
a graph modeling language

Tester Sravan
Bhamidipati

Language
Guru

Michael
Deeringer

System
Architect

Fang-Hsiang
Su

System
Integrator

Jiacheng
Yang

Project
Manager

Chun-Yu
Tsai

2013 Spring PLT Team 4

Outline
Introduction: Why and How Gramola
Language Highlights
Project Management
Gramola Translator Architecture
Runtime Environment
Test Plan
Demo
Conclusions

•  Graph Theory
o  An important subject of modern science
o  Applied in numerous domains: social networks

•  Many languages support Graph, but they
o  are not developer-friendly: Longer learning curve
o  focus on limited functionalities like graph DB or draw

•  Developers need the power of

Why Gramola?

Graph-
Native

Easy

Intuitive

Extensible

Gramola Module Overview

Language Highlights
Indentation-based blocks, logical lines

Language Highlights
Many "general-purpose" features

def void main():
 for object j in [2, 3]:

 int i = (int) j

 if i <= 3 and i > 2:

 print "i is less than 3"

 elif i + 1 <= 3:
 print "i + 1 less than 3"

Language Highlights
Classes, inheritance, namespaces

class Actor(Node):
 str name

 def Actor __init__(dict<str,str> dd,

 str actorname):

 Node(dd)

 self.name = actorname

Language Highlights
Built-ins

str token1 = "login_token"
Graph fb1 = get_fb(token1)
draw(fb1, "name", "type")
dump(fb1, "PLT")

Project Management
•  Weekly Scheduled Meetings
•  Google Drive

o  Document management
•  Googlegroups

o  Announcement
o  Meeting Agenda
o  Coordinating remote work

•  GitHub
o  Gramola version control

Project Management
•  Iterative and incremental project planning
•  Project timeline

o  Gantt Chart

Project Management
•  GitHub commits by days

•  Frontend: PLY/Python
•  Backend: Java
•  Version Control: Git with Github hosting
•  gcompile

Development Environment

Gramola Translator

Runtime Environment
•  Java-powered runtime

.class

JVM

gramola.jar third-party
libs

gexe

.gr

gcompile

Runtime Environment

INSTALL

Runtime Environment
•  Scripts

o  INSTALL: one-click configuration of the runtime
environment. For internal use and first-time user
installation

o  gcompile: compile .gr ->.java -> .class
§  ./gcompile hello.gr Hello

o  gexe: invoke JVM to link compiled user program
(.class), the gramola library (gramola.jar) and other
supporting libraries
§  ./gexe Hello

Runtime Environment
•  The Gramola library

o  Built-in data structures for graphs, e.g. Graph, Node,
Edge, etc

o  Implementations of syntax sugars, e.g. initialize
dictionaries with arbitrary number of key-value pairs

o  Converters/Drivers to connect to third-party libraries
for advanced features, e.g. graph persistence, graph
visualization

Test Plan

•  Fuzz testing: Lexer
•  End-to-end automated testing: To localize bugs to a

specific compiler phase.
•  About 900 LOC of syntactically and semantically valid

Gramola programs to test every keyword, operator,
built-in, data type, data structure, programming
construct through every phase of the compiler.

•  Less focus on error-handling.

Test Results

Phase Passed Failed

Lexical Analysis 35 0

Syntax & Semantic Analysis 31 4

Code Generation 31 4

Compilation 30 5

Execution 30 5

Demo
1.  IMDB

a.  Inheritance
b.  Loop
c.  Control Flow

2.  Common Friends on Facebook
a.  User-defined class
b.  get_fb: Real-time data retrieval from Facebook
c.  dump: Graph data storage in Graph DB
d.  draw: Graph object=>dot => Graph visualization

3.  More time?
a.  get_shortest_path: Shortest path finding
b.  Actually we have about 10+ Gramola apps!!

M

S

J

C

F

Conclusions
•  We're proud of...

o  Gramola graph-native features (e.g., connection to
FB), extensibility (class inheritance)

•  What worked well...
o  gcompile
o  git version control

•  Lessons we learnt
o  Start testing immediately after feature implemented!
o  We should plan for suitable scoping at the

beginning!

We Can Do Better!

Specific
Features

Measurable
Progress

Attainable
Target

Yes, time is never
enough

Relevant
Workload

Work Together

while work_in_same_place(team4):
productivity[team4] += 1

Title logo taken from http://www.etringita.com/pequeneces/2010/05/05/gramola/
RCA logo redux taken from http://kayleighmahon.wordpress.com/2012/09/

Thanks!
2013 Spring PLT, Team 4: Gramola All rights reserved.

