Template-based Signaling Compression for
Push-To-Talk over Cellular (PoC)

Andrea G. Forte and Henning Schulzrinne
Department of Computer Science
Columbia University
{andreaf, hgs} @cs.columbia.edu

Abstract—The Session Initiation Protocol (SIP) has been cho-
sen as the standard signaling protocol for the IP Multimedia
Subsystem (IMS). SIP is a text-based protocol with messages
often exceeding 1000 bytes in size, thus causing high call set-up
delays on low bit-rate links.

Signaling Compression (SigComp) is currently the only option
cellular operators have for the compression of signaling messages.
We study the performance of SigComp, showing that SigComp
cannot achieve the level of compression required by Push-To-Talk
over Cellular (PoC) services in the IMS. Furthermore, we propose
an alternative compression mechanism, namely Template Based
Compression (TBC), and show through measurements how we
can achieve higher compression ratios than SigComp, satisfying
the requirements for PoC on low bit-rate links.

I. INTRODUCTION

Push-To-Talk over Cellular (PoC) has seen a rapid growth
in recent years. Various cellular carriers such as Nextel and
Sprint offer PoC solutions usually combined with rich pres-
ence. PoC is a half-duplex technology that allows users to
communicate with each other in a walkie-talkie fashion. Such
communication can be point-to-point and point-to-multipoint.

The IP Multimedia Subsystem (IMS) represents the next
evolution in fixed and mobile network access and it is currently
being deployed in many cellular networks. In the IMS, differ-
ent access technologies converge under one single architecture
based on the Internet Protocol (IP). This convergence allows
for the delivery of Internet services regardless of the access
network used. We can think of the IMS as an abstraction layer
between the service layer and the transport layer.

The IMS introduces many new network elements. For the
purpose of this paper, however, we focus only on the User
Equipment (UE) and the Proxy-Call Session Control Function
(P-CSCF). The UE is the IMS end-point, while the P-CSCF
represents the first point of attachment the UE has with the
IMS. Once the UE connects to the IMS, its P-CSCF will
remain the same for the whole duration of the IMS registration.
The path between UE and P-CSCF usually includes a wireless
link called the air link.

In order to facilitate the integration between IMS and the
Internet, the protocols used in the IMS were chosen from
protocols standardized by the Internet Engineering Task Force
(IETF). In particular, the Session Initiation Protocol (SIP)[1]
was chosen as the signaling protocol for the IMS and it has
been mandatory since release 5. Using SIP terminology, the

UE is the equivalent of a SIP user agent (UA) and the P-CSCF
is the equivalent of a SIP proxy server.

SIP was designed as a text-based protocol to simplify
building new SIP-based services, create new SIP extensions
and debug implementations. Since SIP was designed for high
bit-rate links, the size of SIP messages did not really matter.
For high bit-rate links, the size of SIP messages does not
introduce a significant delay in the call set-up process. Things,
however, change when we consider IMS. In the IMS we have
different access technologies such as UMTS and GPRS that
have significantly lower bit-rates than, for example, IEEE
802.11 and IEEE 802.16. In such cases, the large size of
SIP messages significantly contributes to the call set-up delay,
making the call set-up time too big for real-time applications
such as voice and PoC.

In order to address the large size of SIP messages and make
SIP more “friendly” for low bit-rate links, the IETF stan-
dardized a general compression framework called Signaling
Compression (SigComp) [2]. SigComp provides a high degree
of flexibility in that it can support any type of dictionary-based
compression algorithm, but it does so by sacrificing perfor-
mance (see Section IV). By using SigComp, SIP messages
are in many cases significantly shorter than their uncompressed
version. This, however, is still not enough for applications such
as PoC where the Post Dial Delay (PDD) has to be on the order
of one second or less (see Section VI).

The main contributions of this paper are listed below.

o We study and evaluate SigComp performance for differ-

ent SIP flows and show the call set-up delay for each.

o We show how SIP introduces the largest contribution to
the call setup delay. In particular, in our measurements,
the exchange of SIP messages took several seconds to
complete.

o SIP affects only one component of the total call set-
up delay, that is, the air-link delay. Because of this,
a SigComp-based solution is limited since it does not
improve on other components of the call set-up delay
such as the air-link setup delay.

e SigComp has intrinsic limitations due to its architecture
in order to achieve a high degree of flexibility. We analyze
such limitations and show why SigComp is not suitable
for achieving very high compression for smaller packets.

o We analyze compression techniques based on text sub-
stitution such as those of the Lempel-Ziv (LZ) family,



pointing out limitations and shortcomings relevant to the
present context.

o We introduce a new compression mechanism based on the
concept of templates called Template Based Compression
(TBC) that cellular operators can use in their network.
We show how such mechanism makes it possible to
achieve the delay requirements of the most time-critical
applications such as PoC in the IMS. We compare the
performance of the proposed compression mechanism
with those of SigComp and show how the proposed
compression mechanism always outperforms SigComp.

« Finally, we show how including our compression mech-
anism within the SigComp architecture is not desirable
since SigComp becomes counter-productive as the size
of messages becomes smaller.

The rest of the paper is organized as follows. In Section
IT we present current approaches for compressing signaling
messages and Section III describes the delays in the IMS for
call setup. In Section IV we describe SigComp operations,
pointing out advantages and disadvantages and in Section V
we introduce TBC. Section VI shows and compares perfor-
mance of SigComp and TBC. Finally, Section VII concludes
the paper.

II. RELATED WORK

The use of compression in network protocols is not new.
Header compression such as Robust Header Compression
(ROHC) [3] is used for the compression of protocol headers;
Transport Layer Security (TLS)[4] and File Transfer Proto-
col (FTP)[5] have a compressed transmission mode and IP
compression (IPComp) [6] is used to compress [P datagrams.
All of these compression protocols, however, are not suitable
for compression of application layer messages and while they
can complement a compression mechanism at the application
layer, they cannot replace it. In particular, TLS and IPComp
use LZ-based compression for messages at the transport and
IP layer respectively, without discerning between applica-
tions. This makes LZ-based compression less efficient since
application-specific redundancy cannot be fully exploited.

Signaling compression, is relatively new and has attracted
more interest in recent years, especially after SIP became
the signaling protocol for the IMS. SigComp [2], a general
framework for signaling compression, was standardized by the
IETF in 2005. We present the SigComp architecture in Section
IV and compare it with our approach throughout the paper.

In [7], Akhtar et al. introduce a new entity called Encoding
Assistant (EA) on both the UE and the P-CSCF. The EA is
placed between the application layer and the SigComp layer
and takes care of compressing some of the dynamic content
of SIP messages such as SIP Uniform Resource Identifiers
(URIs). Together with the EA, new SIP option tags and new
SIP headers are introduced. The EA inserts new headers
in the SIP message to be compressed. These new headers
contain an index value that points to a particular entry in the
Identity List. The Identity List is a list of maximum 16 entries
containing identity information for a specific user. This list

is used for indexing the content of the Via, From, Contact
and P-Preferred-ldentity headers. The use of an indexed list
aims to reduce the size of the message by replacing a string
with a number. This advantage, however, is not significant
since the new headers added to contain this index are 14 bytes
long or more. The performance of such mechanism have not
been proven. Furthermore, SigComp Extended Operations [8]
introduces the concept of User Specific Dictionary (USD)
which offers similar functionalities to the ones of the EA in
that it allows for a better compression of the dynamic content
specific to each user, and this without the introduction of any
new header or tag. Because of this, we see little or no use in
adopting the proposal in [7].

Viamonte et al. in [9] introduce the concept of Session
Description Protocol (SDP) template for reducing the ses-
sion setup delay for streaming services using the Real-Time
Streaming Protocol (RTSP). Here, the streaming server builds
a template for the SDP part of the RTSP packet. This template
contains all the SDP fields present in the packet and their
values. Those SDP fields whose value is not known when
the template is built, are still present in the template although
empty. For those SDP fields that are empty in the template,
their value is sent in the 200 OK answering the RTSP
DESCRIBE request. In such case the order of the variables
in the 200 OK has to be the same as in the template. Each
field is not split in a variable part and a fixed part; it is
either completely present in the template or it is sent later.
The server sends to the client a URL where to download the
template. When the template is no longer applicable because
some parameters have changed, the server will send the client
a new URL where to find the updated template.

The approach proposed in [9] can be seen as a specific case
of our TBC, although with some important differences.

In [9] the way the template is built and used is specific
to the characteristics of streaming sessions and it addresses
only SDP content for RTSP messages. Many parameters that
we consider as variable such as codecs and port numbers,
are considered as constant and therefore part of the SDP
template. Furthermore, new headers advertising the support
of SDP templates and the URLs where to download such
templates are included in packets exchanged during time-
critical operations. This introduces the possibility of SDP
templates negatively affecting the session setup delay. In TBC,
information regarding templates is never sent during time-
critical operations, hence TBC always improves the setup
delay. Finally, the variable fields not included in the SDP
template are sent in the 200 OK without any encoding. In
TBC we encode variable content that is not included in the
template to further improve compression.

III. DELAYS IN THE IMS

In terms of delay we look at the call setup delay and PDD.
The call setup delay is the time between the INVITE request
and the 200 OK. The PDD is the time from when users press
the “call” button to when they receive the ring-back, that is,
the 180 Ringing (see Fig. 1).
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Fig. 1. SIP flow for call set-up

Generally speaking, users do not embrace a new service
when this new service offers performance inferior to the
service it replaces. This is the case of a GSM network and an
IMS-based wireless network, for example. In a GSM network
the typical call set-up delay is 2 seconds for a mobile-to-
PSTN call, 2.2 seconds for a PSTN-to-mobile call and about
4 seconds for a mobile-to-mobile call' [10]. As we show in
Section VI, in the IMS, the air-link delay alone can be as
high as 7 seconds. SigComp reduces air-link delay down to
about 2 seconds. SigComp, however, improves only on the
air-link delay, leaving other causes of delay unaffected. This
makes a SigComp-only approach not sufficient for real-time
applications such as PoC where PDD has to be on the order
of one second or less.

Fig. 1 shows a typical call set-up flow for a SIP UA in
the IMS. For each packet we have to consider the following
delays: air-link setup delay, node processing delay, long dis-
tance and back-hauls delay, and air-link delay. The one-way
end-to-end delay is given by:

b =N- (TX% + Tj{i%un + Tnode + TBH) + Tsetup (1)
with L  RTT ,
72T 5 2
where N is the number of packets transmitted, 7,7, is the
air-link delay for the uplink, Tg‘j{;’" is the air-link delay for
the downlink, 7},,4. is the node processing delay, and T'p g
is the back-hauls delay. Finally, Tsctyp is the air-link setup
delay which is the time needed to setup the air-link before the
first message can be sent and/or received on the data channel.
Tsetup 1s usually 1400 ms, that is 700 ms on the sender side
and 700 ms on the receiver side (see Fig. 1). In Eq. (2), L is
the message size, R is the link bit-rate and RT'T is the Round-
Trip Time. Throughout our calculations we assume the RTT
to equal 140ms [11].
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Fig. 2. Architecture of a SigComp end-point

SigComp helps in reducing the overall call set-up delay
by reducing T}, and 749", Other delays and in particular
Tsetup are not affected. We focus our attention on Tlepyyp
because T’y is responsible for a significant part of the total
delay. In particular, Tict,,, can be removed if at call set-up time
the control channel can be used instead of the data channel.
This, however, means that, for 1IXEV—DO rev. A, the first
INVITE and subsequent packets need to be no larger than
211 bytes for the uplink and no larger than 113 bytes for the
downlink [7].

As we show in Section VI-B, SigComp cannot compress
the INVITE down to the required sizes, while TBC can.

IV. SIGNALING COMPRESSION (SIGCOMP)
A. Overview

Figure 2 shows the architecture of a SigComp end-point.
We can consider SigComp as a new layer between application
layer and transport layer. In particular, resources in SigComp
are assigned based on compartments. A compartment is a
particular grouping of messages that is specific to a particular
application. In SIP, a compartment can be identified with a
dialog. When an application wants to use SigComp, it has
to provide the application message to compress and a unique
compartment identifier. Messages belonging to the same SIP
dialog have the same compartment identifier. This unique iden-
tifier is used by the SigComp layer to allocate resources such
as state memory, Universal Decompressor Virtual Machine
(UDVM) memory and compressor and also to access previous
state.

The main component of the SigComp architecture is the
UDVM which is a normal virtual machine, like the Java virtual
machine, but optimized for decompression operations. The
UDVM machine language is called bytecode and it is used
to implement decompression algorithms that the UDVM has
to run in order to decompress messages. Other components
of the SigComp architecture are the Compressor Dispatcher,
Decompressor Dispatcher, and the State Handler.
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B. Overhead

SigComp was designed so that it would not be tied to
a specific compression algorithm. This flexibility, however,
introduces a cost in terms of complexity and packet size.

Aside from the performance of the particular compression
algorithm used, SigComp has some significant drawbacks that
do not make it the best choice when the size of the compressed
packets needs to be very small. Fig. 3 shows the structure
of a SigComp packet. All the fields other than the remaining
SigComp message field form the packet header. Fig. 3(a) shows
a SigComp message when a previous saved state is accessed on
the remote end-point. Fig. 3(b) shows a SigComp message that
does not point to a previous saved state but rather contains the
UDVM bytecode. Also, SigComp uses a feedback mechanism
to facilitate the exchange of state-related information and other
parameters between compressor and UDVM.

As we can see, SigComp introduces various headers, adding
to the total packet size. The feedback item can have a size of up
to 128 bytes and the UDVM bytecode can be of variable length
as specified in the code_len field. Its size can be anywhere
between 0 and 4095 bytes.

All of this clearly shows how even one single feedback item
may compromise any compression effort aimed to reach the
size requirements specified in Section III.

C. Compression

SigComp uses compression based on text substitution such
as Lempel-Ziv 77 (LZ77) and Deflate’. Figure 4 shows the
basic idea behind this family of compression algorithms. As
we can see, the compression is based on the construction of
an adaptive dictionary containing a number of unique strings.
Every time a new string that is not present in the dictionary is
found in the look-ahead buffer, it is added to the dictionary.
Any occurrence of any string already present in the dictionary
is replaced with an {offset, length} pair which points to the
same string in the adaptive dictionary. In this way, string
repetitions are replaced by {offset, length} pairs. The longer
the string replaced and the more frequent the repetitions, the
higher the compression.

’Deflate uses LZ77 for the elimination of duplicate strings and Huffman
coding for bit reduction.
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Fig. 4. Compression based on text substitution

TABLE I
FIRST PHASE OF LZ COMPRESSION FOR THE FIRST INVITE REQUEST
(ALL VALUES IN BYTES)

Short Flow | Long Flow
Original size 1350 1253
From previous messages 790 989
From itself 577 596
Not found 395 212

Unfortunately, this kind of compression has several draw-
backs.

e The initial compression is low. At the beginning of a
sequence, the adaptive dictionary has yet to be built and
the frequency of string repetitions is low. Static dictio-
naries such as the SIP static dictionary [12], can help in
reducing this problem. Their use is however very limited
due to the fact that the information they provide helps
only for the very first stages of the compression process
while consuming a significant amount of resources. Many
SigComp implementations, such as Open SigComp [13],
do not use static dictionaries for compression.

e It is inefficient for smaller sequences. Usually, short
sequences have fewer string duplicates. The longer the
sequence to compress, the higher the probability of find-
ing string duplicates.

o It is inefficient for short strings. For very short strings,
the pair {offset, length} can take more bytes than the
actual string it is replacing. In Deflate, for example, string
duplicates that are shorter than four bytes are ignored.

In order to find out the best possible compression achievable
with compressors of the LZ family, we performed some
preliminary measurements on two types of IMS flows, a short
flow and a long flow. The short flow follows the basic SIP call
setup flow (REGISTER—200— INVITE—180—200— ACK),
while the long flow is similar to the one shown in Fig.
1, but with multiple messages exchanged also before the
INVITE request. We implemented the first phase of LZ-based
compression, that is, identify if a string or sub-string had ever
been encountered before in either the same packet or previous
packets. In our implementation we use the same convention as
in Deflate, that is, strings of three bytes or shorter are consid-
ered as not found in the adaptive dictionary. Furthermore, we
do not limit the size of the adaptive dictionary, so that older
state is not discarded because of newer state.

As we can see from Table I, for the short flow we found
that for the first INVITE request, 395 bytes out of 1350 bytes
were not found in both previous lines of the same packet
and in previous packets. For the long flow more repetitions



were found and only 212 bytes out of 1253 bytes were not
found. This shows that if we apply LZ to the first INVITE,
in theory, we have at best a compressed size of 395 bytes
for the short flow and 212 bytes for the long flow. In reality,
the compressed size is bigger for both flows since we have to
consider the extra bytes that each {offset, length} pair takes,
plus the size of the adaptive dictionary which is included in
the compressed packet. Furthermore, in reality the adaptive
dictionary is limited in size, eventually causing loss of older
state, thus increasing the overall number of bytes not found.

Although Huffman coding might help to push compression
a little further, it is clear that compressing a message that is
1300 bytes long to about 100 bytes or less is not possible with
LZ-based compression.

D. SIP Static Dictionary

The use of the static dictionary improves the compression
ratio for the initial messages by providing some initial content
for the adaptive dictionary that would otherwise be empty. As
we will see in Section VI-B, not using a static dictionary leads
to a compression ratio above 100% for the initial messages.
This happens until sufficient state is built. A compression ratio
above 100% means that the size of the compressed messages
is larger than the one of the original messages. Typically,
however, this happens only for the initial REGISTER—200
OK handshake.

The SIP static dictionary has a size of 3468 bytes. After a
few messages have been exchanged within the same dialog,
most or part of the static dictionary is replaced in the state
memory by more recent state and compression is performed
according to the new state.

The added complexity and the fast aging of state based on
the static dictionary make the use of static dictionaries very
limited, with many implementations not supporting them at
all. Furthermore, static dictionaries improve the compression
of only the very first messages of a flow, typically the
initial REGISTER—200 OK handshake, leaving time-critical
messages unaffected. Because of all of these reasons, static
dictionaries are not used in our experiments.

E. Extended Operations

SigComp Extended Operations are defined in RFC 3321 [8].
New mechanisms are proposed in order to further improve
compression. All the proposed mechanisms try to improve on
how state is created and destroyed so that unnecessary state
deletions are avoided and new state is created more efficiently.
Some of the mechanisms proposed in [8] are dynamic com-
pression, shared compression, User Specific Dictionary (USD)
and implicit deletion for dictionary update. Of all the proposed
mechanisms, USD is the most relevant to the present context.

USD is a dictionary built on the assumption that a {user,
device} pair produces, over time, the same content for those
headers in a SIP message related to the capabilities of the
device or to the user. USD, however, still uses the typical
conventions of LZ-based compression algorithms. It just repre-
sents a different dictionary used in the LZ-based compression.

Because of this, although USD improves on the compression
of dynamic content, it still suffers from all the drawbacks
previously discussed for LZ-based compression. This limits
the improvements achievable with USD. Moreover, the way
the USD is built and how it is exchanged between SIP
entities is not standardized and as of the writing of this paper,
SigComp implementations supporting Extended Operations
are not available.

For all of these reasons, and because of the limited improve-
ments that USD would introduce, we do not consider USD or
any of the mechanisms proposed in [8] in the rest of the paper.

F. Advantages and Disadvantages

To summarize, the advantages in using SigComp are that it
has already been standardized by the IETF, is mandatory in
the IMS and there are already implementations available such
as Open SigComp [13].

The disadvantages are that it is very complex and heavy,
LZ-based compression is not enough for many delay sensitive
applications such as PoC. Furthermore, SigComp introduces
significant overhead regardless of the compression algorithm
used.

V. TEMPLATE-BASED COMPRESSION (TBC)

As we have explained in Section III, in order to significantly
reduce the call setup time and PDD, we need to compress the
messages so to achieve a maximum size of 211 bytes for the
uplink and 113 bytes for the downlink. This is because we do
not only want to reduce the air-link delay, but we also want
to remove the air-link setup delay (see Eq. (1)) and in order
to remove the air-link setup delay, we need to send the Data
Over the Signaling channel (DOS).

As we show in Section VI, SigComp cannot satisfy the
message size requirements for DOS while TBC can. In this
section we describe how TBC works.

A. Overview

The basic idea behind TBC is that the content of many
headers and SDP parameters in a SIP message does not
significantly change over time. There are headers that do not
change at all throughout different sessions, there are headers
that do not change within a session and there are headers
whose value changes on a per-call basis.

By using these characteristics of SIP headers and SDP lines,
we build templates for SIP messages. A template contains the
part of a message that is likely not going to change. In doing
so, UE and P-CSCF need to exchange only the variable parts
of a message so that the template can be “filled in” and the
whole SIP message can be correctly re-constructed at both the
UE and P-CSCF. By using templates we reduce the amount
of information that needs to be exchanged between UE and
P-CSCF. Also, in order to minimize the message size as much
as possible, we encode such information.

Templates can be exchanged ahead of time-sensitive op-
erations such as during registration. When the P-CSCF has
to send an INVITE to a UE, it checks its outgoing-INVITE



template for that particular UE. The P-CSCF extracts from the
INVITE the variable content that is not present in the template
and encodes it. The encoded values are then put in the final
packet following a specific order and the final packet is sent to
the UE. The ordering of the encoded values is very important
since it allows the UE to know which value belongs to which
header in the template. After receiving the encoded packet,
the UE extracts the encoded values from the packet, decodes
them and matches them to the corresponding headers in the
incoming-INVITE template. In doing so, the INVITE has been
successfully re-constructed.

The same process is performed in the other direction, from
the UE to the P-CSCFE.

TBC compresses a message in the following steps:

1) Header Stripping. Unnecessary headers are stripped from
the message.

2) Template. The message is filtered according to a template
so that only the dynamic content not present in the
template is extracted from the message and eventually
sent to the remote end-point.

3) Shared Dictionary. The Shared Dictionary (SD) is
searched for matching strings among the ones present
in the dynamic content extracted at step 2. If a match is
found, the string is replaced by the corresponding index
in the dictionary.

4) Encoding. The dynamic content is encoded so to occupy
the minimum number of bytes.

Only after all of the above steps have been completed, the
message is ready to be sent.

We now look in more detail at each one of the previous
steps.

B. Header Stripping

Some SIP headers are present only in incoming mes-
sages while others are present only in outgoing messages.
For example, headers such as Route, Security-Verify, P-
Preferred-ldentity, Proxy-Require are present in outgoing
INVITE requests but not in incoming INVITE requests. On the
other hand, headers such as Record-Route and P-Asserted-
Identity are present in incoming INVITE requests but not in
outgoing ones. This classification helps us in knowing what
headers to expect when building a template for an outgoing or
incoming SIP message. Furthermore, there are headers whose
value is relevant only to SIP proxies and not to SIP UAs. If we
assume SIP end-points to act as a SIP UA, for packets sent by
the P-CSCF to the SIP UA we can safely ignore such headers.
In order to exploit this behavior, before building a template,
SIP headers that are not relevant to a SIP UA are removed
from the message by the P-CSCF. Some of the headers that
we strip from a SIP message are shown in Table II.

Let us consider, for example, the case of the Via header
for an incoming SIP INVITE. The Via header in this case is
populated with all the SIP proxies the message has traversed
in order to reach its destination. This is done so that the
response to the SIP INVITE can follow the same path of the
SIP INVITE itself. However, all the information the UA really

TABLE II
ACTIONS ON SIP HEADERS

Stripped SW/HW Token Typical
Header (UA as receiver) | dependent values
Max—Forwards X
Via X
User—Agent X
P—Alerting—Mode X
Record—Route X
Session—Expires X X 1800, 3600
Supported X X 100rel, timer
Privacy X None, id
Require X Precondition
REGISTER, BYE,
Allow X X INVITE, . . .
Accept—Contact X ,+g.ploc.'talkbulrst,
require;explicit
B Application/sdp,
Content—Type X mulitpart/mixed
Application/sdp,
Accept X text/html

needs is the first hop where to send its response, that is, the IP
address of the P-CSCF the UA is currently attached to. The
UA already has this information, therefore the P-CSCF does
not need to send the content of the Via header to the UA. The
response to the incoming INVITE sent by the UA will have
a Via header containing only the address of its P-CSCF. The
P-CSCF will then make sure to re-insert all the missing entries
from the Via header received in the initial incoming INVITE
into the UA response when re-constructing the packet for such
response.

C. Templates

Generally speaking, we can classify SIP headers into four
categories:

o Variable: headers that can change between calls.

e Semi-variable: headers that are session or registration
dependent.

o Semi-constant: headers that are device dependent in either
hardware, software or both.

e Other: all those headers that do not belong to any of
the previous groups such as headers that change within a
dialog.

Furthermore, there are headers that occur more frequently than
others and there are headers that are present only in requests
and headers that are present only in responses. All of these
factors need to be taken into consideration when defining a
TBC mechanism for SIP messages.

The construction of a template for a particular SIP mes-
sage is based on the header classification that we have just
introduced. In particular, headers belonging to the group of
semi-constant and semi-variable are included in the template
together with their value. Headers belonging to the group
of variable and other are included in the template without
any value. The content of those headers whose value is not
included in the template represents the dynamic information
that has to be sent on the air. Mixed situations are also possible
where a semi-variable header, for example, can have a single
parameter whose value is part of the dynamic content.

For semi-variable headers, templates can be updated be-
tween registrations to reflect a change in their value. Semi-



constant headers allow us to tailor templates according to a
particular hardware device or piece of software. In this last
case, we can build templates specific to particular brands
since order and header fields do not change for devices of
the same brand. For example, if a device is running the
Columbia University SIP client, we know to use the templates
for Columbia University or if a device is a Linksys device, we
know to use the templates for the Linksys brand.

Without the notion of software/hardware-dependent headers
we would not be able to consider as constant many headers
that indeed can be considered as such.

Table III lists a sample number of SIP headers and their
classification as discussed above. Their frequency of use is
also shown.

Templates for outgoing messages and incoming messages
are different even though the type of message is the same.
This is because for an outgoing INVITE request, for example,
the number of headers whose value is known is much higher
than for an incoming INVITE request. An incoming INVITE
request can come from anywhere and anyone, therefore the a
priori knowledge we have on such INVITE request is small.

D. Shared Dictionary (SD)

A dictionary is an ordered collection of strings. The use of a
dictionary is very convenient for compression because by us-
ing a dictionary we can replace a string with its corresponding
index in the dictionary. Naturally, for things to work correctly
at decompression time, the dictionary used for decompression
needs to be an exact copy of the one used for compression so
that the same index corresponds to the same string. If this does
not happen, we have a decompression failure. Decompression
failures are discussed in Section V-G.

As we can see from Table III, many of the SIP headers
belong to the group of variable headers. Many of these contain
a URI. This URI can be related to one of the UA public
identities (i.e., P-Called-Party-ID) or to another user. Other
sources of variable headers comprise the codecs included in
the SDP part of the SIP message together with rtpmap lines
and the codecs’ fmtp parameters. Here, we use a dictionary
in order to reduce the amount of bytes that URIs and codec-
related parameters take.

As we said earlier, a dictionary is simply an ordered list of
strings containing all the URIs known to the UA or P-CSCF
(i.e., own URIs and URIs of other SIP entities), the list of
codecs with both static and dynamic payload types and all
known rtpmap and fmtp lines.

If a match is found in the dictionary, the corresponding
string is replaced by its index in the dictionary; if no match is
found then the string is left as is. In the latter case, such string
would be added to the dictionary by both UA and P-CSCEF, as
the last entry in the dictionary. In this way, this new entry can
be used for future packets.

There are many possible ways to build such an SD. In
a typical scenario, users want to start a PoC session with
contacts present in their presence “buddy list”, that is, people
they already know. In order to build a dictionary containing

TABLE III
CLASSIFICATION OF SIP HEADERS

Variable Semi—var | Semi—const Other Occurrence
Header (call (session or (HW/SW (variable
dependent) | registration dependent) within
dependent) dialogue)
Accept X medium
Accept—Contact X high (PoC)
Accept—Encoding X Tow
Accept—Language X low
Alert—Info X low
Allow X high
Authorization X low
Call-ID X high
Call—Info X low
Contact X high
Content—Disposition X low
Content—Encoding X low
Content—Language X medium
Content—Length X high
Content—Type X high
CSeq X high
Date X low
Expires X medium
From X high
In—Reply—To X low
Max —Forwards X high
Record—Route X high
Route X high
Session—Expires X high
Supported X high
To X high
User—Agent X high
Via X high

URIs of other end-points, such as a shared address book,
we could think of the following. When the P-CSCF has an
INVITE request to send whose URI in the From header is
not present in the dictionary, it adds the URI to its dictionary
and replaces it with its index. When the UA receives such
INVITE, it does not find that particular index in its dictionary,
so it associates the index received in the From header to that
SIP dialog. When the P-CSCF sends the ACK in response to
the 200 OK, the UA extracts the URI from the From header
of the ACK and associates it to the index previously saved for
that dialog. In doing so, the UA has added a new entry to its
dictionary.

Further details on how to build synchronized dictionaries is
reserved for future study.

E. Encoding

By using templates, UA and P-CSCF need to exchange
only the content of those headers that are without a value in
the template, that is, the dynamic content of a SIP message.
However, as we show in Section V-F, even exchanging only
the dynamic content of a message is not enough to achieve the
requirements for DOS. In order to achieve such requirements
the dynamic content needs to be encoded to further reduce the
size of messages exchanged between UA and P-CSCF.

Variable content can be encoded using integer and bitwise
representations. We can apply the latter to all those headers
whose values belong to a finite set of known elements (see
Token column in Table II). In order to encode strings such
as IP addresses, port numbers, and clock rates, we encode
these as fixed and variable length integers. For example, an
IP address can be encoded as a four byte integer and a port
number can be encoded as a two byte integer. Dictionary



TABLE IV
CONTRIBUTIONS TO TBC FOR AN INVITE REQUEST

Original | Stripped | Template | SD | Encoding | Packet

Packet Headers Order
Packet size [Bytes] 1182 1008 343 284 137 81
Removed [Bytes] — 174 665 59 147 56

indexes can be encoded as variable-length integers depending
on the cardinality of the number to encode.

One other important aspect to take into consideration is the
structure of the final packet. Once all the content has been
encoded, the way such content is organized in the final packet
also affects the size of the packet. In particular, we divide the
packet in two parts. In one part we put all the encoded content
of variable length and in another part we put all the encoded
content of fixed length. The fixed-length content forms the
last line of the packet. Each line in the packet has the first
byte representing its length. The byte representing the length
is also encoded. In particular, only 7 bits are used to represent
the length of a line which limits the maximum length to 127
bytes. The most significant bit (MSB) is used to indicate if the
following line is of the same type of the current line. This,
for example, is useful if we have a SIP message with two or
more C= lines in the SDP part.

Since the order of variables in the packet has to be pre-
served, we need to explicitly mark those variables not present
in the message but whose header is present in the template, as
empty. In order to do this, we reserve one value of the byte
representing the length of the line to indicate a length value
of zero. Such value is given by the MSB set to one and all
the remaining 7 bits representing the length, set to zero.

F. Contributions to Compression

Table IV shows how each of the mechanisms described
above contributes to the overall compression. As we can
see, each one of them has a significant role in the overall
compression. In particular, the table shows the results for an
incoming INVITE request. In the experiments all heuristics
were applied so that, for example, the size shown for Template
reflects the size of the packet after both Stripped Headers and
Template have been applied. The Removed row shows how
many bytes were removed from the message after applying
the corresponding technique.

In conclusion, from Table IV we can see that with TBC,
we can satisfy the requirements for DOS, but in order to do
this all the proposed techniques need to be applied.

G. Decompression Failures

TBC relies on the use of a shared dictionary in order to
achieve maximum compression. In order for this to work,
it is important that UE and P-CSCF keep their dictionaries
synchronized at all times. A loss in dictionary synchronization
almost certainly translates in a decompression failure at either
end-point. A decompression failure is a very expensive event.
When it happens, it requires the packet to be re-transmitted
uncompressed and subsequent packets to be transmitted with-
out compression until the cause for the decompression failure

has been resolved. Because of this, a sanity check should be
performed periodically in order to validate the synchronization
of the dictionary. In any event, if a loss in synchronization
happens, it has to be detected in a timely manner so that it
can be quickly resolved.

Loss in synchronization between dictionaries can happen for
various reasons. For example, when using non-reliable trans-
port, we have to be careful to the way the shared dictionary is
built. If packets used to build the dictionary are lost or end up
out of sequence, we might end up with dictionaries that are not
synchronized. It is important to notice that this problem is not
present when we use the INVITE—ACK procedure described
earlier for building the dictionary. In such a case, if an ACK
is lost, the 200 OK would be re-transmitted thus triggering
another ACK.

In order to verify the synchronization of the shared dictio-
nary we can use a short checksum such as Cyclic Redundancy
Check 16 (CRC—16). This checksum is calculated on the
message to send, after stripping the unnecessary headers but
before applying the template. Once the message is received
and re-constructed at the other end-point, the UE or P-CSCF
can re-calculate the checksum and see if it matches with the
checksum received with the message. If there is a mismatch
it means that the reconstructed message is different from the
original message, which means that the dictionaries have lost
synchronization.

Another way to verify the synchronization of the shared
dictionary is to compute an hash of the dictionary and have
UE and P-CSCF periodically exchange it during non-time-
sensitive operations. If the two hash values do not match, the
shared dictionaries are not synchronized. In order to identify
which part of the dictionary is out of sync, a binary search can
be performed on the dictionary, recursively hashing smaller
parts of it until the one or more entries responsible for the
mismatch are found.

Once a loss in synchronization has been detected and the
non-aligned entries have been identified, the dictionaries can
be re-synchronized by having UE and P-CSCF exchange such
non-aligned entries.

VI. EXPERIMENTS

In this section we present the results of our experiments
for SigComp and TBC. We consider both Mobile Originated
(MO) calls and Mobile Terminated (MT) calls. An MO call
is a call initiated by the mobile node, that is, by a mobile
SIP UA. For such call, the first INVITE request is sent by
the mobile SIP UA to the P-CSCF and then forwarded to the
remote SIP UA. An MT call is a call initiated by a remote
SIP end-point. In this case, the first INVITE request is sent
by remote SIP UA and forwarded to the appropriate P-CSCF
which sends it to the mobile SIP UA.

A. Experimental Setup

For our experiments, we used an IBM T42 Thinkpad laptop
with a 1.7 GHz Pentium Mobile processor and 1 GB of RAM
and an eRack server with a 3 GHz Pentium 4 processor and
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1 GB of RAM. The T42 runs Linux kernel version 2.6.3-25
and the eRack runs Linux kernel version 2.6.9-42. The T42
behaves as an UE and the eRack as a P-CSCFE. Both, UE
and P-CSCEF, read a SIP flow from a text file and exchange
the compressed messages respecting the order of the packets
in the flow. In order to test TBC and SigComp in realistic
scenarios, all the IMS SIP flows used in the experiments
were captured from a real IMS testbed and provided to us by
Nortel. We used Open SigComp [13], an open-source SigComp
stack and implemented a TBC compressor and decompressor.
Compression for both MO and MT calls was measured and
delays were later calculated according to Eq. (1).

B. Measurement Results

In the following measurements we focus our attention only
on SIP messages and do not consider lower-layer protocol
headers (e.g., UDP, IP). Such headers are not really relevant
for PoC purposes and protocols like ROHC can help in their
compression.
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1) SigComp: As explained in Sections IV-D and IV-E, in
analyzing SigComp performance we do not use the SIP static
dictionary and also, do not consider any of the mechanisms
specified in [8]. Furthermore, we perform measurements for
the most common values of state memory size (SMS), CPU
cycles (CC) and UDVM memory size (UMS). Figs. 5 and 6
show the compression ratio that SigComp can achieve for an
MO call and an MT call, respectively. Figs. 5(a) and 6(a)
show the results for SMS, CC and UMS equal to 4096 bytes,
64 cycles and 4096 bytes, respectively. Figs. 5(b) and 6(b)
show results for SMS, CC and UMS equal to 8192 bytes, 64
cycles and 8192 bytes, respectively.

The compression ratio is calculated as:

size of compressed packet [bytes]

= 3
P size of uncompressed packet [bytes] )

so that the smaller the compression ratio, the better. As we can
see from Figs. 5 and 6, p for the first two messages is above
100%. This happens because the size of the compressed packet



TABLE V
PARAMETERS USED IN DELAY CALCULATION (SOURCE NORTEL)

Tsetup 1400 ms
Trode 150 ms
TBH 100 ms
RTT 140 ms

is larger than the size of the original uncompressed packet.
Such a behavior is expected since for the first packets there is
no previous state to compress against, that is, the adaptive
dictionary is empty (see Section IV-D). As the number of
compressed messages grows, so does the adaptive dictionary,
allowing for a better compression ratio as more messages are
exchanged.

In Fig. 5(a) we can see that the first INVITE request is
compressed from 1350 bytes to 483 bytes, while the second
INVITE is compressed from a size of 1387 bytes to a size of
626 bytes. This is the case when using SMS and UMS of 4096
bytes each. On the other hand, when we increase SMS and
UMS to 8192 bytes (see Fig. 5(b)), the first INVITE is com-
pressed to 476 bytes and the second INVITE is compressed
to 402 bytes. This improvement in compression is due to the
fact that we have increased SMS and UMS, which means that
the adaptive dictionary is larger. In doing so, when the second
INVITE has to be compressed, the adaptive dictionary still
contains some information relative to the first INVITE, thus
allowing for higher compression. If we further increase SMS
and UMS, the second INVITE can be further compressed to a
size of 193 bytes. This, however, is the maximum compression
that can be achieved since, at this point, all available state has
been used and increasing SMS and UMS even more, would
not provide more state.

In Fig. 6 we show SigComp performance for an MT call
when using a shorter call flow than the one used for the
MO call. Shorter call flows have been proposed in the past
in order to reduce the call setup delay. As we can see, in
Fig. 6(a) the first INVITE is compressed from 1899 bytes
to 974 bytes and the second INVITE from 1889 bytes to 963
bytes. As before, when we increase SMS and UMS from 4096
bytes to 8192 bytes (see Fig. 6(b)), the first INVITE is about
the same while the second INVITE is compressed from 1889
bytes to 137 bytes. The reason for this big improvement in the
compression of the second INVITE is that not only have we
increased SMS and UMS but we are also exchanging fewer
messages which means that new states created after the first
INVITE are not enough to expunge state information regarding
the first INVITE from the adaptive dictionary. In other words,
when the second INVITE needs to be compressed, the adaptive
dictionary still contains all the information regarding the first
INVITE, hence achieving higher compression. If we further
increase SMS and UMS, the compression of the second
INVITE does not improve. This is because all available state
has already been used and larger SMS and UMS do not
correspond to an increase of state for that INVITE.

To summarize, SigComp can achieve significant compres-

sion ratios only for INVITE requests following the first one
and only if enough state is available. The size of the first
INVITE request remains significantly high also after com-
pression. Furthermore, it is important to notice that in Fig.
6, the first and second INVITE are extremely similar, with the
second INVITE having only 91 bytes that differ from the first
INVITE. Still, we can see that the best compression achievable
with SigComp, gives us a final size of 137 bytes which still
does not satisfy the DOS requirements. In particular, since
Open SigComp uses Deflate, the 137 bytes are an Huffman
representation of the {offset, length} pairs plus strings not
found in the dictionary.

Fig. 7 shows the call setup delay only in terms of one-way
air-link delay for bit-rates typical of a control channel. As we
can see, for the uncompressed flow the one-way air-link delay
alone is significantly larger than the whole call setup delay
for a GSM call (see Section III). Such delay decreases below
2 seconds if we either use higher bit-rates or if we compress
the flow. By using SigComp, the one-way air-link delay is
below 2 seconds also for lower bit-rates. We have to keep
in mind, however, that the air-link delay is only one of the
many components of delay contributing to PDD and call setup
delay (see Eq. (1)). Unfortunately, the air-link delay is the
only component of the overall delay that can be improved by
SigComp. Any other component of delay remains completely
unaffected.

A more realistic scenario in terms of PDD and call setup
delay is shown in Figs. 8 and 9, respectively. Here we consider
all the contributions to the overall delay. Table V shows typical
values for all the other components of delay that need to be
added to the air-link delay (see Eq. (1)). These values are for
1XEV—DO rev. A networks. As we can see, when we consider
both wireless links at each end-point and all the contributions
to the overall delay, PDD and call setup delay are above 2
seconds, regardless of SigComp. This is still too high for
delay-sensitive applications.

The delays shown in Figs. 8 and 9 represent the best-
case scenario for the higher bit-rates. In Figs. 8 and 9 we
are assuming that the bit-rates shown on the x-axis are fully
available to each user, including the highest ones. In reality, the
available bit-rate decreases as users move further away from
their Base Station (BS) and also, it has to be divided between
all users belonging to the same sector. So, for example, if
a client is far from its BS, then the maximum available bit-
rate is more likely 1.2Mb/s for download and 0.9 Mb/s for
upload. This is a drastic reduction from a download bit-rate of
3.2Mb/s and an upload bit-rate of 1.8 Mb/s. Furthermore, this
maximum available bit-rate has to be divided among all the
users in the same sector. So, if each user uses 0.12 Mb/s, for
example, only 10 users can be supported in the same sector.

Although the higher bit-rates in Figs. 8 and 9 represent the
best possible scenario, the call setup delay is still too high,
above two seconds. This clearly shows how SigComp is not
sufficient in satisfying the necessary requirements.

2) Templates: In order to achieve a PDD of less than
two seconds and PoC delays below one second, we need to
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reduce the air-link delay as much as possible and we need to
completely remove the air-link setup delay. The latter can be
achieved by using DOS for the call setup. As explained earlier,
for IXEV—DO rev. A, DOS requires a maximum packet size
of 113 bytes for the downlink and 211 bytes for the uplink.
Table VI shows the performance of TBC in terms of
compression and compares it to SigComp. In particular, we
show the performance of TBC and SigComp in the worst case
scenario, that is, the first INVITE request of an MT call flow.
This message is usually the most difficult to compress because
of its large size and because it is the first message of the call-
setup handshake. Being the first message of the handshake
means that prior state is limited and therefore, SigComp, and
in general any LZ-based compression mechanism, cannot com-
press it much (see Figs. 5 and 6). Furthermore, as explained
in Section V-C, an MT call represents the worst case for TBC
with most of the content sent over-the-air encoded, rather than
being included in the template. This is because the a priori
knowledge that we have on an incoming message is very small
since such message can come from anywhere and anyone.

2800
2700 -

2600 -

2500 ~

2300

ms

2200

2100 -

2000

0.1]0.1 0.2]0.2 0.4]0.4 0.6]0.6 0.8]0.8 1.2[1.0 1.8|1.2 2.2|1.4 28|16 3.2|18
Link bit-rate (Mb/s) - [Downlink | Uplink]

Fig. 9. Call setup delay for mobile-to-mobile call (short flow)
TABLE VI
SIZE IN BYTES OF FIRST INVITE FOR DIFFERENT MT CALLS
Entries TBC
Flow | PoC | found | Original | SigComp | TBC +
in SD SigComp
all 1244 629 100 110
1 Y few 1244 629 168 138
none 1244 629 210 177
all 1181 591 94 104
2 Y few 1181 591 162 132
none 1181 591 187 156
all 795 934 110 449
3 N few 795 934 139 466
none 795 934 163 488
all 900 535 87 93
4 N few 900 535 127 114
none 900 535 157 140

Also for TBC experiments we consider two types of flows,
a long flow and a short flow. In particular, flows 1 and 2 are
long and flows 3 and 4 are short (see Table VI). The flows
used here are extremely similar to the ones shown in Figs. 5
and 6.

As we can see from Table VI, when all entries are found in
the SD, with TBC we achieve the packet size requirements of
DOS for both PoC calls and normal SIP calls. Furthermore,
SigComp performs consistently worst than TBC and if we try
to apply SigComp compression on top of TBC, the size of the
final packet is larger than if only TBC is used (see Section
IV-C). From this we can conclude that TBC can satisfy the
requirements for DOS and therefore satisfy the requirements
for SIP calls and PoC. Also, it is clear how incorporating
TBC in the SigComp framework would affect compression
negatively.

In Table VI, flow 3 represents the particular case in which
no packets are exchanged previous to the first INVITE. This
can simulate, for example, a decompression failure or loss of
state in SigComp. In such case, with SigComp, the compressed
packet has a size larger than its uncompressed size (see Section
IV-C). TBC, however, has performance that are consistent with
the compression of other flows since it does not rely on state
saved from previous messages. The compressed packet size
with TBC in flow 3 is significantly larger than in flow 4



because in flow 3 the Call—ID header alone was 46 bytes
long.

When only few entries or none at all are found in SD
(see Table VI), TBC still outperforms SigComp although it
might not achieve the requirements for DOS any longer. This
depends very much on the particular packet to compress and
the values of its SIP headers and SDP lines. In particular,
headers whose value is a random string such as the content
of Call—ID? or the content of the tag parameter, significantly
affect the size of the compressed packet since templates and
other forms of compression cannot help much.

All of this shows that a well synchronized and up-to-date
Shared Dictionary is crucial for TBC to achieve the required
packet sizes.

For MO calls, TBC can significantly reduce the packet size
since most of the parameters are known by the UE and P-
CSCEF prior to the establishment of a call. For example, the
first INVITE request of an MO call can be compressed from
1253 bytes to about 20 bytes when all entries are found in the
SD and to about 40 bytes when no entries are found in the SD.
With SigComp the same INVITE is compressed to 639 bytes.
TBC satisfies the size requirements of DOS for MO calls and
consistently outperforms SigComp.

The extremely large compression achieved for MO calls is
possible because the only information we need to send is the
content of the request line, To header, Call-ID and the value of
the utran-cell-id-3gpp parameter in the P-Access-Network-
Info header. Everything else is included in the template.

VII. CONCLUSIONS

We have examined the performance of SigComp for IMS
call flows and shown through measurements that although
SigComp can achieve significant compression ratios, it cannot
satisfy the requirements for DOS and therefore cannot be used
for PoC in the IMS. SigComp is based on text-substitution
compressions. Because of this, it becomes counter-productive
when the size of the packets becomes smaller. Furthermore,
SigComp adds its own overhead to compressed packets and
such overhead can significantly limit the benefits of its com-
pression.

In order to satisfy the delay requirements for PoC in the
IMS, SIP messages need to be sent over the control channel.
This imposes a limit to the size of such messages. In particular,
for 1xXEV—DO rev. A, messages on the downlink cannot be
larger than 113 bytes and messages on the uplink cannot
be larger than 211 bytes. We have shown how SigComp
cannot satisfy such requirements. At the same time, we have
introduced a novel compression technique, namely TBC, based
on the concept of templates. TBC can be used by cellular
operators to deploy voice and PoC services in the IMS
instead of SigComp. By using templates we can satisfy the
requirements for data over signaling and send SIP messages
on the control channel. In particular, TBC can reduce the size
of the first INVITE in the flow, for an MT call, to about 100

3Call-ID is usually in the form name@host where name is a random string.

bytes and can reduce the size of the first INVITE in the flow,
for an MO call, to about 20 bytes. By doing so, we can satisfy
the delay requirements for PoC, voice and any other delay-
sensitive application.

We will look at ways to further improve compression with
TBC. In particular, we will study the use of pointers as a
way to avoid string duplication in the encoded content sent
over the air. Also, other options will be studied in order
to improve compression. In order to address the problem of
headers containing long random numbers, the P-CSCF could
substitute long random numbers with shorter ones for the
downlink (P-CSCF—UE) since the P-CSCF has a clear view
of all ongoing sessions and can therefore provide shorter
unique identifiers. Replacing long random strings such as the
ones used for Call-ID with shorter ones would further improve
the overall compression.
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