
CONFUSE: LLVM-based Code Obfuscation

Chih-Fan Chen,
cc3500@columbia.edu

Theofilos Petsios,
tp2392@columbia.edu

Marios Pomonis,
mp3139@columbia.edu

Adrian Tang,
bt2349@columbia.edu

Abstract

In the past decade, code obfuscation tech-
niques have become increasingly popular due
to their wide applications on malware and the
numerous violations of intellectual property
caused by reverse engineering. In this work,
we examine common techniques used for
code obfuscation and provide an outline of
the design principles of our tool Confuse.
Confuse is an LLVM tool which modifies the
standard compilation steps to produce an
obfuscated binary from C source code.

Keywords: code obfuscation, CFG alter-
ation, hardening, reverse engineering

1 Introduction

The distribution of current software applica-
tions is plagued with vast financial losses due
to reverse engineering [1]. The term refers
to the process of discovering the technologi-
cal principles of a device, object, or system
through the analysis of its structure, function,
and operation. It involves recovering and mak-
ing sense of the higher-level semantics of a
compiled binary. Once a company develops an
application and releases it, it ceases to have a
strong control over who accesses their source
code and who doesn’t. Rivals or adversaries
can gain access to this code and use it for

their own benefit without investing as much
resources as the original authors. State-of-the-
art disassemblers (eg. IDA Pro [2]) and de-
compilers (eg. Hex-Rays Decompiler [3]) en-
able people to readily reverse-engineer the in-
ner workings of an executable. The effective-
ness of the reverse engineers’ efforts is depen-
dant on the amount of time and resources they
are willing to put into reversing a particular
piece of code. With such threat to intellectual
property, there is a strong motivation to find
effective ways to protect compiled software.

Code obfuscation involves performing a se-
ries of transformations on software, convert-
ing it to a harder-to-be reverse-engineered
form, which maintains the unmodified soft-
ware’s functionality with a reasonable over-
head. The primary motivation for code ob-
fuscation is to protect as much as possible any
intellectual property, such as algorithms and
data structures, inherent in a software applica-
tion that is being sold and distributed. Raising
the bar for reverse-engineering, code obfusca-
tion attempts try to harden, in terms of time
and resources, the disassembling attempts per-
formed by automated systems and possible ad-
versaries.

Our project aims to develop a code obfus-
cating tool which takes C source code as input
and produces an obfuscated binary, which will
be more resistant to being reversed-engineered
in comparison to the respective unobfuscated
executable.

1

2 Related Work

Existing obfuscation methods and tools fall
traditionally into one of the following cate-
gories: layout, design, data and control ob-
fuscation [4]. Layout obfuscation refers to
the process of modifying the layout of the soft-
ware: deleting comments, changing the name
of variables, removing debugging information
etc. Design Obfuscation [5] refers to the
effort being made to obscure the design in-
formation of the software. Such actions in-
volve slitting and merging of classes etc. Data
obfuscation [4] techniques involve array and
variable splitting, conversion of data to proce-
dures, changes in variables’ lifetime etc. Con-
trol Flow Obfuscation (CFO) [6] techniques
use abstract interpretation and opaque predi-
cates to break up the program’s control flow.
A very effective technique in this category is
parallelization [4] and control flow flat-
tening with history maintenance [7]. CFO
can also be achieved by hiding control flow
information in the stack [8]. Various al-
gorithms [9] [10] used in software containing
self modifying code utilize dynamic ob-
fuscation techniques. Recent works [11]
propose a signals based approach: in this
case the CFO is achieved through signals used
for Inter Process Communication (IPC). Con-
trol flow instructions are replaced with trap in-
structions. When a trap instruction is raised,
the respective signal triggers a signal handler
which invokes the restoring function which will
transfer the system control to the original tar-
get address.

3 LLVM

For the purpose of our project we will use
the the LLVM[12] compiler framework with
Clang[13] as the front end. LLVM is one the
most popular and frequently used compiler
frameworks, largely because of the plethora
of its supported languages and architectures.

It utilizes the three phase design (front end -
optimizer - back end) that provides flexibility
and modularity to the compiler and uses its
own Intermediate Representation (IR) as an
internal form of code presentation.

Figure 1: LLVM: Three Phase Design

As presented in figure 1, each front end
tests the source code for errors and maps it
to LLVM IR. Then a source and architecture
independent optimizer makes various transfor-
mations on this IR in an effort to make execu-
tion more efficient. Finally, depending on the
processor family, a suitable back end translates
the optimized IR to binary code. Clang is a
front end that provides a unified parser for C-
based languages and can be used for a variety
of purposes such as indexing, source analysis,
refactoring etc.

In the following sections we will provide a
brief description of the IR properties and of
the optimizer’s architecture since Confuse will
be implemented as part of the optimizer.

3.1 LLVM IR

The aforesaid IR is a first class low-level lan-
guage, with a small three-address-form virtual
instruction set and a potentially infinite num-
ber of virtual registers. Unlike common as-
sembly languages it provides some abstraction
from the machine internals such as the ABI,
even though it is strongly typed and uses la-
bels. The IR can losslessly be transformed to
three distinct forms: the textual that can be
understood easier by a human, an in mem-
ory data structure used for the optimizations

2

and an efficient and dense bitcode binary for-
mat. Finally we should note that the IR fa-
cilitates the communication between the vari-
ous compilation phases since it allows a com-
plete representation of the source code without
the need to extract information from previ-
ous phases thus making each phase completely
separate.

3.2 Optimizer Architecture

The optimizer is structured as a series of dis-
tinct passes which are built into archive li-
braries as loosely coupled as possible (i.e. they
are intended to be completely independent
otherwise they explicitly request analysis in-
formation from other passes). Each pass is
written in C++, derives the Pass class and
produces a modified version of the IR it reads
that will be used as input for the next one.

This scheme gives the user the ability to
choose which passes she prefers to utilize when
optimizing a program by making use of the
PassManager. The PassManager makes sure
that all necessary passes are included (e.g.
all analysis passes needed by an optimization
pass) and tries to set the passes in the order
that will yield the optimal result.

The most important advantage of this de-
sign is that a programmer that wishes to create
a new optimization pass can decide the passes
that need to be executed before and after the
execution of his new pass. This dynamic lay-
out forces minimal overhead to new optimiza-
tions since one can use only suitable passes as
their prelude and postlude while the not used
ones will not be linked to them. Figure 2 shows
an example of how a new PassXYZ that does
not require all the passes can only be paired
with PassA and PassB (and not PassC etc) for
efficiency.

Figure 2: Pass Selection Using PassManager

4 Data Obfuscation

4.1 String Obfuscation

Strings are one of the most expressive data
types used in high-level languages and the con-
trol flow of many applications relies on the out-
come of string comparisons. Let us consider
snippet 1:

if (strcmp(cmd , "add") == 0)

{

/* handle add */

}

else if (strcmp(cmd , "remove") == 0)

{

/* handle remove */

}

else if (strcmp(cmd , "edit") == 0)

{

/* handle edit */

}

else

{

/* error */

}

Code 1: String comparisons

It is trivial for someone to infer that the
code of snippet 1 is used for the modification
of entities (e.g. files). Comparisons like the
one of snippet 1 are very common especially
in command-line applications that handle user
commands. At the same time they provide
valuable insight to the application’s program-
ming logic that can lead to a more efficient and

3

accurate reverse-engineering.
Confuse deals with this type of comparisons

by making use of cryptographic hash func-
tions. Cryptographic one-way hash functions
are functions that map input from a large data
set to a bit string in a way that any change to
the input would result to a different bit-string
and that given the bit-string it is impossible
to compute the input. Examples of crypto-
graphic hash functions include SHA-1 [14] and
md5[15].

We already know the possible (legitimate)
values that the string can take, therefore we
can compute their hash values and then at
run-time use the hash function on the string
variable and use its output for the compar-
isons. The obfuscated version of snippet 1 can
be seen in snippet 2:

/* known a priori

Hash("add") = h1

Hash(" remove ") = h2

Hash("edit") = h3

*/

hash = Hash(cmd);

if (hash == h1)

{

/* handle add */

}

else if (hash == h2)

{

/* handle remove */

}

else if (hash == h3)

{

/* handle edit */

}

else

{

/* error */

}

Code 2: Obfuscated string comparisons

It is obvious that someone that tries to ana-
lyze snippet 2 is unable to deduce its use by
looking at the predicates. Moreover in many
cases after using this technique we can add
more cases and fill their body with junk bytes
in order to force the reverse-engineer to waste

her time and resources in an effort to infer the
behavior of this branch.

4.2 Insertion Of Irrelevant Code

Another technique that is frequently used by
obfuscating tools is the insertion of junk code.
The purpose of this is to force mistaken con-
clusions about the control flow of the program
by adding unnecessary complexity (e.g. redun-
dant operations) while simultaneously preserv-
ing the semantics of the source code. Let us
consider snippet 3:

int x = 0;

x++;

return x;

Code 3: Original Code Sequence

A simplest way is to intersperse actual code
with some variables that never been used.
This will make the code more complex, forcing
the reverse-engineer to waste time and effort
sieving out the useless instructions. For ex-
ample, the irrelevant variable y is introduced
to code snippet 4. Since y is not used in the
actual computation of x, we can introduce su-
perfluous instructions on y without affecting
the original code. However, this kind of junk
code is easily found and will probably be elim-
inate by code optimizer. We must use some
other technique to insert junk code.

int x = 0, y;

x++;

y = 3;

return x;

Code 4: Obfuscated Code Sequence With
Irrelevant Variable

Instead of inserting the unused variable, we
can use some simple mechanisms to make the
sequence significantly less visible. For exam-
ple, in snippet 5 we added several mathemat-
ical operations.

int x;

x++;

x = (3 * (x + 4) - 12) / 3;

4

return x;

Code 5: Obfuscated Code Sequence

This transformation is based on the fact
that (b ∗ (t+ b)− b ∗ a)/b = (bt+ ba− ba)/b =
bt/b = t and makes the code much less prone to
automated reverse-engineering since the disas-
sembler cannot know mathematical identities.
Another advantage of this obfuscation is that
we do not have to add any new variable into
the original program. The two numbers, a and
b, is added in the IR level by our obfuscation
code. Since a and b are not bounded, they can
be used to reproduce any value needed and
have no effect to the final result.

The main disadvantage of the aforemen-
tioned techniques is the space/time overhead
introduced into the program as these super-
fluous instructions are executed at run-time.
To alleviate this, we can choose to insert ir-
relevant code as the body of an unconditional
branch that is never taken. In this case we
refer to this as dead code that will not be exe-
cuted at run time. The insertion of such dead
code is made more effective when used in con-
junction with the insertion of opaque predi-
cates. We will describe this in more detail in
Section 5.3.

5 Control Flow

Obfuscation

5.1 Opaque Predicates
& Variables

We implement control flow obfuscation using
opaque predicates and variables. In general
terms, an opaque variable V has some prop-
erty q that is known a priori to the obfuscator
but which is difficult for the deobfuscator to
deduce. Similarly, an opaque predicate is a
condition that has an outcome that the obfus-
cator knows a priori but which is hard for the
deobfuscator to compute, since the static anal-

ysis of all branches has exponentially larger
cost.

Definition: A variable V is opaque if at
any point p in a program, V has a property q
which is known at obfuscation time. We de-
note this property by Vp

q. A predicate P is
opaque if its outcome is known at obfuscation
time. If P always evaluates to True at point p,
we write Pp

T , whereas if P always evaluate to
False we write Pp

F . When it is uncertain if P
will evaluate to true or false, we write Pp

?[4]:

A predicate is considered trivial if a deobfus-
cator can crack it with local static analysis,
that is, by examining a small number of pre-
vious commands. A predicate is considered
weak if a deobfuscator can crack it with global
static analysis. The following examples are
illustrative of the previous:

int x=5;

int y=8;

int v=x/y;

if (v>1) {...}

Code 6: Trivial Opaque Predicate

int x=5;

<...> // multiple commands where x

remains unchanged

if (x>1) {...}

Code 7: Weak Opaque Predicate

5.2 Choosing the proper
predicate

The basic criteria for evaluating the quality of
an obfuscating transformation are [16]:

5

• Potency, that is, how much obscurity
an obfuscating transformation adds to the
program

• Resilience, which refers to how difficult
it is for an automatic deobfuscator to
break the obfuscating transformation

• Stealth of Secrecy, which refers to how
hard it is to tell if some part of code be-
longs to the original program or the ob-
fuscation part

• Overhead, which corresponds to the dif-
ferences in the running time of the obfus-
cated versus the normal program

5.2.1 Predicates based on
mathematical identities

An easy way of producing opaque predicates
which are always either true or false, is based
on number-theoretical identities. The follow-
ing identities[17] hold for all values of x, y ∈ Z:

• 7y2 − 1 6= x2

• 3|(x3 − x)

• 2|x ∨ 8|(x2 − 1)

•
2x−1∑

i=1, 2 6| i
i = x2

The following hold for all values of x ∈ N

• 14|(3 ∗ 74x+2 + 5 ∗ 42x−1 − 5)

• 2|bx2
2
c

If we initialize a variable a to a value Va at
some point in the execution of the program,
then, say, the predicate Va|(x3 − x) will al-
ways be true if Va is 3 and false if Va is not a
multiple of 3. This category of opaque predi-
cates is easy to produce but not very easy to
break, though in general they are the strongest
of weak predicates, granted that the options
for choosing the opaque predicate are limited,
and thus, given time and effort, one can brute-
force all possible options at runtime.

5.3 Transformations

5.3.1 Insertion Transformation

Consider the following figure [4]:

Consider the basic block S = S1;S2; ...Sn.
We insert an opaque predicate P T into S, split-
ting it in half (a). The predicate contains ir-
relevant code since it will always evaluate to
True. In figure (b) we split it into two halves
and then proceed to create two different ob-
fuscated versions Sα, Sb, using different sets
of transformations on each half and we select
between them at runtime. Finally in (c) we
introduce a bug to Sb and always select Sα.

5.3.2 Loop Condition Insertion
Transformation

Consider the following figure [4]:

In this example we obfuscate a loop by mak-
ing the termination condition more complex,
adding a predicate that does not modify the
number of times the loop gets executed.

The efficiency of the aforesaid methods can
improve significantly if we use it in conjunc-
tion with the insertion of junk bytes as the
code to be executed in the (a priori known)

6

non taken branch of an opaque predicate. A
deobfuscator in this case must evaluate both
branches (since it cannot predict which one is
taken) and therefore this will lead to the inef-
fective use of time and resources and possibly
to mistaken conclusions.

6 Implementation

Our obfuscator will be implemented in C++
since it is fully supported by Clang and
will modify C files using the techniques ex-
plained above. This decision was based on
the fact that C is one of the most popular
and frequently used programming languages
for applications that are prone to be reverse-
engineered and thus its obfuscation would be
a valuable contribution to the community.

Confuse will consist of a series of optimiza-
tion (i.e. obfuscation) passes that will trans-
form the LLVM IR produced by Clang before
it is translated to binary code suitable to the
processor family.

We note that the modifications applied by
these passes depend on the source file given as
input. For example, if there is no string com-
parison in the source code the string transfor-
mation pass will not make any change. How-
ever, since the opaque predicates mechanism
does not rely on such assumptions, Confuse
can employ this transformation on any input
source code.

7 Testing

While our code obfuscation techniques aim to
transform the input program to a form more
resistant to reverse-engineering efforts, they
must ensure that the original semantics of the
program are preserved.

Being very extensive, the LLVM framework
has a very robust and comprehensive testing
infrastructure. It has two major categories of
tests, namely whole programs and regression

tests. The whole programs are contained in
test-suites which can be compiled using spe-
cific compiler flags (to be tested). The output
of the compiled programs are then compared
to some reference output to verify the correct-
ness of the LLVM functions. The regression
tests are small unit tests meant to test specific
functionality.

We leverage on the LLVM testing infrastruc-
ture to conduct our testing of our obfuscation
pass libraries. We design both whole programs
and regression tests to be executed with our
obfuscation passes to verify that the transfor-
mations have not altered original behavior of
input programs. The testing is mainly driven
by the LLVM Integrated Tester tool, lit, that
we describe in the next sub-section.

Determining the correctness of a program
after program transformation is difficult. To
this end, we choose to verify that the semantics
of the input program are preserved by compar-
ing the output of a transformed program with
a known reference output. We will use this
strategy to do incremental testing of our ob-
fuscation functionalities.

7.1 lit - LLVM Integrated Tester

Shipped together with the LLVM framework,
lit is a portable tool used for executing LLVM
and Clang regression and unit tests. It pro-
vides a convenient way for developers of LLVM
and Clang libraries to easily write and run test
files during the development process. lit is de-
signed to be a multi-threaded lightweight tool
for executing and reporting the success of the
regression tests.

7.2 Example Regression Test

A regression test file can be any valid input file
(such as C file, bitcode file, LLVM IR file) that
is accepted by any LLVM frontend tool. Since
our code obfuscation targets C source files, we
will design the test files to be C source files,

7

instrumented with lit-specific commands for
the test verification.

Each test file must contain comment lines
starting ”RUN:” that instruct lit how to ex-
ecute this file. These comment lines contain
shell commands that when executed determine
if the test is successful or not. lit will report
a failure if the verification commands return
false.

An example of a regression test file is as fol-
lows:

// RUN: clang -emit -llvm %s -c -o -|

opt -load lib.dylib -objunk > %t1

// RUN: lli %t1 > %t2

// RUN: diff %t2 %s.out

#include <stdio.h>

void f_div(int i, int *k)

{

int j = 2;

*k = i / j;

}

int main()

{

int k;

f_div(8, &k);

printf("%d\n", k);

return 0;

}

Code 8: Simple regression test

This regression test is designed to verify that
the following functionalities are preserved af-
ter code obfuscation: (1) Simple printing of
strings, (2) Integer division, (3) Parameters
passed by-value and by-ref. The set of RUN
commands compiles this C file into a LLVM
bitcode file, transforms this bitcode file using
our obfuscation pass (specifically junk instruc-
tions insertion), executes this obfuscated bit-
code file and verifies that the output is 4. If
the output is not what we expect, the diff com-
mand will return false, and lit will report a
test failure.

7.3 Test Design

We have structured the test suite to consist of
both set of tests specific to the individual ob-
fuscation passes, and those that test the cor-
rect functioning combining multiple obfusca-
tion passes together. We detail the tests spe-
cific to each obfuscation pass below.

The string obfuscation targets the hiding of
strings used in string comparisons. We design
the tests by changing the various orders of the
parameters we pass into the string compare
function. Besides using strings as the actual
parameters, we also include tests that pass
in const string buffers which should be obfus-
cated by our string obfuscation pass. We also
use variants of string comparison functions like
strcmp() and strncmp().

The junk-code obfuscation involves trans-
forming arithmetic assignment instructions
into more convoluted but semantically equiv-
alent instructions. Naturally, we design the
tests that make use of arithmetic assignment
in a range of situations. This includes using
the assignments with different arithmetic op-
erators in while loops, for loops and plain se-
quence of arithmetic operations.

The control-flow obfuscation using opaque
predicates is much more flexible compared to
the above two types of obfuscation as it can
practically be used on any kind of code. In
view of this, we reuse the tests from the other
two types of obfuscations.

8 Results

In this section we will present brief results for
every obfuscation technique we implemented
in an effort to showcase some of the advantages
obtained in the obfuscated file.

8.1 String Transformation

The main advantage of this technique is
presented in the respective section, however

8

there is a valuable side effect that can occur in
a number of occasions. Let us assume snippet
9:

char a[] = "Should be visible after

obfuscation";

const char b[] = "Should NOT be

visible after obfuscation";

if (strcmp(a, b) == 0) {

/* code that does not use b */

}

/* code that does not use b */

Code 9: Example Snippet

In this case b can be eliminated entirely
from the source code since its only use is in the
string comparison. As a result, someone that
tries to disassemble the binary will not know it
ever existed thus making his effort even harder.

In order to showcase this behavior we
will use the program strings that returns
all printable strings in a binary and ask it
to return all printable strings of at least 10
characters.

Figure 3: Printed message from unobfuscated
(unmodified) executable

Figure 4: Printed message from obfuscated
version of executable

As we can see the string is visible in the
unobfuscated file whereas after the pass it is
removed.

8.2 Junk Code Insertion

In general, we should add some instructions
before a variable is stored, so we targeted on
store instructions in junk code insertion. How-
ever, we do not have to insert junk code in ev-
ery store instructions because it will not only
slow the speed of programs but also easily
be detected by reverse-engineer. To ease the
problem, we focus only on integer, which is
most widely used in arithmetic, for loop and
while loop. The way to insert junk code are
many. In this paper, we shows three different
ways to insert the junk code.

1. d ∗ (x + e) = d ∗ x + d ∗ e

2. (ax + b)− (cx + b) = (a− c) ∗ x

3. (ax + b)− ((a− 1)x + c) = x + (b− c)

The original three address code of snippet 3
is shown in Fig. 5. The result of each method
is shown in Fig. 6(a), Fig. 6(b), and Fig.
6(c),respectively. Note that we do not deal
with variable initialization (e.g., instruction 2
& 3 in Fig. 5) because its instruction is of-
ten at the beginning of the function, which
makes obfuscation very distinct from the orig-
inal code. For clarification, the junk code
we inserted are those instructions begin with
%temp. As we can see in Fig. 6(a) - 6(c), we
added about four or five instructions.

Figure 5: Original Three Address Code

9

(a) Type1 insertion

(b) Type2 insertion

(c) Type3 insertion

(d) Inserting junk code multiple times

In Fig. 6(d), we use Type2 insertion follow-
ing by Type0 insertion, the junk code becomes
more complicated than the original code.

8.3 Control Flow Obfuscation

We successfully managed to alter the control
flow of the binary without altering its seman-
tics, using the methods described section 5.
We picked random spots to insert the opaque
predicates inside the binary. The variables
used as arguments in the equations forming
the predicates are placed in such positions in
the binary so that it won’t not be easy for
an adversary to infer that they are used in
an opaque predicate with local static analysis.
The insertion of the opaque predicate alters
significantly the control flow graph, as it can
be seen in Figures 6 & 7. These figures de-
pict the connections between basic blocks for
a simple if-statement, before and after obfus-
cation. It is clear that the flow graph after the
obfuscation is more complex.

Figure 6: CFG outline before obfuscation

Figure 7: CFG outline after obfuscation

In order to evaluate the change in the com-
plexity of the control flow graph as a result

10

of our obfuscation, we define the cyclomatic
complexity (CC) of a graph as follows[18]:
For a graph G=(V,E) which consists of P con-
nected components, the cyclomatic complexity
M is

M = E − V + 2P

To measure the cyclomatic complexity of
any given program, we wrote a Python script
that runs on the IDA Pro Disassembler to com-
pute the CC score from the disassembled pro-
gram. Thus the CC is highly dependent on
how well the IDA Pro Disassembler can disas-
semble a given program. This is a reasonable
assumption since it approximates the effort of
a reverse-engineer attempting to derive the se-
mantics of a program using this disassembler.

In Figure 8 we present some results from
the change in the cyclomatic complexity of test
programs used in the evaluation phase of Con-
fuse. We notice that the increase in the CC
varies from 40% to 225%, depending on the
operations in the binary.

Figure 8: Cyclomatic Complexity Change

9 Conclusion

Confuse takes advantage of the LLVM IR and
obfuscate the source code at compilation time.
This is a very flexible scheme since it removes
the unnecessary steps of compiling and then

running an obfuscation application to the pro-
duced binary or assembly code. The imple-
mentation of the obfuscation in the form of
optimization pass libraries allows users select
and pick the obfuscation they want to use. It
is also very scalable. More importantly, it al-
lows our implementation to be universal for all
the architectures and processor families sup-
ported by LLVM because we modify the LLVM
IR and not the (architecture specific) binary
code. To the best of our knowledge we are the
first to create LLVM-based obfuscation tool for
the aforementioned techniques. Balachandran
et al [8] obfuscate at link time using C/C++
binary programs. Liem et al [7] use an front-
end by Edison Design Group [19] and use Fab-
ric++ as the intermediate representation. Fi-
nally the most similar work to ours is by Sharif
et al [20] who have also used the LLVM IR, but
employed different obfuscation techniques.

References

[1] Wikipedia. Reverse engineering, Decem-
ber 2012.

[2] Chris Eagle. The IDA Pro Book: The Un-
official Guide to the World’s Most Popu-
lar Disassembler. No Starch Press, San
Francisco, CA, USA, 2008.

[3] E. N. Dolgova and A. V. Chernov. Auto-
matic reconstruction of data types in the
decompilation problem. Program. Com-
put. Softw., 35(2):105–119, March 2009.

[4] Christian Collberg, Clark Thomborson,
and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report
148, Department of Computer Science,
University of Auckland, New Zealand,
July 1997.

[5] Mikhail Sosonkin, Gleb Naumovich, and
Nasir Memon. Obfuscation of design in-
tent in object-oriented applications. In

11

In DRM 03: Proceedings of the 3rd ACM
workshop on Digital rights management,
pages 142–153. ACM Press, 2003.

[6] Mila Dalla Preda and Roberto Gia-
cobazzi. Control code obfuscation by
abstract interpretation. In In Proc.
32nd ICALP, LNCS 3580, pages 301–310.
IEEE Computer Society, 2005.

[7] Clifford Liem, Yuan Xiang Gu, and
Harold Johnson. A compiler-based in-
frastructure for software-protection. In
PLAS, pages 33–44, 2008.

[8] V. Balachandran and S. Emmanuel. Soft-
ware code obfuscation by hiding control
flow information in stack. In Informa-
tion Forensics and Security (WIFS), 2011
IEEE International Workshop on, pages 1
–6, 29 2011-dec. 2 2011.

[9] Liang Shan and Sabu Emmanuel. Mo-
bile agent protection with self-modifying
code. J. Signal Process. Syst., 65(1):105–
116, October 2011.

[10] S.M. Darwish, S.K. Guirguis, and M.S.
Zalat. Stealthy code obfuscation tech-
nique for software security. In Computer
Engineering and Systems (ICCES), 2010
International Conference on, pages 93 –
99, 30 2010-dec. 2 2010.

[11] Igor V. Popov, Saumya K. Debray, and
Gregory R. Andrews. Binary obfusca-
tion using signals. In Proceedings of
16th USENIX Security Symposium on
USENIX Security Symposium, Berkeley,
CA, USA, 2007. USENIX Association.

[12] Chris Lattner and Vikram Adve. LLVM:
A Compilation Framework for Lifelong
Program Analysis & Transformation. In
Proceedings of the 2004 International
Symposium on Code Generation and Op-
timization (CGO’04), Palo Alto, Califor-
nia, Mar 2004.

[13] Clang/LLVM Maturity Report,
Moltkestr. 30, 76133 Karlsruhe
- Germany, June 2010. See
http://www.iwi.hs-karlsruhe.de.

[14] D. Eastlake and P. Jones. US Secure Hash
Algorithm 1 (SHA1). RFC 3174, 9 2001.

[15] R. Rivest. The md5 message-digest algo-
rithm. RFC 1321, 1992.

[16] Christian Collberg, Clark Thomborson,
and Douglas Low. Manufacturing cheap,
resilient, and stealthy opaque constructs.
In IN PRINCIPLES OF PROGRAM-
MING LANGUAGES 1998, POPL98,
pages 184–196, 1998.

[17] Genevive Arboit. A method for water-
marking java programs via opaque pred-
icates. In In Proc. Int. Conf. Electronic
Commerce Research (ICECR-5, 2002.

[18] Wikipedia. Cyclomatic complexity, De-
cember 2012.

[19] http://www.edg.com/.

[20] Monirul Sharif, Andrea Lanzi, Jonathon
Giffin, and Wenke Lee. Impeding mal-
ware analysis using conditional code ob-
fuscation. Informatica, 2008.

12

A Appendix

A.1 Usage

We have designed each obfuscation technique
to be in the form of an optimization pass
within one single library Obfuscation.so. Each
obfuscation technique can be invoked as a
pass by passing in its corresponding flag
-obstring, -objunk or -opaque predicates. To
make a turn-key solution to transform and
compile a given .c source file to an obfuscated
binary executable, we wrote a Makefile that
allows us to invoke specific obfuscation, or
apply all the obfuscation passes together.

In the confuser directory, use the following
command to perform individual obfuscation
on a given .c source file, with filename
test.c. This will create two sets of binary and
readable LLVM IR listing, one each for the
original code and obfuscated code. The files
can be found in the directories original and
confused respectively. In this way, we can
easily compare the differences between the
original code and the generated obfuscated
version.

make [obstring|obop|objunk] TARGET=test

To use all the obfuscation passes on a given
file, use the following command:

make all TARGET=test

In Section 8.3, we describe using the CC
score as a means to measure the approximate
complexity of the control flow graph of a
program. We augmented the Makefile to
perform the disassembly and CC computation
of the programs automatically by invoking
the IDA Pro Disassembler and the Python
script. This may take a while if the program
is large. We can perform this CC evaluation
by using the following command. The CC
score is computed for each function of a
given program. The average, minimum, and
maximum CC scores of the functions in the

program will be displayed for both the original
and obfuscated versions.

make evalcc TARGET=test

A.2 Lessons Learnt

A.2.1 Chih-Fan Chen

I think the most important thing that I learned
is not the context of obfuscation but how to
work with other people. Before the project, I
know nothing about obfuscation. In the be-
ginning, I was afraid that I cannot catch up
with the team. I am glad that I have very
good mentor and nice teammates to help me
through. Though this project, I learned how
to use the LLVM to read, create, and change
the instructions. I know more about how the
complier works and how we can use some tech-
nique to obfuscate others from reassemble the
code. By comparing the project and the ma-
terials learned from class, I think it is better
than learning from instructors speech.

A.2.2 Theofilos Petsios

Through this project I had the chance to have
a greater understanding of the inner parts of a
compiler, the optimization phases and the con-
siderations that have to be taken into account
for maintaining the semantics any source code
that gets compiled. It was made clear to me
how important regression testing is in software
engineering. I also learned a lot about LLVM
and how to deliver a project in steps, being
part of a small team, and also about how to
present your results and ask questions on the
pros and cons of your software. Overall, the
guidance from the teaching staff and my team-
mates was a great aid. This project was a lot
of fun and I believe we all have build a good
foundation to continue this work in a research
level.

13

A.2.3 Marios Pomonis

This project gave me the opportunity to re-
alize the importance of the unseen hero of
the compilation process: the IR. Before we
started I considered having a strong back-end
the most crucial part of the compiler how-
ever this changed drastically because I realized
that without a well designed IR that will allow
effective transformation passes, the back-end
will only be able to make minor optimization
when producing assembly or the machine code.

I was also given the chance to study the in-
ternals of the LLVM framework since I had
never bothered doing it in the past. A future
task that I have set for myself is to do the
same for the GCC something that illustrates
my amazement about those that I learned in
this process.

Last but not least, I was able to verify once
again that given a hard-working and talented
core of teammates any task becomes exponen-
tially easier and simpler, especially if team
chemistry is there. Guidance and support
from the teaching staff is also vital. Since this
was my first team project in Columbia, I be-
lieve it is worth sharing.

A.2.4 Adrian Tang

Through this project, I have observed that the
IR level seems to be an appropriate granular-
ity to obfuscate a program given the availabil-
ity of the source code. Working at this phase
has a good balance of being high-level enough
to have enough language semantic encoded in
the IR to perform meaningful obfuscation and
yet low-level enough to ensure the obfuscation
persists to the target machine code. I have
learnt a tremendous amount ranging from the
technical bits like the inner workings of LLVM
and dissecting a program with disassembler, to
the general aspects of managing and collabo-
rating in a project team. The learning curve
was steep but a great deal of fun. I also appre-
ciate all the support and advice the teaching

staff has given us. I believe this project has
given us some foundation in the workings of
the compiler that will certainly help us in the
further pursuit of research in this area.

A.3 Future Works

Code obfuscation is still an active research
topic of both academic and industry interest.
While creating Confuse we were given the op-
portunity to familiarize ourselves with many
techniques proposed in the bibliography. To
the best of our knowledge only a small por-
tion of the researchers implements their ob-
fuscation in the optimizer level which in our
opinion yields significant benefits (with porta-
bility and flexibility being the keywords in this
case), thus we believe that if Confuse were to
be continued (as a research project) and be en-
hanced with a novel technique that would take
advantage of the its design it might produce a
research paper.

Given the scope of the project, we regret not
being able to conduct a more comprehensive
evaluation of the overhead introduced to an
obfuscated binary. This is certainly an area
that we will look into for any future work.

14

