GDL

(pronounced goodsl)

Goodle Manager - Lindsey Heller
Goodle Guru - Joseph Corbisiero
Goodle Architect - llan Elkobi
Goodle Integrator - Henrique Maia
Goodle Tester - Elayna Tuck

Development
Proces

@ Lessons
Leamed

D=

Execution
Environment

From Soure
10 Target

Translaor
Diagran

Why GDL...

makes
programming
decision trees

A

P

Buzz Words

» Flexible
» Familiar

» User-Friendly / Easy to Use

» Useful

Target

» Professionals

» Students

» Publications

Syntax: Keywords

Similar to Java & C GDL Specific

for begin

while graph

if state

else start
return accept
true/false func
goto

Syntax : Primitive Types

equivalent to a Java String

number equivalent to the Java primitive
double

equivalent to the Java primtive
boolean

Syntax : Conditionals

» while
» for
» if/else

» goto

goto, {list states}, condition;

Syntax: Graphs
» begin

begin()
{

//states and functions

}

» graph

graph <name>()

{

//states and functions

Syntax : States

» start = the start state of a graph

start <name>()

{

//actions

}

» accept = accepting state of a graph

accept <name>()

{

//actions

}

» standard = any state that is neither the start nor accept stat of a graph

state <name>()

{

//actions

}

Svyntax : Function Declaration

func return type : <name> (parameter list)

{

//actions

}

. Development Lessons

Execution
. Management
Environment

From Souree
10 Targe

Translator
Diagram

Live Demo

The
Language

Development
Process

@ Lessons
Leamed

D=

Execution
Environment

5 . Translaor From Source
D0 Diagram 0 Target

P——
Code

lFLEX Semantic
) [= N
L

Symbol Table

lava Source

GDL_graph.dot Code

Java Compiler

GDLMain.java

\
\

—

The
Language

Development
Process

@ Lessons
Leamed

Execution
. Management
Environment

Translator
Diagram

Lexical Analyzer

GDL Source
Code

» Returns Tokens
),

» Keywords of the language

/* CONTROLS */

{IF} { return Parser.IF; }
{ELSE} { return Parser.ELSE; }
{FOR} { return Parser.FOR; }
{WHILE} { return Parser.WHILE; }

{ }

{DO}

return Parser.DO;

Syntax Analyzer

BYACC/)

» Using BYAAC/] —

» Creates an AST

stmt : decl SEMI { $S = new Node(State.STMT, $1);
| stmt _assign SEMI { S5 = new Node(State.STMT, S$1);
| begin { 5 = new Node(State.STMT, S$1);
| graph closure { 85 = new Node(State.STMT, S1);
| state_closure { 85 = new Node(State.STMT, 51);
| start_closure { 85 = new Node(State.STMT, S$1);
| accept closure { 85 = new Node(State.STMT, S1);
| goto_stmt SEMI { $5 = new Node(State.STMT, $1);
| if stmt { $8 = new Node(State.STMT, $1);
| while loop { $$ = new Node(State.STMT, $1);
| for loop { $$ = new Node(State.STMT, $1);
| func { 85 = new Node(State.STMT, 51);
| func _call SEMI { 85 = new Node(State.STMT, $1);
| return stmt { 85 = new Node(State.STMT, S1);
| NL { /* Nothing to do */

{ /* Nothing to do */

——

Semantic Analyzer

) /@\ =
‘(’s
P

Code Generator

Code
Generator

» Creates .java file, GDLMain.java

public class GDLMain {
HashMap<String, String> closedList = new HashMap<String, String>();

HashMap<String, AbstractState> allStatesTable = new HashMap<String,RbstractState>();
public GDLMain() {

allStatesTable.put ("beginStart"™ , new beginStart()):;
allStatesTable.put ("begin S1" , new begin S1()):;

allStatesTable.put ("begin S2" , new begin S2());

allstatesTable.put ("terminalAccept begin acc" , new terminalAccept begin acc()):;

}

public static void main(String[] args) {

GDLMain gdll = new GDLMain();

gdll.runGraph() ;

GUI Graph

creates DOT —
file to produce - {“g‘"}d”"k
a graph l

 eatentry begin:entry

drink:heights

The Development @ Lessong
Language Prooess Leaned

» . Tranlator Bxecution
Diagram Environment @

From Source
10 Targe

Execution Environment

» Makefile calls:
* Lex and Yacc
» Creates Parser
 Parser generates files in output folder
* Helper classes are compiled and used
- GDLMain is created with user program

* Program executes on terminal

- GDL_graph.dot is generated

Output

» User sees the results of accept states
immediately after running the program

» A dot file is generated so the average user
can better understand the results of the
graph

It’s Useful!

GDL has already been put to use for
one of our Al projects this year and is
currently being used by two team
members to create FSM for Embedded

Architectures!

The . Development Lessons
Language At Process @

From Source
10 Taget

Translator

» . Execution
Environment T

Development Tools

Management Tools

Boroupme gipup

SOCIAL CODING

Google
‘ i, Sroups

Google Drive

Efficiency Tools

ALWAYS FREsy

5‘ "“v" /‘) f/ p » y ‘.“ b."‘ } \‘7 % 7/ \

DUNKIN’
DONUTS

The . Development Lessons
Language - Proces @
Descripion

Execution
Environment

Translator From Souree

Dlagran

Sprint Schedule

March 6th - March 9th Sprint O
March 10th - March 16th Sprint 1
March 17t - March 30t Sprint 2
March 31st - April 14th Sprint 3
April 15t - April 27th Sprint 4

April 20th - May 11t Sprint 5

The

Development i Lessons
Language :

Architecture
Proogss

Execution
Environment

From Source
10 Tage

Translator
Diagram

D=

Testing

Unit Testing

Black Box Testing

Regression Testing

Testing

e

() Tested general
functionality

Tested

® Semantics
Tested

Parser

The
Language

Development

Architecture
Process

=)

Execution
Environment

From Source
0 Taget

o

We learned our lesson...

» ensure all are using the same version
» always pull before you commit
» communication is key

» test
» test the test
» test the test that tested the test

Questions?

P

