
CGDL: Card Game
Description Language

Angela Wei – Project Manager
Abraham Tseng – Language Guru
Raghavan Santhanam – System Architect
Kshitij Bhardwaj – System Integrator
Deepak Nayak – Tester/Validator

What is CGDL?
 For card game

developers
and hobbyists

 Idea for a new
card game?
◦ Create an

interactive prototype
◦ Sell it to a gaming company

 OR just code for fun and show off..

Speaking of showing off…
It’s demo time…

A Crash Course in CGDL
 Primitive data types:
◦ number, string, bool, attribute, visibility

 Data structures:
◦ Sets (eg. Card[])
◦ Records

 Conditionals:
◦ if, else if, else, switch/case

A Crash Course in CGDL
 ** This is a comment **
 C-like functions
 Loops:
◦ forEach x in set
◦ loop i in n
◦ repeat/until

User I/O
 message(string)
 Query
◦ string queryString(string)
◦ number queryNumber(string)
◦ Card[] querySelection(player, string)

 string
choose(“Please choose”, “c1 c2 c3”)

Specialized Class: Player
 Extensible fields of any type
 Hand pile
 currPlayer

Specialized Class: Card
 Modifiable attributes
 Tracks association
 Standard deck included

Specialized Class: Pile
 Pile is a set of cards with properties

inspired by real card games
 Built in functions

Game Structure
 “Rounds within rounds”
Game innerGame {
 Setup {
 ...
 }
 Round {
 ...
 }
}

Hello Ace of Spades
addCardAttribute suit
addCardAttribute rank
Game main {
 Setup {
 …
 }
 Round {
 …
 }

Setup: In Depth
 Setup {
addToDeck(STD_SUIT, STD_RANK);
 deckPile.shuffle();
 numPlayers = 1;
 Player player1 = players[0];
 player1.hand.visible = self;
}

Round: In Depth
Round {
 currPlayer = player1;
 Card card = deckPile.getFromTop();
 player1.hand.putAtFront(card);
 if (card.rank == ACE and
 card.suit == SPADE)
 {
 winner = player1;
 message("Hello Ace of Spades!");
 }
}

System Architecture

System Architecture

System Architecture

C++ Compiler

Final Card
Game Executable:

game

game.cpp + cpplib

Software Development
Environment
 Source code version control: Git
 Development Language: C
 Lexical analysis: Lex
 Syntax analysis and Parsing: Yacc
 Target language: C++
 Makefile and bash scripts

Code Organization
 Root directories:
◦ /examples: *.cgdl files
◦ /cpplib: library header files in C++
◦ /kernel: Source code of compiler
◦ /test: test suites

Runtime Environment
 Built-in library functions control the

runtime behavior
◦ Card, Player, Pile structs with attributes

and built-in functions
◦ Dynamically configure attributes of

structs
 Dynamic.h : generated during compilation of

cgdl code

◦ I/O functions to display messages and UI

.cgdl to game executable
 Copy your cgdl file to /examples
 In /kernel, ‘make’ to build compiler
 Run script ‘buildGame.sh’ with cgdl

file as argument
 Game executable is created in

/examples
 Start playing!!

Testing
 Test Plan Evolution
◦ Phase I: Manual testing of lex and yacc
◦ Phase II: Some small toy test cases to unit

test grammar production and AST
◦ Phase III: Same toy test cases from Phase

II along with some real sample game used
during code generation and semantic
analysis to do integration testing

(continued…)

Testing
◦ Phase IV: Test script to automate testing

from source cgdl to executable, and also
for regression

 Issues Tracking
◦ Shared Google Spreadsheet

Testing

Final Demo

CGDL UNLEASHED!

Lessons Learned
 What went right:
◦ Frequent meetings, coding together
◦ Small kernel first
◦ C, C++ with lex and yacc
◦ Respecting teammates

 Improvements
◦ Use Git earlier on
◦ More tests from the beginning

Conclusion
 CGDL is:
◦ Flexible

game creation
◦ Easy to Learn

 Great learning
experience

	CGDL: Card Game Description Language
	What is CGDL?
	Slide Number 3
	Speaking of showing off…�It’s demo time…
	A Crash Course in CGDL
	A Crash Course in CGDL
	User I/O
	Specialized Class: Player
	Specialized Class: Card
	Specialized Class: Pile
	Game Structure
	Hello Ace of Spades
	Setup: In Depth
	Round: In Depth
	System Architecture
	System Architecture
	System Architecture
	Software Development Environment
	Code Organization
	Runtime Environment
	.cgdl to game executable
	Testing
	Testing
	Testing
	Final Demo
	CGDL UNLEASHED!
	Lessons Learned
	Conclusion

