds.

The abstraction supports standard arithmetic set operators such as Addition (⊕) and
Multiplication (⊗) as well as a widen (∇) operators. These operators are defined below:

1. Add Operator (⊕): This operator computes a new symbolic value set by adding
each symbolic expression present in SymV alSet2 to each symbolic expression present
in SymV alSet1.

SymV alSet1 ⊕ SymV alSet2 = {sym1 + sym2 | sym1 ∈ SymV alSet1,

sym2 ∈ SymV alSet2}
(1)

2. Multiply Operator (⊗): This operator computes a new symbolic value set by
applying the multiplication operator between each symbolic expression present in
SymV alSet1 and SymV alSet2:

SymV alSet1 ⊗ SymV alSet2 = {sym1 ∗ sym2 | sym1 ∈ SymV alSet1,

sym2 ∈ SymV alSet2}
(2)

3. Widen operator (∇) : This operator is defined to ensure fast convergence of our
analysis. If the required cardinality of a symbolic value set increases beyond a limit, we
invalidate the symbolic value set. This operation ensures that the analysis converges
in a limited interval of time and is scalable to large applications.

∇SymValSet1 = {if |SymValSet1| > LIMIT, then ⊤ else SymValSet1} (3)

5.2. Intraprocedural Analysis

Our method assumes that the symbols corresponding to the binary code’s registers
have been converted to single-static assignment (SSA) form before running our
analysis. Since in SSA form each variable is assigned exactly once, a single symbolic
map is sufficient to maintain flow-sensitive symbolic value sets for variables. However,
memory locations are usually not implemented in SSA format in IR. Consequently,
a symbolic map is maintained at each program point to represent flow-sensitive
symbolic value sets for memory locations. Hence, symbolic value analysis effectively
computes the following maps:

SR: Map between Vars and their corresponding symbolic value sets.
SMI: Map between a-locs and their corresponding symbolic value sets at a program
point before an instruction I

Executables regularly employ the indirect-addressing mode for accessing memory
locations. VSA [Balakrishnan and Reps 2004] is employed to determine the set of
memory addresses which each direct or indirect memory access instruction can access.
Given a set of a-locs, VSA can compute an over-approximation of the set of a-locs
that each register and each a-loc holds at a particular program point.

The algorithm is implemented on the IR, but is presented on C-like pseudo instruc-
tions for ease of understanding. Each instruction in the IR implements a transfer func-
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tion which translates the symbolic maps defined at its input to the symbolic maps at
its output. The following definitions are introduced to ease the presentation.

Ri: IR (SSA) variables
r: Data object (Var or a-loc)
SM’I: Map between a-locs and their symbolic value sets after Instruction I
SR(r): Mapping of Var r in map SR
SMI(r): Mapping of a-loc r in map SMI
MemI(r):Set of memory addresses that r can hold at program point before Instruction I
(obtained by VSA)
(r,SV): Pairing between a data object r and a symbolic value set SV

The memory abstraction includes a concept of fully accessed and partially accessed
a-locs. In order to understand partial a-locs, consider that MemI(r) contains a list of
memory addresses that the data object r can hold at program point before Instruction
I. If this object is dereferenced in a memory access instruction of size s, the a-locs,
that are of size s and whose starting addresses are in set MemI(r), represents the fully
accessed a-locs. The partially accessed a-locs consists (i) a-locs whose starting
addresses are in MemI(r) but are not of size s and (ii) a-locs whose addresses are
in MemI(r) but whose starting addresses and size do not meet the condition to be
fully accessed a-locs. Using the notation from [Balakrishnan and Reps 2004], this
operation is mathematically represented as:

{F,P} = *(MemI(r),s)

Here, F represents the fully accessed and P represent the partially accessed a-locs.
As the name suggests, only some portion of a partial a-loc is updated or referenced in
a memory access instruction. Hence, they are treated conservatively in our analysis,
as will be explained below.

Table I shows the mathematical forms of transfer functions for each instruction.
Below, each of these transfer functions is discussed in detail.

1. Assignment: e: R1 := R2
This is the basic operation where symbolic analysis behaves similarly to the concrete
evaluation. Any existing entry in the symbolic map SR corresponding to the variable
R1 (computed in an earlier iteration) is removed from the map and the symbolic value
set of variable R2 is assigned to variable R1.

2. Arithmetic Operation: e: R3 := R2 OP R1
In such scenarios, the analysis evaluates the symbolic values according to the under-
lying mathematical operator. The evaluation is defined for addition, subtraction and
multiplication operators. Addition and multiplication are handled by employing the
underlying (⊕) and (⊗) operators respectively. Subtraction operation is handled anal-
ogous to the addition by reversing the sign of each coefficient in the symbolic expres-
sions of second operand, R1. Since the remaining operations are not represented, a new
symbolic expression is introduced to represent the result of the computation.

3. Memory Load e: R1 := *(R2)
The analysis relies on obtaining the a-locs accessed by this instruction. If the current
instruction does not access any partial a-loc, the symbolic value of variable R1 is com-
puted by unioning the symbolic values corresponding to each of the possible a-loc.
Otherwise, it is assigned ⊤.

4. Memory store e: *(R2) := R1
The propagation of symbolic values is governed by current memory store accessing a
single a-loc or multiple a-locs. If the current memory store only updates a single
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Name Operation Transfer Function
1. Assignment R1 := R2

SR = {SR− SR(R1)} ∪ {(R1, SR(R2))}

2. Arithmetic R3 := R2OP R1

if OP = +

tmp = ∇(SR(R2)⊕ SR(R1))

if OP = −

tmp = ∇(SR(R2)⊕ ((−1) ∗ SR(R1)))

if OP = ∗

tmp = ∇(SR(R2)⊗ SR(R1))

else //Create a new symbolic expression

tmp = R3

SR = {SR− SR(R3)} ∪ {(R3, tmp)}

3. Load R1 := ∗(R2)

{F, P} = ∗(Meme(R2), s)

if |P | = 0

tmp = ∇(
⋃

v∈F

SMe(v))

else

tmp = ⊤

SR = {SR− SR(R1)} ∪ {(R1, tmp)}

4. Store ∗(R2) := R1

{F, P} = ∗(Meme(R2), s)

if |F | = 1 & |P | = 0 &Func is not recursive&

F has no heap a-locs //Strong Update

SM ′

e = {{SMe − SMe(v)} ∪

{(v, SR(R1))} | v ∈ F}

else //Weak Update

SM ′

e = {{SMe − SMe(y) | y ∈ {F ∪ P}} ∪

{(v,∇(SR(R1) ∪ SMe(v))) | v ∈ F} ∪

{(p,⊤) | p ∈ P}}

5. SSA Phi Rn+1 :=
φ(R1, R2, ..., Rn) SR = {SR− SR(Rn+1)} ∪ {R1,∇(

⋃

i∈(1,n)

SR(Ri))}

Table I: Transfer functions for each instruction in a procedure Func. Here, s denotes the
size of dereference in a memory access instruction.

fully accessed a-loc (strong update), the existing symbolic values of the destination
memory location is replaced by the symbolic set. Otherwise, the new symbolic values
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are unioned with the existing ones to obtain the symbolic value set of fully accessed
a-locs (weak update). The partially accessed a-locs are assigned symbolic ⊤.

Memory regions corresponding to the stack frame of a recursive procedure or to
heap allocations potentially represent more than one concrete a-loc. Hence, the as-
signments to their a-locs are also modeled by weak updates.

5. SSA Phi Function: e : Rn+1 = φ(R1, R2, ..., Rn)
At join points in the control-flow of a procedure, the symbolic value sets from all the
predecessors are unioned to obtain a new symbolic value set.

5.3. Interprocedural propagation

Interprocedural analysis requires the correct handling of symbolic values at callsites
and return points.

Several binary analysis frameworks [Zhang et al. 2007; Balakrishnan and Reps
2004], including SecondWrite [Anand et al. 2013a], implement various analyses to
recognize the arguments. Once the arguments are recognized, formal arguments and
returns are represented as a part of procedure definition and actual arguments and
returns are explicitly represented as a part of a call instruction in the IR.

The symbolic value set of a formal argument for a procedure P is computed by union-
ing the symbolic value sets of corresponding actual arguments across all the call-sites
for procedure P. Mathematically, the initialization of formal fi of procedure P, where
aci represents the corresponding actual argument at a callsite c, is represented as

SR = {SR− SR(fi)} ∪ {(fi,∇(
⋃

∀c∈CallSites(P )

SR(aci)))} (4)

The return variables are also handled in a similar manner. In order to propagate the
symbolic values of a-locs, the memory symbolic maps from each call site need to be
unioned to determine the symbolic map at entry point Pentry of a procedure P .

SMPentry
=

⋃

∀c∈CallSites(P )

SMc (5)

Similarly, the symbolic map just after a call instruction C, is computed by unioning
the symbolic maps at all the return points in the called procedure P.

Externally called procedures are handled in one of the following three ways. First,
procedures which are known not to affect the memory regions (e.g. puts, sin) are mod-
eled as identity transformers (a NOP). External procedures like malloc, which create
a memory region, are also modeled as identity transformers because these procedures
are already handled by defining a memory abstraction HeapRgn corresponding to each
allocation site. External procedures like free, which destroy a memory region, are con-
servatively modeled as NOP. Next, unsafe but known external procedures (e.g. mem-
cpy) are handled by widening the symbolic value set of all a-locs in the memory re-
gions possibly accessed by the procedure. Unknown external procedures (which include
user defined libraries) are handled by widening the symbolic value set of registers and
all a-locs in all the memory regions. This is an extremely rare scenario because most
binary executable programs call external procedures from known libraries. We did not
observer this scenario is our experiments. If a binary program calls a procedure from
a user defined library, users can optionally provide information about memory regions
accessed in such procedure to avoid an excessive loss of precision.

6. DEMAND-DRIVEN MECHANISM

In this section, we present DemandSym which enables the adaptation of ExecSVA to a par-
ticular client analysis. DemandSym computes the set of data-objects which are critical for
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a target analysis and ExecSVA is updated to compute abstraction for only this limited
set. As described in Section 1, symbolic analysis can be employed for a variety of appli-
cations such as redundancy removal, data-dependence analysis and security analysis.
DemandSym enables an efficient application of ExecSVA to any of these client analyses.
In Section 6.3, we demonstrate an example of such an adaptation by extending our
analysis for detecting information-flow violations.

6.1. Demand-driven Set

Below, we discuss our method of computing a limited set of data objects necessary to
implement a particular client analysis. This required set of data objects (variables and
memory locations) is represented as the Demand Set.

Demand Set =

{

SR : Set of required variables

SM : Set of required a-locs

Sets SR and SM are collectively referred to as Demand Set. We refer to an element of
set Demand Set as a Demand Object.

Figure 8 presents the rules for computing Demand Set. We employ the logical in-
ference form2 for representing the deduction rules for computing the sets SR and SM.
The rules are applicable to operations in the IR, but we present C-like pseudo instruc-
tions for ease of understanding. The rules constitute a backward analysis, where the
instructions are traversed in a demand-driven backward dataflow order.

At the beginning of the analysis, SM is initialized as an empty set and SR is initialized
with the data objects employed at the required program locations in the client program
analysis, denoted as DemandInit. For example, in case of data-dependence analysis, set
DemandInit comprises data-objects which need to be tested for dependence.

Given an initial set of elements in Demand Set, the rules presented in Fig. 8 analyze
each program operation to update Demand Set accordingly. In case of an assignment
operation, if the destination is already a Demand Object, the source operand is also
added to the set. In case of arithmetic, logical and phi operations, the source operands
are added to set SR, if it already contains the destination.

Memory operations employ Value Set Analysis (VSA) [Balakrishnan and Reps 2004]
to update Demand Set. In case of a memory load operation, the a-locs present in the
value set of the source operand are added to set SM only if the loaded value is already a
Demand Object. Similarly, a value employed in a memory store operation is considered
a Demand Object if any of the possibly accessed a-locs is an element of set SM.

Interprocedural rules in Fig. 8 depend on whether the called procedure is an inter-
nal or external procedure. The distinction is required because the procedure body of
externally called procedures is not present inside the binary application being ana-
lyzed. In case of a call to an internal procedure, an actual argument value at the call
site is added to SR if the corresponding formal argument is already present in SR. A
return value also results in a similar update of SR. If the actual return value at the
call-site is present in SR, then all the return variables in the procedure definition are
also considered as Demand Objects.

A call to an external procedure is handled in one of the following two ways. If the
prototype of the called procedure is available, then the call is modeled by adding all
actual arguments and their underlying a-locs to Demand Set if the return value is a
Demand Object. Otherwise, a call to a procedure with unknown prototype is modeled
as a NOP to avoid an excessive loss of precision. As explained in Section 5.3, these
scenarios are extremely rare because most binary executable programs call external

2The expression Premise #1 Premise #2 .. Premise #n
Conclusion

states that premises above the line allow us to derive the
conclusion below the line.
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Helper Variables

VS(R): Value Set of object R
R→ z : a-loc z ∈ VS(R)
OP : Arithmetic, Logical and Casting operators
ARGT : Set of parameters of procedure T
RETT : Set of variables at actual return-sites in procedure T
FORMi : Variable for ith formal parameter of a procedure
ACTi : Variable for ith actual parameter at a callsite
F: An internal procedure
X: An external procedure

Initialization
SR← DemandInit; SM← { }

Rules

I:R1=R2
R1 ∈ SR
R2 ∈ SR

I:R1=R2 OP R3
{

R1 ∈ SR
R2 ∈ SR

R1 ∈ SR
R3 ∈ SR

I:Rx=φ(R1,R2,..,Rn)
{

Rx ∈ SR
R1 ∈ SR

Rx ∈ SR
R2 ∈ SR

...
Rx ∈ SR
Rn ∈ SR

I:R1=*R2
R1 ∈ SR R2→ z

z ∈ SM

I:*R1=R2
R1→ z z ∈ SM

R2 ∈ SR

I: R1=call F











∀i∈ARGF

FORMi ∈ SR

ACTi ∈ SR

∀i∈RETF
R1 ∈ SR
i ∈ SR

I: R1=call X











∀i∈ARGX
R1 ∈ SR
ACTi ∈ SR

∀i∈ARGX

R1 ∈ SR ACTi → z

z ∈ SM

Fig. 8: Deduction rules for computing Demand Set. Rules are presented in a logical infer-
ence form ( Premise #1 Premise #2 .. Premise #n

Conclusion
). These rules constitute a backward analysis,

where a set of premises that are true after an instruction allow us to derive the conclu-
sion that will hold true before the instruction.

procedures from known libraries. We do not model side effects of external procedures
to balance precision and utility by limiting computation of excessive demand objects.

The Demand Set, comprising SR and SM, captures all the variables and memory lo-
cations which can possibly impact the value of the elements in set DemandInit. This
reduced set is employed to compute the symbolic abstraction in the program.
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6.2. Demand-Driven Analysis

DemandSym computes an approximation of symbolic abstraction of each demand-driven
data object at each program point. The analysis presented in Section 5 is modified to
account for demand-driven computation. Specifically, the transfer functions presented
in Table I are updated to compute the symbolic abstraction for only the data objects
which are part of Demand Set. In Table I, transfer functions in row 1,2,3 and 5
compute the symbolic abstraction for program variables while transfer function in row
4 updates the symbolic abstraction for memory locations. The set of transfer functions
in Table I, TF at a program location e, can be represented as follows:

TFe =

{

RegT(r) : Transfer functions for r (Row 1,2,3 and 5 in Table I)

MemT(M) : Transfer functions for a-locs ∈ M(Row 2 5 in Table I)

The above set Transfer Functions is updated as follows to reflect demand-driven
computation.

TF ′
e =

{

RegT’(r) : if r ∈ SR then RegT(r) else ∅

MemT’(M) : if M ∈ SMe then MemT(M) else ∅

Effectively, DemandSym can be represented through the following combination of
inputs and outputs

Input: DemandInit
Output: { SR(r) ∀ r ∈ Input}

6.3. Example: Information-flow policy enforcement

Next, we employ DemandSym to adapt ExecSVA for detecting information-flow violations.
We present information flow vulnerability detection as a case study for our DemandSym
framework and demonstrated that it is very effective in improving the scalability.
DemandSym framework is not applicable to buffer overflow, heap spray and other kinds
of vulnerabilities that cannot be easily represented as information-flow vulnerabilities.

Several information-flow tracking systems express a policy using the concept of
labels [Chang et al. 2008]. There are three dimensions that characterize a policy: label
description, label initializations and label checks. Label description, LB, specifies the
underlying labels; Label initializations, LBInit, correspond to the program sites that
introduce labels into the program; while Label checks, LBCheck, denote the sensitive
program locations where an information-flow violation might arise if an untrusted
label reaches such locations. These can be represented as follows

LB: { Set of labels }
LBInit: { (x,l), l ∈ LB }
LBCheck: { y }

In addition, these frameworks also define a function Ω to combine the labels at a
program location. For example, if the set LB contains labels tainted and untainted, Ω
function to combine these two labels can be defined as follows.

Ω(tainted,untainted) = tainted.

A more expanded definition is required for Ω function in case of multiple la-
bels [Chang et al. 2008].
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The demand framework provides a generic and programmable application program-
ming framework for specifying such kinds of information-flow policies. The above
representation can be mapped to Demand framework as follows:

Input: { LBCheck }
Output: { SR(y) ∀ y ∈ Input}

Next, we define a function, LBMap, to determine the labels at required programs lo-
cations (LBCheck) using DemandSym output. Suppose IRSym(S) is the set of IR symbols
present in a symbolic value set S. As presented in Fig 7, IR symbols constitute symbolic
alphabets in our grammar.

LBMap(y) : Ω { LBInit(r) ∀ r ∈ IRSym(SR(y)) }

The presence of unsafe label in LBMap(y) signifies a vulnerability. Below, we provide
an example of policy specification using format-string vulnerability.

Format string flaws arise due to an unsafe implementation of variable-argument
procedures in C library. In case of a variable-argument procedure like printf, a format
string argument specifies the number and type of other arguments. However, there is
no runtime routine to verify that the procedure was actually called with the arguments
specified by the format string. As detailed in [Cowan and et al. 2001], an attacker
can corrupt the format string and thereby take control of the program by modifying
relevant memory locations.

In order to expose a format string vulnerability, a tool needs to detect the flow of
information from an untrusted source to the format string argument of a variable
argument procedure. Hence, this policy is specified as follows

LB: { tainted, untainted }
LBInit: { Callsites corresponding to external input procedures }
LBCheck: { Format String Arguments }

Based on above description, the presence of tainted label in LBMap(y) for any y ∈
LBCheck signifies a vulnerability.

7. DISCUSSIONS

In this section, we discuss some of the limitations and assumptions behind our tech-
niques. We first discuss the assumptions related to underlying SecondWrite binary
analysis framework followed by specific limitations related to our techniques.

7.1. SecondWrite Assumptions

As we described in Section 3, SecondWrite translates the input x86 binary code to a
workable program represented in the intermediate representation (IR) of the LLVM
Compiler [Lattner and Adve 2004]. SecondWrite is based on a conventional wisdom
that static analysis of executables is a very difficult problem and statically handling
every program may be an elusive goal. Hence, its goal is to expand the static envelope
based on a set of assumptions. Below, we briefly discuss the assumptions behind Sec-
ondWrite, Anand et al [Anand et al. 2013a], Smithson et al. [Smithson et al. 2013] and
Wazeer et al. [ElWazeer et al. 2013a] discuss all the assumptions in more detail.

→Disassembly assumptions: As we described briefly in Section 3, binary characteri-
zation employed by the underlying disassembler in SecondWrite derives possible ad-
dresses using an assumption that an indirect control transfer instruction requires an
absolute address operand [Anand et al. 2013a; Smithson et al. 2013]. This assump-
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tion is essential to overcome the general undecidability of program disassembly. A
compiled code is expected to adhere to this convention unless it has been generated
to be position independent. A position independent code computes the indirect con-
trol transfer targets based on the address at which the program is loaded. Hence,
binary characterization fails to identify these address because these addresses are
not present in binary image. Smithson et al. [Smithson et al. 2013] discuss this as-
sumption and possible resolution in more detail. SecondWrite does not yet support
advanced x86 features such as SSE and other advanced instructions. Benchmarks
that contain such instructions have not been considered in our analyses.

→Procedure Boundary and Control-flow assumptions: The above method based
on binary characterization is not sufficient for discovering indirect branch targets
where addresses are calculated in binary. Hence, various procedure boundary deter-
mination techniques, such as ending the boundary at beginning of next procedure,
are also proposed [Smithson et al. 2013] to limit possible targets. SecondWrite also
implements several additional techniques [ElWazeer et al. 2013a] to recover proce-
dure boundaries and eliminate spurious procedures from recovered IR. These meth-
ods are based on assumptions such as procedures should have a prologue and an
application code should not contain certain code semantics such as memory access to
an address outside memory image. Wazeer et al. [ElWazeer et al. 2013a] discuss such
assumptions in more detail.

→Self Modifying code: Like most static binary tools, SecondWrite does not handle
self modifying code. Various tools [Wang et al. 2008; Thakur et al. 2010] statically
detect the presence of self-modifying code in a program. Such a tool can be integrated
in our front-end to warn the user and to discontinue further operation.

→Obfuscated Code: We have not tested our techniques against executables with
hand-coded assembly or containing techniques that thwart static disassembly by ob-
fuscating the discovery of control flow [Linn and Debray 2003].

7.2. Assumptions in symbolic analysis framework

Below, we discuss some of the assumptions behind the methods presented in this paper.

→Architectural assumptions: Out of the three techniques presented in the paper,
ExecSVA and DemandSym are generic and are applicable to any ISA. The remaining
technique, MemRecovery, contains several rules that currently limits its applicability
to only x86 ISA. Extending MemRecovery to other ISAs will be explored in future work.

→Memory assumptions: Similar to most executable analysis frameworks [Balakr-
ishnan and Reps 2004; 2007; Schwarz et al. 2001], our techniques assume that exe-
cutables follow the standard compilation model where each procedure may allocate
an optional stack frame in only one direction and each variable resides at a fixed
offset in its corresponding region. We also assume that in x86 programs, a particular
register esp refers to the top of memory stack. This assumption is expected to hold
in all practical scenarios because x86 ISA inherently makes this assumption. For ex-
ample, x86 call instruction moves value stored in instruction pointer, eip, to esp.
Similarly, return instruction directly modifies esp. An assembly code not adhering to
this convention would be extremely hard to write.

→Library code: Since our tool relies on discovery of heap allocation using malloc
and specification of information points using external library functions, it does not
support programs that statically link the standard C library. All other libraries can
be statically linked in the program.
The dependence of our tool on identification of external library function names such
as malloc does not contradict our claim about not requiring symbol table informa-
tion in an executable. The information regarding library and procedures that are

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 1, Article 1, Pub. date: January 2016.



1:22 K.Anand et al.

linked dynamically to an executable is always present in its dynamic symbol table.
Such information cannot be stripped from an executable, otherwise it will fail to load
and execute properly. On the other hand, a symbol table in an executable containing
information about functions within an executable is not required for proper function-
ing of an executable and is usually not present in an off-the-shelf executable. Our
techniques are applicable to such off-the-shelf executables that do not contain such
symbol table information.

→Custom Heap Management: The presence of custom heap management in an ap-
plication results in unsoundness in our analysis. An allocation site inside such an
application appears as a call to a custom procedure (such as tcmalloc [TCMalloc ]) as
opposed to a call to standard malloc library procedure. Our analysis does not detect
such allocation sites and fails to propagate symbols across these memory locations.
Users can optionally eliminate the above unsoundness by specifically identifying the
custom allocation procedure. Memory allocated at all corresponding allocation sites
can then be considered as a single memory a-loc in our analysis. This will still re-
sults in an imprecise analysis but will prevent the unsoundness.

→ Information-flow Analysis: As presented in Section 6, DemandSym enables the adap-
tation of ExecSVA to a particular client analysis. ExecSVA might end up computing an
abstract value of⊤ for some data objects. DemandSym treats such values in an unsound
manner by assuming that they do not contain any value. This choice is governed by a
need to balance the precision and overhead while doing static program analysis and
to avoid excessive false positives.
In its current form, DemandSym framework can only be applied for vulnerabilities
that can be directly represented as information-flow violations. Buffer overflow, heap
overflow and other kinds of security vulnerabilities cannot be easily represented as
information-flow vulnerabilities. Extending our framework for other kinds of vulner-
abilities will require extra research effort and we expect that our work would be used
as a stepping stone towards that research effort.
Several applications implement input validations to verify and sanitize the inputs
from untrusted sources prior to its use at a sensitive sink [Balzarotti et al. 2008].
DemandSym framework currently fails to detect the presence of such sanitization mech-
anisms. This can adversely produce a few false positives in such applications. In fu-
ture work, we plan to modify DemandSym framework to accurately model sanitization
mechanisms.

8. RESULTS

Our techniques are implemented as part of the SecondWrite framework presented
in Section 3. The evaluation is performed on benchmarks from the SPEC2006 and
OMP2001 suites and some real world programs, as listed in Table II. All the bench-
marks of SPEC2006 suite and OMP2001 suites that have been shown to be supported
by SecondWrite framework [Anand et al. 2013a] are included in this list. The following
benchmarks from SPEC2006 suite - gamess, gems, tonto and wrf, are not included in
this because these benchmarks contain some x86 instructions that are not supported
in SecondWrite framework. Benchmarks are compiled with gcc v4.3.1 with O3 flags
(full optimization) and results are obtained on a 2.4GHz 8-core Intel Nehalem ma-
chine running Ubuntu 12.04. In all figures, AVG refers to arithmetic mean, AVG-C
refers to arithmetic mean for C benchmarks and AVG-C++ refers to arithmetic mean
for C++ benchmarks.

8.1. Workable Representation and Precise Memory Model

Figure 9 and Fig. 10 present the statistics regarding MemRecovery for obtaining precise
memory model and workable IR. We only present statistics for benchmarks containing
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Application Source Lang LOC # Proc Time(s) Mem
(MB)

bwaves Spec2006 Fortran 715 22 4.25 24.47
lbm Spec2006 C 939 30 0.8 1.03
equake OMP2001 C 1607 25 0.64 3.62
mcf Spec2006 C 1695 36 0.31 2.85
art OMP2001 C 1914 32 0.36 2.74
wupwise OMP2001 Fortran 2468 43 1.37 5.68
libquantum Spec2006 C 2743 73 1.30 6.30
leslie3d Spec2006 Fortran 3024 32 8.24 23.72
namd Spec2006 C++ 4077 193 19.46 111.53
astar Spec2006 C++ 4377 111 1.49 8.39
bzip2 Spec2006 C 5896 51 4.8 90.27
milc Spec2006 C 9784 172 41.16 19.68
sjeng Spec2006 C 10628 121 9.93 34.98
sphinx Spec2006 C 13683 210 7.11 31.19
zeusmp Spec2006 Fortran 19068 68 37.85 285.48
omnetpp Spec2006 C++ 20393 3980 21.66 58.24
hmmer Spec2006 C 20973 242 12.13 36.52
soplex Spec2006 C++ 28592 1523 21.21 144.14
h264 Spec2006 C 36495 462 29.56 220.53
cactus Spec2006 C 60452 962 25.65 185.05
gromacs Spec2006 C/Fortran 65182 674 47.82 252.33
dealII Spec2006 C++ 96382 15619 114.30 240.18
calculix Spec2006 C/Fortran 105683 771 192.99 404.32
povray Spec2006 C++ 108339 3678 71.01 242.61
perlbench Spec2006 C 126367 2183 94.18 210.37
gobmk Spec2006 C 157883 4188 60.66 242.19
gcc Spec2006 C 236269 6426 663.69 490.68
xalan Spec2006 C++ 267318 30062 464.97 183.75
gzip Compress C 10671 98 1.42 20.06
tar Compress C 20518 343 9.58 18.85
ssh Web clinet C 73335 887 40.57 22.55
lynx Browser C 135876 2106 140.08 73.01
apache WebServer C 232931 2026 37.98 232.12
MySQL Database Server C++ 1734500 11932 3745 3242.61

Table II: Applications Table. Time and Memory columns show the analysis time and
storage requirements for ExecSVA.
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non-negligible Unknown CTIs because our techniques are meant for such challenging
executables. Here, negligible is defined as # of Unknown CTIs ≤ 10 or # of procedures
containing Unknown CTIs≤ 1%). Of the 33 programs in Table II, 11 had non-negligible
unknown CTIs, including all five largest benchmarks out of total seven C++ bench-
marks. This is not surprising because C++ benchmarks tend to contain more unknown
CTIs because of the presence of virtual function calls.
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Fig. 11: Percentage of non zero indirect CTIs among all indirect CTIs.

Application Num of Indirect CTI Num of Indirect CTI
with non-zero StackDiff

soplex 527 4
deal 1016 108
xalan 10079 289

Fig. 12: Number of Indirect CTI with non-zero StackDiff.

Figure 9 presents the fraction of procedures containing Unknown CTI in each of
these benchmarks. It divides this fraction into scenarios where the static mechanism
was able to determine the value of StackDiff and where the dynamic mechanism was
required to maintain the workability. Case 1 (Section 4.1) does not arise because we
employ the prototypes for standard library procedures. We never hit the invalidation
conditions stipulated in Fig. 5, justifying our assumptions.

Figure 10 illustrates the additional a-locs derived as a result of successful constraint
solutions, normalized with respect to original a-locs of type Stack (Section 5.2). As
evident, we were able to obtain 10% more a-locs in C benchmarks and 30% more
a-locs in C++ benchmarks on average. This enhanced a-locs abstraction is employed
in our symbolic value analysis framework.

Further analysis of our results in Fig. 9 elucidates that we never come across
Case 3 during our experiments. The analysis of source-code reveals that the value
of StackDiff at each indirect CTI is constant. However, an imperfect alias analysis of
indirect CTI targets results in defining a larger set of targets, many of which have dif-
ferent StackDiff values. Figure 11 lists the fraction of procedures in each benchmark
in Fig. 9 that have non-zero StackDiff values. An imperfect alias analysis results in
gathering up of several of such procedures in target call set of indirect CTI in each
benchmark, resulting in an unknown CTI.

Table 12 further lists the number of indirect CTI in the benchmarks in Fig. 9 that are
confirmed to have a non-zero StackDiff value. Indirect CTI in rest of the benchmarks
have zero StackDiff value. This result reveals that even though the fraction of indirect
CTI with non-zero StackDiff value is small, a simple method of always assuming a
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Fig. 13: Fraction of symbolic expressions containing symbolic alphabets propagated
through memory locations.

zero value of StackDiff can never guarantee to obtain a workable IR from binary
executable code.

In order to understand the source-code pattern that results in a non-zero CTI, we
analyzed a callsite in one of the benchmark from Table 12. In soplex, an unknown
indirect CTI arises due to call to a virtual procedure with following prototype:

virtual SpxID selectEnter()

If a procedure returns a structure, gcc creates a binary code with non-zero
StackDiff. This is one such scenario that results in a non-zero StackDiff in spite
of a standard cdecl calling convention [SourceForge 2013]. In more complex programs
with advanced calling conventions, unknown CTIs might arise at a higher frequency.

8.2. ExecSVA

Table II shows the analysis time and storage requirements of ExecSVA on various appli-
cations. The numerical value of Limit, the maximum size of a symbolic value set, was
kept to 5. The analysis time and the required storage is largely a function of the num-
ber of procedures in the benchmark. The analysis scales well to mid-size programs. But
the time increases for large benchmarks. For example, the analysis time for mySQL is
more than an hour.

In order to understand the importance of tracking memory locations, we obtain the
percentage of symbolic expressions that containing at least one symbolic alphabet
propagated through a memory location, as a percentage of symbolic expressions for all
IR variables. Fig. 13 elucidates an interesting characteristic of the obtained symbolic
expressions. We observe that 35% of symbolic expressions contain alphabets propa-
gated through memory locations. In absence of an abstraction for memory locations,
the analysis would have introduced a new alphabet in all these expressions. This vali-
dates our central contribution that tracking memory locations is essential for effective
symbolic analysis on executables.

In order to understand our symbolic abstraction, we divided the objects into various
categories according to the size of their symbolic value set as shown in Fig. 14. On
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Fig. 14: Symbolic Value Set Visualization.
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Fig. 15: Variables requiring a new symbolic alphabet in presence of additional a-locs.

average, 64% of objects can be abstracted with a single symbolic expression, 16% of
objects need multiple expressions and 20% of objects cannot be represented with finite
symbolic abstraction (⊤). Maintaining a symbolic value set instead of a single symbolic
expression allows us to maintain this extra precision for 16% of data objects.

Figure 15 captures the enhancement in the precision of ExecSVA with the presence of
additional a-locs derived by the MemRecovery mechanism. According to Table I, a load
instruction accessing an unknown memory location is represented by a new symbolic
alphabet. Figure 15 demonstrates the decrease in the number of load instructions re-
quiring a new alphabet while employing additional a-locs. The presence of additional
a-locs enhances the precision of symbolic value analysis by 10% to 50% in several pro-
grams.
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8.3. Demand-driven Analysis

Recall from Section 2, DemandSym enhances the scalability of ExecSVA. Here, we quantify
this enhancement.

Figure 16 presents the size of Demand Set, SR and SM for detecting format string vul-
nerability. The sizes of SR and SM are normalized against the total number of variables
and a-locs in the program respectively. Figure 16 shows that these rules are highly ef-
ficient in decreasing the overall analysis requirement. This enables DemandSym to only
analyze around 5-10% of total objects, on average, without sacrificing the precision.
C++ and fortran programs do not have many format string calls. Hence, they have
relatively small SR and SM set.
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Application LOC Vulnerability Type
mingetty 1.08 500 - -
csplit 8.17 1060 - Format String
muh 2.05c 2857 CVE-2000-0857 Format String
pfingerd 0.7.8 4689 NISR16122002B Format String
gzip 1.2.4 5830 CVE-2005-1228 Directory Trav.
ez-ipup3.0.10 6335 CVE-2004-0980 Format String
gif2png 2.5.2 9354 CVE-2010-4695 Directory Trav.
wu-ftpd 2.6.0 17576 CVE-2000-0573 Format String
tar 1.13.19 20518 CVE-2001-1267 Directory Trav.
KeePassX0.4.3 26089 - -
yafc 1.1.1 32241 NEW Directory Trav.
tnftp 2010 34762 - -
gftp 2.0.19 42390 - -
irc2 2011 44837 NEW Directory Trav.
wget 1.13 46611 - -
sudo 1.8 53144 CVE-2012-0809 Format String
openssh 6.0p 73335 - -
ayttm 0.6.3 80013 NEW : CVE-2015-6930. Format String
curl 7.30.0 122248 NEW Directory Trav.
BitchX 1.1 133728 NEW Format String
lynx 2.8.7 135876 - -
apache 2.2.17 232778 - -
MySQL 5.6.11 1741774 - -

Fig. 18: Vulnerabilities discovered in real-world programs.

Figure 17 highlights the ensuing enhancement in the scalability of ExecSVA as a re-
sult of DemandSym. It plots the variation in the time taken to analyze the programs
using DemandSym with increasing lines of code and compares it with an exhaustive
analysis. Figure 17 includes the programs listed in Fig. 18 as well as programs from
complete SPEC2006 benchmark suite. As evident, demand-driven analysis is approxi-
mately 10x more scalable than the exhaustive analysis. For example, the time to ana-
lyze gcc, a large SPEC2006 benchmark with 250,000 lines of code, reduces to less than
a minute as compared to more than 11 minutes in exhaustive analysis. This scalability
becomes more evident in programs like MySQL where demand mechanism was able
to finish the analysis in 7 minutes (not shown in the graph) as compared to more than
an hour of exhaustive analysis.

8.4. Application: Security Analysis

In this section, we discuss DemandSym’s ability to uncover standard vulnerabilities such
as format string and directory-traversal attacks. A format string vulnerability was
described in Section 6.3. A directory-traversal vulnerability typically arises when a
filename supplied by an user is employed in a file-access procedure without sufficient
validation. A user can include a .. (dot dot) within the response which might not be
validated in some programs. In such scenarios, users will be able to gain an ability
to ascend outside the authorized directory. This vulnerability can be uncovered in a
similar manner, by assigning a tainted label to the inputs coming from an untrusted
channel and raising an alarm at any use of a tainted value as a filename argument.

As explained in Section 1, analysis of vulnerabilities in binary executable code has
several advantages over a source-code based analysis system. It enables a more rapid
response to cyberattacks and enable users to certify the severity of attacks.
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We evaluate DemandSym on a set of real-world programs listed in Fig. 18. These con-
stitute widely deployed applications whose integrity is critical for functionality of a
system. Figure 18 shows that DemandSym uncovers five previously unknown vulnerabil-
ities, apart from detecting all previously known vulnerabilities in this set of programs.
Next, we discuss the characteristics of these zero-day vulnerabilities.

ayttm: ayttm is vulnerable to a previously unknown format string attack. In ayttm,
a procedure http connect populates a variable inputline by receiving data from net-
work using a call to external procedure recv. Then, inputline is assigned to a variable
debug buff using snprintf, which is further used as a format string argument in a
printf call. This vulnerability has been confirmed by the developers.

BitchX: DemandSym exposes a format string vulnerability in napster plugin in BitchX.
The behavior is similar to the vulnerability in csplit, where an input argument value
is employed as a format string argument in a call to vsnprintf.

yafc, irc2, curl: DemandSym exposes directory-traversal vulnerabilities in each of these
programs. These programs employ getenv to derive the name of the current directory
and prepend the resulting value to derive the name of a file which is employed to open
a file using a fopen call without any sanitization. As per several existing attacks [CVE
2013], an attacker might corrupt the environment variables, rendering the application
susceptible to directory-traversal attacks.

These potential vulnerabilities in file transfer and internet relay clients can lead to
security problems in atleast two scenarios. First, the client can be used as part of a
web application that takes a form input and uses it to do an FTP transfer. Second, the
client can be used in a setuid [Setuid ] shell script or can be otherwise invoked from
a setuid or setgid program. Setuid and setgid are Unix access rights flags that allow
users to run an executable with the permissions of the executable’s owner or group
respectively. In this case, the attacker can use it to access files to which they otherwise
don’t have an access.

According to Mitre [CVE-MITRE 2015] and the original developers of these file
transfer and internet relay chat applications, a web-application that employs the above
applications should itself implement a sanitization behavior. Hence, these scenarios
cannot be considered as vulnerabilities in these applications. Nonethless, these results
establish the applicability of our tool in identifying information flows in a system that
could be part of an attack. Thereater, system developers can identify the ideal location
for implementing a sanitization check in the information flow path.

A more careful analysis of some of the potential vulnerabilities detected through
our framework establishes the importance of precise memory analysis and also un-
derscores the requirement of sanitization facility in future to further reduce false pos-
itives. Analysis of csplit demonstrates both these aspects. csplit is a well-known
GNU Coreutil program. DemandSym detected a possible format string vulnerability in
this utility. csplit declares a global variable suffix, which is initialized in procedure
main using an input argument (optarg). Next, suffix is employed directly as a format
string argument in a call to sprintf. DemandFlow flagged this unsafe flow from an
external source to a format string argument. On careful analysis, we observed that
global variable suffix is memory-allocated in the executable. DemandSym would not
have uncovered this unsafe flow if the information is not propagated across memory
locations. This example underscores the importance of our precise memory analysis
for exposing information-flow vulnerabilities in executables. We notified the Coreutil
developers about this vulnerability. They pointed to a sanitization procedure inside
their code which was missed by our analysis. This observation demonstrates that the
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 (a) Source code snippet                            (b) Executable code snippet 

 

static char * suffix ; 
 
main: 
……: 
switch (..){ 
     case 'b': 
     //Unsafe Initialization 
       suffix = optarg;   
       break;}   
     
make_filename: 
……. 
sprintf(filename_space, 
    suffix,   
   //Format string Arg 
    num);   

0x8056160:  Fixed location for optarg;  
0x80561ac: Memory address of suffix 
 
(Address)         (Instruction) 
main: 
……. 
804afb4:        mov    0x8056160,%eax  //Load from optarg 
804afb9:        mov    %eax,0x80561ac  //Store to suffix  
804afbe:        jmp    804b0b6 <main+0x1f8> 
 
make_filename: 
804a18e:      mov    0x80561ac,%eax    //Load from suffix 
....... 
804a1c6:       mov    %eax,0x4(%esp)    //Initialize format arg 
804a1ca:       mov    %edx,(%esp) 
804a1cd:       call   8048ec0 <sprintf@plt>  

Fig. 19: Code snipped from csplit showing the format string vulnerability. Second
operand is the destination in executable code.
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Fig. 20: Format string vulnerability detection. * represent the programs where false
positives are available from existing source-code tools.

precision of our analysis can further be improved by including sanitization mechanism
in our analysis.

Next, we establish the importance of reasoning about memory accesses for vulner-
ability detection. In order to simulate the functionality of previous tools [Cova et al.
2006], which do not track memory locations, the analysis presented in Section 6.2 is
modified to compute the abstraction for only the variables. This is accomplished by
disabling the rules in Table I for memory access instructions and by computing only
IR. The resulting analysis fails to unmask even a single vulnerability in the programs
listed in Fig. 18. This demonstrates the importance of a precise memory analysis for
implementing a robust information-flow mechanism in executables.

False Positives: Figure 20 presents the false positives reported by DemandSym for
the programs in Fig. 18 while detecting format string vulnerabilities, comparing the
resulting statistics with the false positive reports generated by existing source-level
static analysis tools (Oink [Oink 2015], CQual [Shankar et al. 2001] and others [Guyer
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Fig. 21: Directory traversal attacks.

and Lin 2003])3. The Source bar in Fig. 20 represents the fewest false positive reported
among the above tools. DemandSym reports similar false alarms as existing source-level
tools for the programs listed in Fig. 18.

Figure 21 presents the corresponding statistics obtained for directory-traversal vul-
nerability. Even though DemandSym reports eight false positives for lynx and ayttm, it
translates to less than 0.1 false alarms per 1000 lines of code. To the best of our knowl-
edge, no existing source-level static analysis tool has reported directory-traversal
statistics for the above set of programs; hence, the results could not be compared.

We further analyzed lynx and ayttm programs to understand the source of false pos-
itives while analyzing directory-traversal vulnerabilities. Out of eight false positives
reported in lynx, atleast two false positives arose due to lack of considering sanitiza-
tion function within our analysis. These two false positives were arising in LyUpload
procedure. However, LyUpload does contain code to report a warning if .. is detected in-
side file name. Rest of the false positives seem to be due to imprecision in the analysis.
In case of ayttm, we did not find any sanitization procedure that checked for presence
of .. inside file name arguments. Hence, false positives in ayttm are most likely due to
imprecision of analysis.

The false positive rate (FP/Total Reports) is 79.1% for above programs which is
equivalent to 84% false positive rate [Chang et al. ] reported by source-tools such as
Oink and CQual [Oink 2015; Shankar et al. 2001].

Figure 16 shows that demand analysis enables us to narrow down our analysis to
only 5% of original 5 million lines of code in these programs. Effectively, DemandSym only
reports around 50 false positives from 250K lines of code. Corresponding statistics for
SPEC benchmarks are presented in an expanded version of this paper [Anand et al.
2013b].

8.5. Application: Automatic Parallelization

Next, we substantiate the impact of symbolic analysis on dependence tests for program
parallelization. The notion of data dependence captures the most important properties
of a program for efficient parallel execution on multicores and parallel machines. The
dependence structure of a program defines the necessary constraints on the order of
execution of program components. Various dependence analyses such as array sub-
script analysis [Wolfe 1990], distance vectors [Banerjee 1979], ZIV tests (Zero induc-

3The programs with no corresponding results by source-tools are conservatively assumed to have zero false
positives.
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App # Tests #Success #Success %
(Without (With Imp
mem mem
based based
ExecSVA) ExecSVA)

2mm 18 14 18 28.5
3mm 26 20 26 30.0
atax 6 3 4 33.3
bicg 13 6 10 66.7
covar 19 16 19 18.7
doitgen 25 10 23 130.0
gemm 14 12 14 16.67
gemver 26 22 26 18.18
gesummv 13 9 12 33.3
jacobi 27 13 13 0
ft 127 37 43 16.2
lu 4866 1438 2078 44.5
bt 2866 1844 2237 21.3
sp 3317 2287 2815 23.1
AVG 34.3

Fig. 22: Parallelization benchmarks (Polybench and NAS).

tion variable), SIV tests (Single induction variable), and MIV tests (Multiple induction
variables) [Goff et al. 1991] have been suggested for determining the dependence struc-
ture of a program and for determining parallel tasks.

These data dependence tests are more effective if the array subscript expressions are
represented as affine expressions directly in terms of loop indices and loop invariants,
rather than indirectly via other locations. As discussed in various parallelizing com-
pilers such as Parafrase [Haghighat and Polychronopoulos 1996] and SUIF [Hall et al.
2005], a large percentage of parallelization benchmarks have array references with
symbolic terms other than loop induction variables and have symbolic loop bounds.

Symbolic analysis has been suggested as an important technique for improving the
data dependence decisions taken by a compiler in such scenarios. It is a very effective
technique which represents array subscripts and loop bounds as a symbolic expression,
describing its value in terms of constants, loop-invariant symbolic constants and loop
indices. Standard dependence tests can then be employed to resolve data dependence
queries [Hall et al. 2005; Blume and Eigenmann 1994].
ExecSVA, as presented in this paper, maintains symbolic abstractions for underly-

ing memory locations thereby enabling the discovery of such affine expressions from
executables also. Existing source-level symbolic frameworks [Haghighat and Poly-
chronopoulos 1996] obtain these recurrence relations for only the variables while our
ExecSVA analysis will obtain this recurrence relations for IR variables as well as for
a-locs. Since a loop-index variable might be allocated to a memory location in an ex-
ecutable, ExecSVA recognizes recurrence expressions for memory-allocated loop index
variables also, which cannot be recognized by applying existing source-level frame-
works directly to executables.

Existing parallelizing compilers employ recurrence relations and affine expressions
between array indices to characterize the dependence structure in two aspects. First,
they try to disprove the loop carried dependence between pairs of subscripted refer-
ences to the same array variable. Second, if dependence exists, they try to characterize
the dependence by determining the actual distance in terms of number of loop itera-
tions (referred to as distance vector) between two accesses to the same memory loca-
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tion. The tests are considered to be successful when a precise answer can be obtained
for any of the above.

We have tested our framework on executables of benchmarks from the Polyhedral
Benchmark suite [PolyBench 2010] and the NAS benchmark suite [NAS 2006]. We im-
plemented various common dependency tests like ZIV tests (Zero induction variable),
SIV test (Single induction variable), and MIV test (Multiple induction variables) as
presented in [Goff et al. 1991]. We measured the number of array references where
any of the dependence tests was able to eliminate dependence, or was able to provide
a precise answer to the distance between dependencies. Figure 22 describes the usage
and success frequency of dependence tests for each of the benchmarks. It lists the num-
ber of times a test was required to resolve the dependence between array references in
each benchmark and the number of times the test was able to give a precise answer
in two situations: using the memory based symbolic analysis and using only variable
based symbolic analysis. Since dependence tests rely on affine expressions for loop
indices, none of the dependence tests succeed when no symbolic analysis is applied.
Hence, we omit the results for the case of no symbolic analysis. Figure 22 shows that
the memory based symbolic analysis framework improves the precision of standard
dependence tests on executables by 34% on average.

9. RELATED WORK

In this section, we discuss related work pertaining to (i) Binary Analysis (ii) Symbolic
analysis (iii) Symbolic Execution and (iii) Information-flow security.

Binary analysis: There has been several binary analysis frameworks such as Bit-
Blaze [Song et al. 2008], Jakstab [Kinder and Veith 2008], IDAPro [IDAPro disassem-
bler ], CodeSurfer/x86 [Balakrishnan and Reps 2004], BAP [Brumley et al. 2011] and
others. None of these tools obtain a workable IR or perform symbolic analysis. We de-
fine a system to have workable IR if it has been demonstrated that IR can be compiled
back to a working executable. Several binary rewriters such as PLTO [Schwarz et al.
2001] and UQBT [Cifuentes and Emmerik 2000] obtain a workable IR, but they have a
very imprecise memory abstraction that renders them unsuitable for advanced binary
analyses. Several link time optimization tools such as Diablo [De Sutter et al. 2007]
obtain a workable IR but restrict their analyses to only variables. They do not make
any attempts to obtain a precise abstraction for memory references. IDAPro comes the
closest in trying to deal with the problem of indirect CTIs, but they do not guarantee
a workable IR. Whenever StackDiff values cannot be determined for a particular in-
direct CTI, IDAPro might choose a wrong value from the pools of possible solutions
resulting in an incorrect data-flow [HexBlog 2006]. Various executable frameworks
ease the specification of semantics of native instructions [Thakur and Reps 2012] and
address control-flow challenges [Kinder and Veith 2008], which is orthogonal to our
tasks of analyzing program data flow.

Cifuentes at al [Cifuentes and Emmerik 2000] proposed an algorithm for identifying
an interprocedural slice of an executable by following use-def chains, but their algo-
rithm does not attempt to follow use-def chains in the case of memory accesses. This
limits the program slice in case of memory loads.

There are various binary analysis tools [Rival 2003; Bergeron and et al. 2001; Larus
and Schnarr 1995] which analyze executables in the presence of additional information
such as symbol tables or debugging information. Such information is usually absent in
deployed executables and our methods do not make any assumption about the presence
of such extra information. In addition, none of them deal with the problem of symbolic
analysis.

The work that is closely related to ExecSVA are frameworks proposed by Debray et
al. [Debray et al. 1998], Amme et al. [Amme et al. 2000], Balakrishnan et al. [Bal-
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akrishnan and Reps 2004] and Guo et al. [Guo et al. 2005]. Debray et al. [Debray
et al. 1998] and Amme et al. [Amme et al. 2000] present alias-analysis algorithms for
executables. However, their biggest limitation is that they do not track memory loca-
tions and hence, lose a great deal of precision at each memory access. Balakrishnan
et al. [Balakrishnan and Reps 2004] and Guo et al. [Guo et al. 2005] present memory
analysis algorithms that find an over-approximation of the set of constant and mem-
ory address ranges that each abstract data object can hold. However, as presented in
Section 1, symbolic analysis entails representation of values of program variables as
symbolic expressions in terms of previously defined symbols. This representation en-
ables typical symbolic analysis applications such as parallelization. The above meth-
ods. [Balakrishnan and Reps 2004; Guo et al. 2005] obtain a different representation
which is not suitable for symbolic analysis applications. Further, the IR recovered by
these frameworks is not workable.

Recently, there has been some work on parallelizing binary executable code. Kotha
et al [Kotha et al. 2010] present a method to automatically parallelize executables us-
ing a binary rewriter. They adapt source-level affine parallelization methods for exe-
cutables. Yardimci and Franz [Yardimci and Franz 2006] present non-affine automatic
parallelization in a binary rewriter. Symbolic analysis methods proposed in our pa-
per will further improve the efficiency of all these parallelization efforts by improving
data dependence queries, thereby exposing more parallelism in programs. In addition,
the above methods [Kotha et al. 2010; Yardimci and Franz 2006] implement custom
techniques to recognize induction variables from binary executable code. Our symbolic
analysis framework can obviate the need for any custom induction variable recognition
method. Kotha et al [Kotha et al. 2015] present a more advanced method of improving
parallelization of binary executables using cache analysis. These cache analysis tech-
niques are orthogonal to induction variable analysis method and can be applied to any
underlying binary parallelization system.

Symbolic Analysis: There has been an extensive body of work employing symbolic
analysis for analyzing and optimizing programs. Various techniques broadly differ in
the symbolic abstraction which is maintained as part of their analysis. Cousot and
Halbwachs [Cousot and Halbwachs 1978] proposed an early method of using abstract
interpretation to discover linear relationships between variables. Patterson [Patterson
1995] and Harrison [Harrison 1977] present methods for computing value ranges of
program variables and employ them for improving static branch prediction [Patterson
1995]. Rugina et al [Rugina and Rinard 2000] employ symbolic constraint solvers to
determine the bounds of each variable in terms of its symbolic values at the entry point
of the program. Padua et al [Tu and Padua 1995] developed a system for computing
symbolic values of expressions using a demand-driven backward substitution analysis
on Gated-SSA form.

Symbolic analysis has been used extensively in the parallelization community to
support the detection of parallelism and the optimization of programs. Haghighat et
al [Haghighat and Polychronopoulos 1996] (Parafrase-2) present a symbolic analysis
framework for computing a closed form expression of induction variables as well as for
analyzing program properties that are essential in effective detection and exploitation
of parallelization. Blume et al [Blume and Eigenmann 1994] (Polaris) present a sym-
bolic range propagation mechanism to determine the relationship between any two
arbitrary symbolic expressions by maintaining a set of symbolic range constraints for
each program variable. They further employ their symbolic ranges to improve data
dependence queries. The SUIF compiler [Hall et al. 2005] employs symbolic analysis
to represent array indices in a symbolic form of loop index variables to apply array
dependence tests. Fahringer et al [Fahringer and Scholz 1997] present a unified sym-
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bolic evaluation framework, combining both data and control flow, for determining the
symbolic expressions of variables as algebraic functions over program input data.

All the above methods are source-code symbolic analysis techniques and obtain sym-
bolic expressions for only the variables. They lose a great deal of precision when ap-
plied to binary executables directly due to the presence of memory accesses. On the
other hand, we present a symbolic analysis framework for executables which tracks
memory locations as well, and does not lose precision in the presence of memory ac-
cesses.

Van Put et al [Van Put et al. 2007] present a whole program linear constant analysis
to analyze the stack layout of a procedure. Their analysis attempts to detect affine rela-
tions that exist between processor registers. The relations obtained through the anal-
ysis are further employed for program optimizations. However, they do not attempt
to obtain any relations for memory references and each memory access operation is
assumed to produce an unknown value. In contrast, we obtain a precise memory ab-
straction and present an analysis to track symbolic relations across memory references
as well.

Symbolic execution: There has been a great deal of work on symbolic execution in
the field of software testing [Cadar et al. 2008] and test case generation for security
vulnerabilities [Cha et al. 2012].

Symbolic execution and symbolic analysis are similar in an aspect that both use
symbolic constraints to represent values, however they are not interchangeable. Sym-
bolic analysis, as presented in this paper, is an abstract interpretation method which
determines a set of symbolic expressions for each object. On the other hand, symbolic
execution generates and maintains symbolic constraints per program path and does
not generalize constraints to all paths. Symbolic execution relies on constraint solvers
to determine the feasibility of each path and is employed mainly for bug testing of
programs.

Several tools such as Mayhem [Cha et al. 2012] have been proposed to speed up
symbolic execution on executables for detecting bugs and for generating exploit inputs.
They employ Value Set Analysis [Balakrishnan and Reps 2004] to reduce the load on
constraint solver by resolving bounds on several variables. ExecSVA, as presented in our
paper can potentially be employed to further reduce the load on constraint solvers em-
ployed in such symbolic execution tools. Symbolic analysis [Bodı́k and Anik 1998] has
been employed for determining equivalence as well as for pointer analysis in source-
code. ExecSVA can be extended to prove or disprove equivalence, thereby aiding some
decisions in constraint solvers.

Information-flow security: There has been a large number of research tools for
tracking information-flow at runtime. Schwartz et. al. [Schwartz et al. 2010] present
an extensive survey discussing various dynamic taint mechanisms and their respec-
tive limitations. Being dynamic mechanisms, these methods only track information-
flow along the execution path and are unable to provide a complete code coverage
guarantee. On the other hand, ExecSVA and DemandSym are static analyses that track
information-flow along the whole program.

There has been a very limited amount of work on detecting information-flow vio-
lations by statically analyzing the executable code. Major works in this approach are
those suggested by Cova et. al. [Cova et al. 2006], privacy leak detection [Egele et al.
2011] and integer flow vulnerabilities [Wang et al. 2009]. A major limitation of all these
methods is that they ignore memory and aliasing issues in their analysis, resulting in
an imprecise vulnerability detection.

Sridharan et. al. [Sridharan et al. 2007] proposed a novel thin slicing framework for
precisely capturing only the data dependencies in source-code and it has been subse-
quently applied [Tripp et al. 2009] for detecting information-flow vulnerabilities. As
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discussed in Section 2, such source-code methods cannot be applied directly in exe-
cutables due to lack of source-level semantic and syntactic information.

10. CONCLUSIONS

In this paper, we have proposed techniques to obtain a workable and precise repre-
sentation from executables and presented methods to adapt symbolic analysis for ex-
ecutables in a scalable manner. The improved memory model considerably enhances
the precision of our symbolic analysis framework and novel symbolic analysis frame-
work improves the efficacy of various analyses. In the future, we plan to extend this
framework for other purposes such as binary understanding.
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