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Abstract We examine the problem of containing buffer
overflow attacks in a safe and efficient manner. Briefly, we
automatically augment source code to dynamically catch
stack and heap-based buffer overflow and underflow attacks,
and recover from them by allowing the program to continue
execution. Our hypothesis is that we can treat each code
function as a transaction that can be aborted when an at-
tack is detected, without affecting the application’s ability to
correctly execute. Our approach allows us to enable selec-
tively or disable components of this defensive mechanism
in response to external events, allowing for a direct tradeoff
between security and performance. We combine our defen-
sive mechanism with a honeypot-like configuration to detect
previously unknown attacks, automatically adapt an appli-
cation’s defensive posture at a negligible performance cost,
and help determine worm signatures. Our scheme provides
low impact on application performance, the ability to re-
spond to attacks without human intervention, the capacity to
handle previously unknown vulnerabilities, and the preser-
vation of service availability. We implement a stand-alone
tool, DYBOC, which we use to instrument a number of vul-
nerable applications. Our performance benchmarks indicate
a slow-down of 20% for Apache in full-protection mode, and
1.2% with selective protection. We provide preliminary evi-
dence toward the validity of our transactional hypothesis via
two experiments: first, by applying our scheme to 17 vulner-
able applications, successfully fixing 14 of them; second, by
examining the behavior of Apache when each of 154 poten-
tially vulnerable routines are made to fail, resulting in cor-
rect behavior in 139 cases (90%), with similar results for
sshd (89%) and Bind (88%).
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1 Introduction

The prevalence of buffer overflow attacks as a preferred in-
trusion mechanism, accounting for approximately half the
CERT advisories in the past few years [89], has elevated
them into a first-order security concern. Such attacks exploit
software vulnerabilities related to input (and input length)
validation, and allow attackers to inject code of their choice
into an already running program. The ability to launch such
attacks over a network has resulted in their use by a number
of highly publicized computer worms.

In their original form [2], such attacks seek to over-
flow a buffer in the program stack and cause control to
be transferred to the injected code. Similar attacks over-
flow buffers in the program heap, virtual functions and han-
dlers [4, 62], or use other injection vectors such as format
strings. Due to the impact of these attacks, a variety of tech-
niques for removing, containing, or mitigating buffer over-
flows have been developed over the years. Although bug
elimination during development is the most desirable solu-
tion, this is a difficult problem with only partial solutions.
These techniques suffer from at least one of the following
problems:

– There is a poor tradeoff between security and availabil-
ity: once an attack has been detected, the only option
available is to terminate program execution [22, 31],
since the stack has already been overwritten. Although
this is arguably better than allowing arbitrary code to ex-
ecute, program termination is not always a desirable al-
ternative (particularly for critical services). Automated,
high-volume attacks, e.g., a worm outbreak, can exac-
erbate the problem by suppressing a server that is safe
from infection but is being constantly probed and thus
crashes.

– Severe impact in the performance of the protected appli-
cation: dynamic techniques that seek to detect and avoid
buffer overflow attacks during program execution by in-
strumenting memory accesses, the performance degra-
dation can be significant. Hardware features such as the
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NoExecute (NX) flag in recent Pentium-class processors
[31] address the performance issue, but cover a subset of
exploitation methods (e.g., jump-into-libc attacks remain
possible).

– Ease of use: especially as it applies to translating appli-
cations to a safe language such as Java or using a new li-
brary that implements safe versions of commonly abused
routines.

An ideal solution uses a comprehensive, perhaps “ex-
pensive” protection mechanism only where needed and
allows applications to gracefully recover from such at-
tacks, in conjunction with a low-impact protection mech-
anism that prevents intrusions at the expense of service
disruption.

1.1 Our contribution

We have developed such a mechanism that automatically
instruments all statically and dynamically allocated buffers
in an application so that any buffer overflow or under-
flow attack will cause transfer of the execution flow to a
specified location in the code, from which the application
can resume execution. Our hypothesis is that function calls
can be treated as transactions that can be aborted when
a buffer overflow is detected, without impacting the appli-
cation’s ability to execute correctly. Nested function calls
are treated as subtransactions, whose failure is handled in-
dependently. Our mechanism takes advantage of standard
memory-protection features available in all modern oper-
ating systems and is highly portable. We implement our
scheme as a stand-alone tool, named DYBOC (DYnamic
Buffer Overflow Containment), which simply needs to be
run against the source code of the target application. Previ-
ous research [70, 71] has applied a similar idea in the con-
text of a safe language runtime (Java); we extend and mod-
ify that approach for use with unsafe languages, focusing on
single-threaded applications. Because we instrument mem-
ory regions and not accesses to these, our approach does not
run into any problems with pointer aliasing, as is common
with static analysis and some dynamic code instrumentation
techniques.

We apply DYBOC to 17 open-source applications with
known buffer overflow exploits, correctly mitigating the
effects of these attacks (allowing the program to continue
execution without any harmful side effects) for 14 of the ap-
plications. In the remaining three cases, the program termi-
nated; in no case did the attack succeed. Although a con-
trived micro-benchmark shows a performance degradation
of up to 440%, measuring the ability of an instrumented in-
stance of the Apache web server indicates a performance
penalty of only 20%. We provide some preliminary experi-
mental validation of our hypothesis on the recovery of exe-
cution transactions by examining its effects on program ex-
ecution on the Apache web server. We show that when each
of the 154 potentially vulnerable routines are forced to fail,
139 result in correct behavior, with similar results for sshd

and Bind. Our approach can also protect against heap over-
flows.

Although we believe this performance penalty (as the
price for security and service availability) to be generally
acceptable, we provide further extensions to our scheme
to protect only against specific exploits that are detected
dynamically. This approach lends itself well to defending
against scanning worms. Briefly, we use an instrumented
version of the application (e.g., web server) in a sandboxed
environment, with all protection checks enabled. This envi-
ronment operates in parallel with the production servers, but
is not used to serve actual requests nor are requests delayed.
Rather, it is used to detect “blind” attacks, such as when a
worm or an attacker is randomly scanning and attacking IP
addresses. We use this environment as a “clean room” to test
the effects of “suspicious” requests, such as potential worm
infection vectors. A request that causes a buffer overflow on
the production server will have the same effect on the sand-
boxed version of the application. The instrumentation allows
us to determine the buffers and functions involved in a buffer
overflow attack. This information is then passed on to the
production server, which enables that subset of the defenses
that is necessary to protect against the detected exploit. In
contrast with our previous work, where patches were dy-
namically generated “on the fly” [76, 77], DYBOC allows
administrators to test the functionality and performance of
the software with all protection components enabled. Even
by itself, the honeypot mode of operation can significantly
accelerate the identification of new attacks and the genera-
tion of patches or the invocation of other protection mech-
anisms, improving on the current state-of-the-art in attack
detection [37, 65].

We describe our approach and the prototype implemen-
tation in Sect. 2. We then evaluate its performance and effec-
tiveness in Sect. 3, and give a brief overview of related work
in Sect. 4.

2 Our approach

The core of our approach is to automatically instrument parts
of the application source code1 that may be vulnerable to
buffer overflow attacks (i.e., buffers declared in the stack or
the heap) such that overflow or underflow attacks cause an
exception. We then catch these exceptions and recover the
program execution from a suitable location.

This description raises several questions: Which buffers
are instrumented? What is the nature of the instrumentation?
How can we recover from an attack, once it has been de-
tected? Can all this be done efficiently and effectively? In
the following subsections we answer these questions and
describe the main components of our system. The ques-
tion of efficiency and effectiveness is addressed in the next
section.

1 Binary rewriting techniques may be applicable, but we do not fur-
ther consider them due to their significant complexity.
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2.1 Instrumentation

Since our goal is to contain buffer overflow attacks, our
system instruments all statically and dynamically allocated
buffers, and all read and writes to these buffers. In principle,
we could combine our system with a static analysis tool to
identify those buffers (and uses of buffers) that are provably
safe from exploitation. Although such an approach would be
an integral part of a complete system, we do not examine it
further here; we focus on the details of the dynamic protec-
tion mechanism. Likewise, we expect that our system would
be used in conjunction with a mechanism like StackGuard
[22] or ProPolice to prevent successful intrusions against
attacks we are not yet aware of; following such an attack,
we can enable the dynamic protection mechanism to pre-
vent service disruption. We should also note the “prove and
check” approach has been used in the context of software
security in the past, most notably in CCured [57]. In the re-
mainder of this paper, we will focus on stack-based attacks,
although our technique can equally easily defend against
heap-based ones.

For the code transformations we use TXL [40], a hybrid
functional and rule-based language which is well-suited for
performing source-to-source transformation and for rapidly
prototyping new languages and language processors.

The instrumentation is fairly straightforward: we move
static buffers to the heap, by dynamically allocating the
buffer upon entering the function in which it was previously
declared; we deallocate these buffers upon exiting the func-
tion, whether implicitly (by reaching the end of the function
body) or explicitly (through a return statement).

For memory allocation we use pmalloc(), our own ver-
sion of malloc(), which allocates two zero-filled, write-pro-
tected pages surrounding the requested buffer (Fig. 1).

The guard pages are mmap()’ed from /dev/zero as read-
only. As mmap() operates at memory page granularity, ev-
ery memory request is rounded up to the nearest page. The
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Fig. 1 Example of pmalloc()-based memory allocation: the trailer and
edge regions (above and below the write-protected pages) indicate
“waste” memory allocated by malloc()

Fig. 2 First-stage transformation, moving buffers from the stack to the
heap with pmalloc()

pointer that is returned by pmalloc() can be adjusted to im-
mediately catch any buffer overflow or underflow depending
on where attention is focused. This functionality is similar
to that offered by the ElectricFence memory-debugging li-
brary, the difference being that pmalloc() catches both buffer
overflow and underflow attacks. Because we mmap() pages
from /dev/zero, we do not waste physical memory for the
guards (just page-table entries). Some memory is wasted,
however, for each allocated buffer, since we round to the
next closest page. While this could lead to considerable
memory waste, we note that in our experiments the overhead
has proven manageable.

Figure 2 shows an example of such a translation. Buffers
that are already allocated via malloc() are simply switched
to pmalloc(). This is achieved by examining declarations in
the source and transforming them to pointers where the size
is allocated with a malloc() function call. Furthermore, we
adjust the C grammar to free the variables before the func-
tion returns. After making changes to the standard ANSI C
grammar that allow entries such as malloc() to be inserted
between declarations and statements, the transformation step
is trivial. For single-threaded, nonreentrant code, it is possi-
ble to use pmalloc() once for each previously-allocated static
buffer. Generally, however, this allocation needs to be done
each time the function is invoked. We discuss how to mini-
mize this cost in Sect. 2.3.

Any overflow or underflow attack to a pmalloc()-
allocated buffer will cause the process to receive a Segmen-
tation Violation (SEGV) signal, which is caught by a signal
handler we have added to the source code. It is then the re-
sponsibility of the signal handler to recover from such fail-
ures.

2.2 Recovery: execution transactions

In determining how to recover from such exception, we in-
troduce the hypothesis of an execution transaction. Very
simply, we posit that for the majority of code (and for the
purposes of defending against buffer overflow attacks), we
can treat each function execution as a transaction (in a man-
ner similar to a sequence of operations in a database) that can
be aborted without adversely affecting the graceful termina-
tion of the computation. Each function call from inside that
function can itself be treated as a transaction, whose success
(or failure) does not contribute to the success or failure of its
enclosing transaction. Under this hypothesis, it is sufficient
to snapshot the state of the program execution when a new
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transaction begins, detect a failure per our previous discus-
sion, and recover by aborting this transaction and continuing
the execution of its enclosing transaction. Currently, we fo-
cus our efforts inside the process address space, and do not
deal with rolling back I/O. For this purpose, a virtual file
system approach can be employed to roll back any I/O that
is associated with a process. We plan to address this further
in future work, by adopting the techniques described in [83].
However, there are limitations to what can be done, e.g., net-
work traffic.

Note that our hypothesis does not imply anything about
the correctness of the resulting computation, when a failure
occurs. Rather, it merely states that if a function is prevented
from overflowing a buffer, it is sufficient to continue execu-
tion at its enclosing function, “pretending” the aborted func-
tion returned an error. Depending on the return type of the
function, a set of heuristics are employed so as to determine
an appropriate error return value that is, in turn, used by the
program to handle error conditions. Details of this approach
are described in Sect. 2.3. Our underlying assumption is that
the remainder of the program can handle truncated data in a
buffer in a graceful manner. For example, consider the case
of a buffer overflow vulnerability in a web server, whereby
extremely long URLs cause the server to be subverted: when
DYBOC catches such an overflow, the web server will sim-
ply try to process the truncated URL (which may simply be
garbage, or may point to a legitimate page).

A secondary assumption is that most functions that are
thusly aborted do not have other side effects (e.g., touch
global state), or that such side effects can be ignored. Obvi-
ously, neither of these two conditions can be proven, and ex-
amples where they do not hold can be trivially constructed,
e.g., an mmap()’ed file shared with other applications. Since
we are interested in the actual behavior of real software, we
experimentally evaluate our hypothesis in Sect. 3. Note that,
in principle, we could checkpoint and recover from each in-
struction (line of code) that “touches” a buffer; doing so,
however, would be prohibitively expensive.

To implement recovery we use sigsetjmp() to snapshot
the location to which we want to return once an attack has
been detected. The effect of this operation is to save the stack
pointers, registers, and program counter, such that the pro-
gram can later restore their state. We also inject a signal han-
dler (initialized early in main()) that catches SIGSEGV2 and
calls siglongjmp(), restoring the stack pointers and registers
(including the program counter) to their values prior to the
call of the offending function (in fact, they are restored to
their values as of the call to sigsetjmp()):

void sigsegv handler() {
/* transaction(TRANS ABORT); */
siglongjmp(global env, 1);

}
(We explain the meaning of the transaction() call later in

this section.) The program will then re-evaluate the injected

2 Care must be taken to avoid an endless loop on the signal han-
dler if another such signal is raised while in the handler. We apply our
approach on OpenBSD and Linux RedHat.

conditional statement that includes the sigsetjmp() call. This
time, however, the return value will cause the conditional to
evaluate to false, thereby skipping execution of the offending
function. Note that the targeted buffer will contain exactly
the amount of data (infection vector) it would if the offend-
ing function performed correct data-truncation. In our ex-
ample, after a fault, execution will return to the conditional
statement just prior to the call to other func(), which will
cause execution to skip another invocation of other func(). If
other func() is a function such as strcpy(), or sprintf() (i.e.,
code with no side effects), the result is similar to a situa-
tion where these functions correctly handled array-bounds
checking.

There are two benefits to this approach. First, objects
in the heap are protected from being overwritten by an at-
tack on the specified variable since there is a signal violation
when data is written beyond the allocated space. Second,
we can recover gracefully from an overflow attempt, since
we can recover the stack context environment prior to the
offending function’s call, and effectively siglongjmp() to the
code immediately following the routine that caused the over-
flow or underflow. While the contents of the stack can be re-
covered by restoring the stack pointer, special care must be
placed in handling the state of the heap. To deal with data
corruption in the heap, we can employ data structure consis-
tency constraints, as described in [24], to detect and recover
from such errors. Thus, the code in our example from Fig. 2
will be transformed as shown in Fig. 3 (grayed lines indicate
changes from the previous example).

To accommodate multiple functions checkpointing dif-
ferent locations during program execution, a globally de-
fined sigjmp buf structure always points to the latest snap-
shot to recover from. Each function is responsible for saving
and restoring this information before and after invoking a
subroutine respectively, as shown in Fig. 4.

Functions may also refer to global variables; ideally, we
would like to unroll any changes made to them by an aborted
transaction. The use of such variables can be determined
fairly easily via lexical analysis of the instrumented func-
tion: any l-values not defined in the function are assumed to
be global variables (globals used as r-values do not cause
any changes to their values, and can thus be safely ignored).

Fig. 3 Saving state for recovery
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Fig. 4 Saving previous recovery context

Fig. 5 Saving global variable

Once the name of the global variable has been determined,
we scan the code to determine its type. If it is a basic type
(e.g., integer, float, character), a fixed-size array of a basic
type, or a statically allocated structure, we define a tem-
porary variable of the same type in the enclosing function
and save/restore its original value as needed. In the example
shown in Fig. 5, variable “global” is used in other func().

Unfortunately, dynamically allocated global data struc-
tures (such as hash tables or linked lists) are not as straight-
forward to handle in this manner, since their size may be
determined at run time and thus be indeterminate to a static
lexical analyzer. Thus, when we cannot determine the side-
effects of a function, we use a different mechanism, assisted
by the operating system: we added a new system call, named
transaction(). This is conditionally invoked (as directed by
the dyboc flag() macro) at three locations in the code, as
shown in Fig. 5.

First, prior to invoking a function that may be aborted, to
indicate to the operating system that a new transaction has

begun. The OS makes a backup of all memory page permis-
sions, and marks all heap memory pages as read-only. As the
process executes and modifies these pages, the OS maintains
a copy of the original page and allocates a new page (which
is given the permissions the original page had, from the
backup) for the process to use, in exactly the same way copy-
on-write works in modern operating systems. Both copies of
the page are kept until transaction() is called again. Second,
after the end of a transaction (execution of a vulnerable func-
tion), to indicate to the operating system that a transaction
has successfully completed. The OS then discards all origi-
nal copies of memory pages that have been modified during
processing this request. Third, in the signal handler, to indi-
cate to the OS that an exception (attack) has been detected.
The OS then discards all dirty pages by restoring the original
pages.

A similar mechanism could be built around the filesys-
tem by using a private copy of the buffer cache for the pro-
cess executing in shadow mode, although we have not imple-
mented it. The only difficulty arises when the process must
itself communicate with another process while servicing a
request; unless the second process is also included in the
transaction definition (which may be impossible, if it is a re-
mote process on another system), overall system state may
change without the ability to roll it back. For example, this
may happen when a web server communicates with a back-
end database. Our system does not currently address this,
i.e., we assume that any such state changes are benign or ir-
relevant (e.g., a DNS query). Back-end databases inherently
support the concept of a transaction rollback, so it is (in the-
ory) possible to undo any changes.

The signal handler may also notify external logic to in-
dicate that an attack associated with a particular input from
a specific source has been detected. The external logic may
then instantiate a filter, either based on the network source
of the request or the contents of the payload.

2.3 Dynamic defensive postures

“Eternal vigilance is the price of liberty.” – Wendell
Phillips, 1852

Unfortunately, when it comes to security mechanisms,
vigilance takes a back seat to performance. Thus, although
our mechanism can defend against all buffer overflow at-
tacks and (as we shall see in Sect. 3) maintains service avail-
ability in the majority of cases, this comes at the cost of per-
formance degradation. Although such degradation seems to
be modest for some applications (about 20% for Apache, see
Sect. 3), it is conceivable that other applications may suffer
a significant performance penalty if all buffers are instru-
mented with our system (for example, a worst-case micro-
benchmark measurement indicates a 440% slowdown). One
possibility we already mentioned is the use of static analysis
tools to reduce the number of buffers that need to be instru-
mented; however, it is very likely that a significant number
of these will remain unresolved, requiring further protection.
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Fig. 6 Enabling DYBOC conditionally

Our scheme makes it possible to selectively enable
or disable protection for specific buffers in functions, in
response to external events (e.g., an administrator command,
or an automated intrusion detection system). In the simplest
case, an application may execute with all protection dis-
abled, only to assume a more defensive posture as a result
of increased network scanning and probing activity. This al-
lows us to avoid paying the cost of instrumentation most of
the time, while retaining the ability to protect against attacks
quickly. Although this strategy entails some risks (exposure
to a successful directed attack with no prior warning), it may
be the only alternative when we wish to achieve security,
availability, and performance.

The basic idea is to only use pmalloc() and pfree() if a
flag instructs the application to do so; otherwise, the trans-
formed buffer is made to point to a statically allocated buffer.
Similarly, the sigsetjmp() operation is performed only when
the relevant flag indicates so. This flagging mechanism is
implemented through the dyboc flag() macro, which takes
as argument an identifier for the current allocation or check-
point, and returns true if the appropriate action needs to be
taken. Continuing with our previous example, the code will
be transformed as shown in Fig. 6. Note that there are three
invocations of dyboc flag(), using two different identifiers:
the first and last use the same identifier, which indicates
whether a particular buffer should be pmalloc()’ed or be
statically allocated; the second invocation, with a different
identifier, indicates whether a particular transaction (func-
tion call) should be checkpointed.

To implement the signaling mechanism, we use a shared
memory segment of sufficient size to hold all identifiers (1
bit per flag). dyboc flag() then simply tests the appropriate
flag. A second process, acting as the notification monitor
is responsible for setting the appropriate flag, when noti-
fied through a command-line tool or an automated mecha-

nism. Turning off a flag requires manual intervention by the
administrator. We not address memory leaks due to the ob-
vious race condition (turning off the flag while a buffer is
already allocated), since we currently only examine single
threaded cases and we expect the administrator to restart the
service under such rare circumstances, although these can be
addressed with additional checking code. Other mechanisms
that can be used to address memory leaks and inconsistent
data structures are recursive restartability [12] and micro-
rebooting [11]. We intend to examine these in future work.

2.4 Worm containment

Recent incidents have demonstrated the ability of self-pro-
pagating code, also known as “network worms,” to infect
large numbers of hosts, exploiting vulnerabilities in the
largely homogeneous deployed software base (or even a
small homogeneous base [75]), often affecting the offline
world in the process [48]. Even when a worm carries no ma-
licious payload, the direct cost of recovering from the side
effects of an infection epidemic can be tremendous. Coun-
tering worms has recently become the focus of increased re-
search, generally focusing on content-filtering mechanisms.

Despite some promising early results, we believe that in
the future this approach will be insufficient. We base this pri-
marily on two observations. First, to achieve coverage, such
mechanisms are intended for use by routers (e.g., Cisco’s
NBAR); given the routers’ limited budget in terms of pro-
cessing cycles per packet, even mildly polymorphic worms
(mirroring the evolution of polymorphic viruses, more than
a decade ago [84]) are likely to evade such filtering, as
demonstrated recently in [18]. Network-based intrusion de-
tection systems (NIDS) have encountered similar problems,
requiring fairly invasive packet processing and queuing at
the router or firewall. When placed in the application’s crit-
ical path, as such filtering mechanisms must, they will have
an adverse impact on performance, as well as cause a large
number of false positive alerts [60]. Second, end-to-end “op-
portunistic” encryption in the form of TLS/SSL or IPsec is
being used by an increasing number of hosts and applica-
tions. We believe that it is only a matter of time until worms
start using such encrypted channels to cover their tracks.
These trends argue for an end-point worm-countering mech-
anism. Mechanisms detecting misbehavior [94] are more
promising in that respect.

The mechanism we have described allows us to create an
autonomous mechanism for combating a scanning (but not
hit-list) worm that does not require snooping the network.
We use two instances of the application to be protected (e.g.,
a web server), both instrumented as described above. The
production server (which handles actual requests) is operat-
ing with all security disabled; the second server, which runs
in honeypot mode [65], is listening on an unadvertised ad-
dress. A scanning worm such as Blaster, CodeRed, or Slam-
mer (or an automated exploit toolkit that scans and attacks
any vulnerable services) will trigger an exploit on the hon-
eypot server; our instrumentation will allow us to determine
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which buffer and function are being exploited by the partic-
ular worm or attack. This information will then be conveyed
to the production server notification monitor, which will set
the appropriate flags. A service restart may be necessary, to
ensure that no instance of the production server has been
infected while the honeypot was detecting the attack. The
payload that triggered the buffer overflow, the first part of
which can be found on the instrumented buffer, may also be
used for content-based filtering at the border router (with the
caveats described above). Thus, our system can be used in
quickly deriving content-filter rules for use by other mech-
anisms. Active honeypot techniques such as those proposed
in [96] can make it more difficult for attackers to discrimi-
nate between the honeypot and the production server.

Thus, targeted services can automatically enable those
parts of their defenses that are necessary to defend against a
particular attack, without incurring the performance penalty
at other times, and cause the worm to slow down. There is
no dependency on some critical mass of collaborating enti-
ties, as with some other schemes: defenses are engaged in a
completely decentralized manner, independent of other or-
ganizations’ actions. Wide-spread deployment would cause
worm outbreaks to subside relatively quickly, as vulnerable
services become immune after being exploited. This system
can protect against zero-day attacks, for which no patch or
signature is available.

3 Experimental evaluation

To test the capabilities of our system, we conducted a se-
ries of experiments and performance measurements. Re-
sults were acquired through the examination of the applica-
tions provided by the Code Security Analysis Kit (CoSAK)
project.

3.1 Security analysis

To determine the validity of our execution transactions hy-
pothesis, we examined a number of vulnerable open-source
software products. This data was made available through
the Code Security Analysis Kit (CoSAK) project from the
software engineering research group at Drexel university.
CoSAK is a DARPA-funded project that is developing a
toolkit for software auditors to assist with the development
of high-assurance and secure software systems. They have
compiled a database of thirty open source products along
with their known vulnerabilities and respective patches. This
database is comprised of general vulnerabilities, with a large
number listed as susceptible to buffer overflow attacks. We
applied DYBOC against this data set.

Our tests resulted in fixing 14 out of 17 “fixable” buffer
overflow vulnerabilities, a 82% success rate. The remain-
ing 14 packages in the CoSAK suite were not tested because
their vulnerabilities were unrelated (non buffer-overflow). In
the remaining three cases (those for which our hypothesis

appeared not to hold), we manually inspected the vulnera-
bilities and determined that what would be required to pro-
vide an appropriate fix are adjustments to the DYBOC tool
to cover special cases, such as handling multidimensional
buffers and preinitialized arrays; although these are impor-
tant in a complete system, we feel that our initial results were
encouraging.

3.2 Execution transaction validation

In order to evaluate the validity of our hypothesis on the
recovery of execution transactions, we experimentally eval-
uate its effects on program execution on the Apache web
server. We run a profiled version of Apache against a set a
concurrent requests generated by ApacheBench and exam-
ine the subsequent call-graph generated by these requests
with gprof.

The call tree is analyzed in order to determine which
functions are used. These functions are, in turn, employed
as potentially vulnerable transactions. As mentioned previ-
ously, we treat each function execution as a transaction that
can be aborted without incongruously affecting the normal
termination of computation. Armed with the information
provided by the call-graph, we run a TXL script that inserts
an early return in all the functions, simulating an aborted
transaction.

This TXL script operates on a set of heuristics that were
devised for the purpose of this experiment. Briefly, depend-
ing on the return type of the function, an appropriate value
is returned. For example, if the return type is an int, a −1
is returned; if the value is unsigned int, we return 0, etc.
A special case is used when the function returns a pointer.
Specifically, instead of blindly returning a NULL, we exam-
ine if the pointer returned is dereferenced later by the calling
function. In this case, we issue an early return immediately
before the terminal function is called. For each simulated
aborted transaction, we monitor the program execution of
Apache by running httperf, a web server performance mea-
surement tool. Specifically, we examined 154 functions.

The results from these tests were very encouraging; 139
of the 154 functions completed the httperf tests successfully:
program execution was not interrupted. What we found to
be surprising, was that not only did the program not crash
but in some cases all the pages were served correctly. This
is probably due to the fact a large number of the functions
are used for statistical and logging purposes. Out of the 15
functions that produced segmentation faults, four did so at
startup.

Similarly for sshd, we iterate through each aborted func-
tion while examining program execution during an scp trans-
fer. In the case of sshd, we examined 81 functions. Again,
the results were encouraging: 72 of the 81 functions main-
tained program execution. Furthermore, only four functions
caused segmentation faults; the rest simply did not allow the
program to start.

For Bind, we examined the program execution of named
during the execution of a set of queries; 67 functions were
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tested. In this case, 59 of the 67 functions maintained the
proper execution state. Similar to sshd, only four functions
caused segmentation faults.

Naturally, it is possible that Apache, Bind, and sshd will
exhibit long-term side effects, e.g., through data structure
corruption. Our experimental evaluation through a bench-
mark suite, which issues many thousand requests to the same
application, gives us some confidence that their internal state
does not “decay” quickly. To address longer-term deteriora-
tion, we can use either micro-rebooting (software rejuvena-
tion) [11] or automated data-structure repair [24]. We intend
to examine the combination of our approach with either of
these techniques in future work.

3.3 Performance overheads

To understand the performance implications of our protec-
tion mechanism, we run a set of performance benchmarks.
We first measure the worst-case performance impact of DY-
BOC in a contrived program; we then run DYBOC against
the Apache web server and measure the overhead of full pro-
tection.

The first benchmark is aimed at helping us understand
the performance implications of our DYBOC engine. For
this purpose, we use an austere C program that makes an
strcpy() call using a statically allocated buffer as the basis of
our experiment.

After patching the program with DYBOC, we compare
the performance of the patched version to that of the orig-
inal version by examining the difference in processor cy-
cles using the Read Time Stamp Counter (RDTSC), found
in Pentium class processors. The results illustrated by Fig. 7
indicate the mean time, in microseconds (adjusted from
the processor cycles), for 100,000 iterations. The perfor-
mance overhead for the patched, protected version is 440%,
which is expected given the complexity of the pmalloc() rou-

Fig. 7 Micro-benchmark results

Fig. 8 Apache benchmark results

tine relative to the simplicity of calling strcpy() for small
strings.

We also used DYBOC on the Apache web server, version
2.0.49. Apache was chosen due to its popularity and source-
code availability. Basic Apache functionality was tested,
omitting additional modules. Our goal was to examine the
overhead of preemptive patching of a software system. The
tests were conducted on a PC with a 2 GHz Intel P4 pro-
cessor and 1 GB of RAM, running Debian Linux (2.6.5-
1 kernel).

We used ApacheBench, a complete benchmarking and
regression testing suite. Examination of application response
is preferable to explicit measurements in the case of com-
plex systems, as we seek to understand the effect on overall
system performance.

Figure 8 illustrates the requests per second that Apache
can handle. There is a 20.1% overhead for the patched ver-
sion of Apache over the original, which is expected since
the majority of the patched buffers belong to utility func-
tions that are not heavily used. This result is an indication
of the worst-case analysis, since all the protection flags were
enabled; although the performance penalty is high, it is not
outright prohibitive for some applications. For the instru-
mentation of a single buffer and a vulnerable function that is
invoked once per HTTP transaction, the overhead is 1.18%.

3.4 Space overheads

The line count for the server files in Apache is 226,647,
while the patched version is 258,061 lines long, representing
an increase of 13.86%. Note that buffers that are already be-
ing allocated with malloc() (and de-allocated with free()) are
simply translated to pmalloc() and pfree() respectively, and
thus do not contribute to an increase in the line count. The bi-
nary size of the original version was 2,231,922 bytes, while
the patched version of the binary was 2,259,243 bytes, an in-
crease of 1.22%. Similar results are obtained with OpenSSH
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Fig. 9 Simulating the effects of using DYBOC on worm propagation. We vary the percentage of protected hosts and examine the effects on
infection rate and overall susceptible population

3.7.1. Thus, the impact of our approach in terms of addi-
tional required memory or disk storage is minimal.

3.5 Effectiveness as a worm containment strategy

In order to analyze the effectiveness of our technique as a
worm containment strategy, we examine its effects on worm
propagation. In particular, we model the impact of our ap-
proach on a scanning worm with propagation characteris-
tics simlar to Code Red. Worm containment is comprised of
three steps: worm detection, patch generation, and patch dis-
semination. In this work, we address the effects of detection
and patch generation on worm propagation.

Modelling worm propagation has been addressed ex-
tensively in the literature [53, 94, 95, 97] and is of-
ten described using variations on the susceptible-infected-
susceptible (SIS) and susceptible-infected-recovered (SIR)
models borrowed from classic epidemiology research. The
SIR model is more suitable for worm modelling since it
takes into account recovered (patched) systems. We model
our system as a variation to the SIR model where infected
hosts that are protected using DYBOC recover after the time
period required to detect a vulnerability and patch a system.
Specifically, we use a model similar to the one proposed by
Wong et al. [95] where the population size is 10000 and the
probability of selecting a host out of the network’s address
space is 10000/65535.

As illustrated in Fig. 9, we examine the effects of using
DYBOC on worm propagation by varying the percentage of

susceptible hosts that are protected with our tool. Specif-
ically, we vary the percentage of DYBOC protected hosts
from 0% to 20% and inspect the effects on overall infected
population and the rate of infection. When a worm infects a
node that is protected with DYBOC, the node continues as
an infected host for the time required to generate and test a
patch, effectively participating in worm propagation during
this period. We model this period as a random value between
one and three minutes. After this period, the node joins the
group of patched (recovered) hosts.

Upon first glance, it is evident that although DYBOC
mitigates a worm’s effect on the susceptible population, pro-
tection of individual hosts will not suffice as an attempt at
curtailing worm propagation (unless a very large portion
of the population is protected) without further collabora-
tion between hosts. Collaboration techniques may include
patch dissemination and collaborative filtering. Patch dis-
semination techniques have been addressed in [20] and ana-
lyzed by Vojnovic and Ganesh [53] where the authors show
that given significant participation and swift patch genera-
tion a worm’s propagation rate can be restricted if the patch
spreading rate is higher than the worm’s infection rate. In
more detail, they explore patch dissemination using a hi-
erarchical system where hosts responsible for regions can
also act as filters (or firewalls). Nicol et al. [59] also ex-
amine models of active worm defenses; they investigate
the effects of filtering in conjunction with patch dissemina-
tion. Unfortunatelly, their analysis only holds for scanning
worms. Very fast worms (flash, hitlist) tend to have infec-
tion rates that are as high, if not higher, as patch dissemina-
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tion rates. Furthermore, fast scanning worms do not follow
traditional epidemic models since their propagation is often
shaped by the affect they have on the underlying network
infrastructure.

4 Related work

Modeling executing software as a transaction that can be
aborted has been examined in the context of language-based
runtime systems (specifically, Java) in [70, 71]. That work
focused on safely terminating misbehaving threads, intro-
ducing the concept of “soft termination”. Soft termination
allows threads to be terminated while preserving the sta-
bility of the language runtime, without imposing unreason-
able performance overheads. In that approach, threads (or
codelets) are each executed in their own transaction, apply-
ing standard ACID semantics. This allows changes to the
runtime’s (and other threads’) state made by the terminated
codelet to be rolled back. The performance overhead of their
system can range from 200 up to 2,300%. Relative to that
work, our contribution is twofold. First, we apply the trans-
actional model to an unsafe language such as C , addressing
several (but not all) challenges presented by that environ-
ment. Second, by selectively applying transactional process-
ing, we substantially reduce the performance overhead of
the application. However, there is no free lunch: this reduc-
tion comes at the cost of allowing failures to occur. Our sys-
tem aims to automatically evolve code such that it eventually
(i.e., after an attack has been observed) does not succumb to
attacks.

Some interesting work has been done to deal with mem-
ory errors at runtime. For example, Rinard et al. [69] have
developed a compiler that inserts code to deal with writes to
unallocated memory by virtually expanding the target buffer.
Such a capability aims toward the same goal our system
does: provide a more robust fault response rather than sim-
ply crashing. The technique presented in [69] is modified
in [68] and introduced as failure-oblivious computing. Be-
cause the program code is extensively re-written to include
the necessary check for every memory access, their system
incurs overheads ranging from 80 up to 500% for a variety
of different applications.

Modeling executing software as a transaction that can be
aborted has been examined in the context of language-based
runtime systems (specifically, Java) in [70, 71]. That work
focused on safely terminating misbehaving threads, intro-
ducing the concept of “soft termination.” Soft termination
allows threads to be terminated while preserving the sta-
bility of the language runtime, without imposing unreason-
able performance overheads. In that approach, threads (or
codelets) are each executed in their own transaction, apply-
ing standard ACID semantics. This allows changes to the
runtime’s (and other threads’) state made by the terminated
codelet to be rolled back. The performance overhead of their
system can range from 200 up to 2,300%. Relative to that

work, our contribution is twofold. First, we apply the trans-
actional model to an unsafe language such as C , addressing
several (but not all) challenges presented by that environ-
ment. Second, by selectively applying transactional process-
ing, we substantially reduce the performance overhead of
the application. However, there is no free lunch: this reduc-
tion comes at the cost of allowing failures to occur. Our sys-
tem aims to automatically evolve a piece of code such that it
eventually (i.e., after an attack has been observed) does not
succumb to attacks.

Some interesting work has been done to deal with mem-
ory errors at runtime. For example, Rinard et al. [69] have
developed a compiler that inserts code to deal with writes to
unallocated memory by virtually expanding the target buffer.
Such a capability aims toward the same goal our system
does: provide a more robust fault response rather than sim-
ply crashing. The technique presented in [69] is modified
in [68] and introduced as failure-oblivious computing. Be-
cause the program code is extensively re-written to include
the necessary check for every memory access, their system
incurs overheads ranging from 80 up to 500% for a variety
of different applications.

Suh et al. [82], propose a hardware based solution that
can be used to thwart control-transfer attacks and restrict
executable instructions by monitoring “tainted” input data.
In order to identify “tainted” data, they rely on the operating
system. If the processor detects the use of this tainted data
as a jump address or an executed instruction, it raises an
exception that can be handled by the operating system.
The authors do not address the issue of recovering program
execution and suggest the immediate termination of the
offending process. DIRA [78] is a technique for automatic
detection, identification and repair of control-hijaking
attacks. This solution is implemented as a GCC compiler
extension that transforms a program’s source code adding
heavy instrumentation so that the resulting program can
perform these tasks. The use of checkpoints throughout
the program ensures that corruption of state can be de-
tected if control sensitive data structures are overwritten.
Unfortunately, the performance implications of the system
make it unusable as a front line defense mechanism. Song
and Newsome [58] propose dynamic taint analysis for
automatic detection of overwrite attacks. Tainted data is
monitored throughout the program execution and modified
buffers with tainted information will result in protection
faults. Once an attack has been identified, signatures are
generated using automatic semantic analysis. The technique
is implemented as an extension to Valgrind and does not
require any modifications to the program’s source code but
suffers from severe performance degradation.

One of the most critical concerns with recovering from
software faults and vulnerability exploits is ensuring the
consistency and correctness of program data and state. An
important contribution in this area is [25], which discusses
mechanisms for detecting corrupted data structures and fix-
ing them to match some pre-specified constraints. While the
precision of the fixes with respect to the semantics of the
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program is not guaranteed, their test cases continued to op-
erate when faults were randomly injected. Similar results are
shown in [92]: when program execution is forced to take the
“wrong” path at a branch instruction, program behavior re-
mains the same in over half the times.

4.1 Source code analysis

Increasingly, source code analysis techniques are brought to
bear on the problem of detecting potential code vulnerabil-
ities [17]. The simplest approach has been that of the com-
piler warning on the use of certain unsafe functions, e.g.,
gets(). More recent approaches [26, 29, 41, 46, 74, 89] have
focused on detecting specific types of problems, rather than
try to solve the general “bad code” issue, with considerable
success. While such tools can greatly help programmers en-
sure the safety of their code, especially when used in con-
junction with other protection techniques, they (as well as
dynamic analysis tools such as [47, 49]) offer incomplete
protection, as they can only protect against and detect known
classes of vulnerabilities.

MOPS [15, 16] is an automated formal-methods frame-
work for finding bugs in security-relevant software, or veri-
fying their absence. They model programs as pushdown au-
tomata, represent security properties as finite state automata,
and use model-checking techniques to identify whether any
state violating the desired security goal is reachable in the
program. While this is a powerful and scalable (in terms of
performance and size of program to be verified) technique, it
does not help against buffer overflow or other code-injection
attacks. RacerX [27] uses flow-sensitive, inter-procedural
analysis to detect race conditions and deadlocks, geared to-
wards debugging of large multithreaded systems.

4.2 Process sandboxing

Process sandboxing [61] is perhaps the best understood and
widely researched area of containing bad code, as evidenced
by the plethora of available systems like SubOS [39, 38],
Janus [35], Consh [3], Mapbox [1], OpenBSD’s systrace
[66], and the Mediating Connectors [6]. These operate at
user level and confine applications by filtering access to sys-
tem calls. To accomplish this, they rely on ptrace(2), the
/proc file system, and/or special shared libraries. Another
category of systems, such as Tron [8], SubDomain [21] and
others [30, 34, 52, 54, 63, 90, 93], go a step further. They
intercept system calls inside the kernel, and use policy en-
gines to decide whether to permit the call or not, logically
extending the model of standard access control lists, which
typically operate only on filesystem objects [36]. The main
problem with all these is that the attack is not prevented:
rather, the system tries to limit the damage such code can
do, such as obtain super-user privileges. Thus, the system
does not protect against attacks that use the subverted pro-
cess’ privileges to bypass application-specific access con-
trol checks (e.g., read all the pages a web server has access

to), nor does it protect against attacks that simply use the
subverted program as a stepping stone, as is the case with
network worms. [33] identifies several common security-
related problems with such systems, such as their suscepti-
bility to various types of race conditions. In [32], the authors
propose a delegating architecture that uses privileged agents
that handle security-critical operations and a process’s inter-
actions with the rest of the system.

User-level sandboxing approaches [64] using a second
monitor process seem more promising, especially with the
appearance of automated tools [9] and libraries [44] to assist
the programmer; however, these require access and signifi-
cant modifications to the source code of the application.

Model-carrying code [73] augments untrusted code with
a concise high-level model of its security-relevant behavior.
This model helps bridge the gap between high-level security
policies and the binary code itself. The authors show that
this approach can be used to verify whether the code satis-
fied a security policy, or to determine which policy (from a
catalogue of pre-defined ones) is the most appropriate to use.

4.3 Compiler tricks

Perhaps the best-known approach to countering buffer over-
flows is StackGuard [22]. This is a patch to the popular gcc
compiler that inserts a canary word right before the return
address in a function’s activation record on the stack. The
canary is checked just before the function returns, and exe-
cution is halted if it is not the correct value, which would
be the case if a stack-smashing attack had overwritten it.
This protects against simple stack-based attacks, although
some attacks were demonstrated against the original ap-
proach [10], which has since been amended to address the
problem. ProPolice [28] also uses a canary value to detect
stack-based attacks. It also rearranges variables in the stack
so that char buffers are always allocated at the bottom of the
record. Thus, overflowing these buffers cannot harm other
local variables, especially function-pointer variables, avoid-
ing attacks that modify the values of local variables with-
out overwriting the canary. However, attacks against both
ProPolicy and Stackguard have been demonstrated recently
[81], taking advantage of the linear encryption algorithm
(XOR), used to obfuscate/protect pointers, to make a brute-
force attack against the randomizing key feasible.

Another approach implemented as a gcc patch [42] adds
bounds-checking for pointers and arrays without changing
the memory model used for representing pointers. This pre-
vents buffer overflow exploits, but at a high performance
cost, since all indirect memory accesses are checked, greatly
slowing program execution. A somewhat more efficient ver-
sion is described in [72]. Stack Shield [88] is another gcc ex-
tension with an activation record-based approach. The tech-
nique involves saving the return address to a write-protected
memory area, which is impervious to buffer overflows, when
the function is entered. Before returning from the function,
the system restores the proper return address value. Mem-
Guard [22] makes the location of the return address in the
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function prologue read-only and restores it upon function
return, disallowing any writes to the section of memory con-
taining the return address. It permits writes to other locations
in the same virtual memory page, but slows them down con-
siderably because they must be handled by kernel code.

Program shepherding [45] uses an interpreter to verify
the source and target of any branch instruction, based on
some security policy. To avoid the performance penalty of
interpretation, their system caches verified code segments
and reuses them as needed. Despite this, there is a consid-
erable performance penalty for some applications. libverify
[7] dynamically re-writes executed binaries to add run-time
return-address checks.

4.4 Worms

Computer viruses are not a new phenomenon, and they have
been studied extensively over the last several decades. Co-
hen was the first to define and describe computer viruses in
their present form. In [19], he gave a theoretical basis for the
spread of computer viruses. In [80], the authors describe the
risk to the Internet due to the ability of attackers to quickly
gain control of vast numbers of hosts. Their analysis shows
how quickly attackers can compromise hosts using “dumb”
worms and how “better” worms can spread even faster. The
strong analogy between biological and computer viruses led
Kephart et al. to investigate the propagation of computer
viruses based on epidemiological models. In [43], they ex-
tend the standard epidemiological model by placing it on a
directed graph, and use a combination of analysis and sim-
ulation to study its behavior. They conclude that if the rate
at which defense mechanisms detect and remove viruses is
sufficiently high, relative to the rate at which viruses spread,
they are adequate for preventing widespread propagation of
viruses.

The CodeRed worm [13] was analyzed extensively in
[98]. The authors of that work conclude that even though
epidemic models can be used to study the behavior of Inter-
net worms, they are not accurate enough because they cannot
capture some specific properties of the environment these
operate in: the effect of human countermeasures against
worm spreading (i.e., cleaning, patching, filtering, discon-
necting, etc.), and the slowing down of the worm infection
rate due to the worm’s impact on Internet traffic and infras-
tructure. They derive a new general Internet worm model
called two-factor worm model, which they then validate in
simulations that match the observed Code Red data available
to them. Their analysis seems to be supported by the data
on Code Red propagation in [55] and [79] (the latter dis-
tinguishes between different worms simultaneously active).
A similar analysis on the SQL “Slammer” worm [14] can
be found in [85]. More recent analyses [97] show that it is
possible to predict the overall vulnerable population size us-
ing Kalman filters early in the propagation cycle of a worm,
allowing for detection of a fast-spreading worm when only
1%–2% of vulnerable computers on the network have been
infected.

CodeRed inspired several countermeasures, such as La
Brea [51], which attempts to slow the growth of TCP-
based worms by accepting connections and then block-
ing on them indefinitely, causing the corresponding worm
thread to block. Under the connection-throttling approach
[87], each host restricts the rate at which connections may
be initiated. If adopted universally, such an approach can
reduce the spreading rate of a worm by up to an or-
der of magnitude, without affecting legitimate communi-
cations.

[56] describes a design space of worm containment sys-
tems using three parameters: reaction time, containment
strategy, and deployment scenario. The authors use a combi-
nation of analytic modeling and simulation to describe how
these design factors impact the dynamics of a worm epi-
demic. Their analysis suggests that there are significant gaps
in containment defense mechanisms that can be employed,
and that considerable more research, and better coordination
between ISPs and other entities, is needed when employ-
ing network-based defenses. In [91], the authors describe
a mechanism for pushing to workstations vulnerability-
specific, application-aware filters expressed as programs in a
simple language. These programs roughly mirror the state of
the protected service, allowing for more intelligent applica-
tion of content filters, as opposed to simplistic payload string
matching.

The HACQIT architecture [67] uses various sensors to
detect new types of attacks against secure servers, access to
which is limited to small numbers of users at a time. Any
deviation from expected or known behavior results in the
possibly subverted server to bbe taken off-line. Similar to
our approach, a sandboxed instance of the server is used to
conduct “clean room” analysis, comparing the outputs from
two different implementations of the service (in their proto-
type, the Microsoft IIS and Apache web servers were used to
provide application diversity). Machine-learning techniques
are used to generalize attack features from observed in-
stances of the attack. Content-based filtering is then used,
either at the firewall or the end host, to block inputs that
may have resulted in attacks, and the infected servers are
restarted. Due to the feature-generalization approach, trivial
variants of the attack will also be caught by the filter. [86]
takes a roughly similar approach, although filtering is done
based on port numbers, which can affect service availability.
Cisco’s Network-Based Application Recognition (NBAR)
allows routers to block TCP sessions based on the presence
of specific strings in the TCP stream. This feature was used
to block Code-Red probes, without affecting regular web-
server access.

HoneyStat [23] runs sacrificial services inside a virtual
machine, and monitors memory, disk, and network events to
detect abnormal behavior. For some classes of attacks (e.g.,
buffer overflows), this can produce highly accurate alerts
with relatively few false positives, and can detect zero-day
worms. Although the system only protects against scanning
worms, “active honeypot” techniques [96] may be used to
make it more difficult for an automated attacker to differen-
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tiate between HoneyStats and real servers. The Internet Mo-
tion Sensor [5] is a distributed blackhole monitoring system
aimed at measuring, characterizing, and tracking Internet-
based threats, including worms.

Lin, Ricciardi, and Marzullo study how computer worms
affect the availability of services. In [50], they study the fault
tolerance of multicast protocols under self-propagating virus
attacks.

5 Conclusion

The main contribution of this paper is the introduction and
validation of the execution transaction hypothesis, which
states that every function execution can be treated as a trans-
action (similar to a sequence of database operations) that can
be allowed to fail, or forced to abort, without affecting the
graceful termination of the computation. We provide some
preliminary evidence on the validity of this hypothesis by
examining a number of open-source software packages with
known vulnerabilities.

For that purpose, we developed DYBOC, a tool for in-
strumenting C source code such that buffer overflow attacks
can be caught, and program execution continue without any
adverse side effects (such as forced program termination).
DYBOC allows a system to dynamically enable or disable
specific protection checks in running software, potentially
as a result of input from external sources (e.g., an IDS en-
gine), at an very high level of granularity. This enables the
system to implement policies that trade off between perfor-
mance and risk, retaining the capability to re-evaluate this
trade-off very quickly. This makes DYBOC-enhanced ser-
vices highly responsive to automated indiscriminate attacks,
such as scanning worms. Finally, our preliminary perfor-
mance experiments indicate that: (a) the performance im-
pact of DYBOC in contrived examples can be significant,
but (b) the impact in performance is significantly lessened
(less than 2%) in real applications, and (c) this performance
impact is further lessened by utilizing the dynamic nature of
our scheme.

Our plans for future work include enhancing the capa-
bilities of DYBOC by combining it with a static source-code
analysis tool, extending the performance evaluation, and fur-
ther validating our hypothesis by examining a larger number
of applications.
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