CGDL: Card Game
Description Language

Angela Wei — Project Manager
Abraham Tseng — Language Guru
Raghavan Santhanam — System Architect
Kshitij Bhardwaj — System Integrator
Deepak Nayak — Tester/Validator

What is CGDL?

e For card game
developers
and hobbyists

e |dea for a new
card game!

o Create an
Interactive prototype

o Sell it to a gaming company
e OR just code for fun and show off..

CGDL is:

- Simple

Familiar
Specialized
Flexible
Interactive
Portable

Speaking of showing off...
It’s demo time...

A Crash Course in CGDL

e Primitive data types:
> number, string, bool, attribute, visibility
e Data structures:

o Sets (eg. Card[])
o Records

e Conditionals:

o if, else if, else, switch/case

A Crash Course in CGDL

o **This is a comment **
e C-like functions

e Loops:

o forEach x in set

° loopiinn

o repeat/until

User 1/O

e message(string)
e Query
° string queryString(string)
o number queryNumber(string)
o Card[] querySelection(player, string)
® string
choose(“Please choose”,“cl c2 ¢3”)

Specialized Class: Player

e Extensible fields of any type
e Hand pile
e currPlayer

Specialized Class: Card

e Modifiable attributes
e Tracks association
e Standard deck included

Specialized Class: Pile

e Pile is a set of cards with properties
inspired by real card games

e Built in functions

Game Structure

e “Rounds within rounds”
Game innerGame {
Setup {

}
Round {

J

Hello Ace of Spades

addCardAttribute suit

addCardAttribute rank
Game main {
Setup {

Setup: In Depth

e Setup {

addToDeck(STD_SUIT, STD_RANK);
deckPile.shuffle();

numPlayers = I;

Player player| = players[0];
player | .hand.visible = self;

Round: In Depth

Round {
currPlayer = playerl;
Card card = deckPile.getFromTop();

player|.hand.putAtFront(card);

if (card.rank == ACE and
card.suit == SPADE)
{

winner = player|;
message("Hello Ace of Spades!");

System Architecture

CeDLC

Input: Card Game Description language (CGDL) source program: game.cgdl(Character stream)

!

cgdll(Lexical Analyzer)

"

Token stream

"

cgdly(Syntax Analyzer)

"

Parsed and matched pattern in the token stream

"

semantic_actions.c

"

Addition of individual nodes of Abstract Syntax Tree(AST)

"

ast_builder_and_walk_initiator.c

"

AST

"

Processes AST nodes and does
code-generation if
semantic-analysis passes

ast_transiatorc | 4 | bol_toble.c

Generates C++ code with the quintessential CrashHandler and the C6DL source line
information to ease the debugging of the generated game when needed.

G

Output/Target: Card Game C++ code: game.cpp

System Architecture

game.cpp + cpplib

.

C++ Compiler

.

Final Card
Game Executable:
game

Software Development
Environment

e Source code version control: Git
e Development Language: C

e Lexical analysis: Lex

e Syntax analysis and Parsing:Yacc
e Target language: C++

e Makefile and bash scripts

Code Organization

e Root directories:

o Jexamples: *.cgdl files

o [cpplib: library header files in C++
o [kernel: Source code of compiler
o [test: test suites

Runtime Environment

e Built-in library functions control the
runtime behavior

o Card, Player, Pile structs with attributes
and built-in functions

> Dynamically configure attributes of
structs

Dynamic.h : generated during compilation of
cgdl code

o |/O functions to display messages and Ul

.cgdl to game executable

e Copy your cgdl file to /examples
e In /kernel,’'make’ to build compiler

e Run script ‘buildGame.sh’ with cgdl
file as argument

e Game executable is created in
lexamples

e Start playing!!

Testing

e Test Plan Evolution
> Phase |: Manual testing of lex and yacc

o Phase ll: Some small toy test cases to unit
test grammar production and AST

o Phase lll: Same toy test cases from Phase
Il along with some real sample game used
during code generation and semantic
analysis to do integration testing

(continued...)

Testing

> Phase IV:Test script to automate testing
from source cgdl to executable, and also
for regression

e Issues Tracking
o Shared Google Spreadsheet

Testing

congratulation your game ./declaration/decln_5 is

compiling ./declaration/decln_3.cgdl

cgdl compile passed

reference file ./declaration/decln_3.cppref exist
regression passed

compiling ./declaration/decln_3.cpp

congratulation your game ./declaration/decln_3 is

compiling ./declaration/decln_1.cgdl

cgdl compile passed
reference file ./declaration/decln_1.cppref exist
regression passed

congratulation your game ./declaration/decln_1 is

compiling ./declaration/decln_4.cgdl

cgdl compile passed
reference file ./declaration/decln_4.cppref exist
regression passed

congratulation your game ./declaration/decln_4 is

compiling ./cpperror/decln_5.cgdl

cgdl compile passed
reference file ./cpperror/decln_5.cppref exist
regression passed

ready

Final Demo

-

"

CGDL UNLEASHED!

r ,_ / T
A AL/
~ \ e \ ' /

Lessons Learned

e What went right:
> Frequent meetings, coding together
o Small kernel first
o C, C++ with lex and yacc
> Respecting teammates
e Improvements
o Use Git earlier on

> More tests from the beginning

Conclusion

e CGDL is:

> Flexible
game creation

> Easy to Learn

Great learning
experience

Source Code: PR
https:/ /bitbucket.org/fly fﬁ@ e
aweil/ plt-project/ —

	CGDL: Card Game Description Language
	What is CGDL?
	Slide Number 3
	Speaking of showing off…�It’s demo time…
	A Crash Course in CGDL
	A Crash Course in CGDL
	User I/O
	Specialized Class: Player
	Specialized Class: Card
	Specialized Class: Pile
	Game Structure
	Hello Ace of Spades
	Setup: In Depth
	Round: In Depth
	System Architecture
	System Architecture
	System Architecture
	Software Development Environment
	Code Organization
	Runtime Environment
	.cgdl to game executable
	Testing
	Testing
	Testing
	Final Demo
	CGDL UNLEASHED!
	Lessons Learned
	Conclusion

