
arthur:
a great programming language

Ingredients for an arthur program
● 1 MP4 of ballers dunking
● 4 strings: “Hello my dear friends. Welcome to

my world” || “Do you like Arthur yet?” ||
“Please enjoy Arthur today.” || “Arthur lives”

● 1 MP3 of a glass breaking sound
● 1 color: red
● ~35 lines of real live code

Let’s show a sample!

BALL EM

http://kevin-roark.github.io/arthur/samples/sample11trans/
http://kevin-roark.github.io/arthur/samples/sample11trans/

What?
High level media manipulation
language run primarily in Java that
compiles to finished static canvas-y
JavaScript sites.

Data Types: Primitives
num x = 5;
string x = “This language is great!”;
color x = <<255, 0, 255>>;
color x = CHARTREUSE;
All initialized with literals ||||||||||||||||||||
Realtime manipulation

Data Types: Non-Primitives
Video x = video(“arthurShow.mp4”);
Sound x = sound(“inDaClub.mp3”);
Image x = image(“starwars.jpg”);

Initialized with files ||||||||||||||||||||||||||
Java manipulation

What would happen if you...
● Added a color to a sound?
● Multiplied two strings?
● Turned a sound into a picture?

We figured it out!!!!

The main ideas
There are two sides to arthur
● First: A creative process with

unusual results
○ Morphology between medias
○ A space to experiment
○ Output with a wow factor

The main ideas, cont’d.
● Second: A suite of editing

possibilities in a single package
○ Eliminates need for multiple software

tools for different types of media
○ Condenses heavy-duty media

manipulation routines into very simple
& very small code styles

Casting & interoperability
All types can be cast (->) to one
another.

The operands of (+, -, /, *) can be of
any two types!

Casting
● Video->Sound extracts sound from a video

and saves it as an MP3
● Video->Image samples & combines frames

from the video
● Image->color gets you the average color of

all the pixels in the image
● string->Sound performs “text to speech”
● number->Sound ??? try it and find out

Image -> string

Video -> image

http://www.youtube.com/watch?v=2tN4_yJdtiA

Interoperability
The result of an operation is the
same type as its left operand.
● Video * number speeds up or slows down

the video by a factor
● Sound + number raises the sound’s pitch by

an amount
● Image / Image overlays two images
● Video / number tiles the video

* 3 / 4

http://www.youtube.com/watch?v=7zkX6kfnWbk
http://www.youtube.com/watch?v=v8JS_tPrNzc

sound * string

JUST BEING
HONEST

http://kevin-roark.github.io/arthur/samples/sample15trans/
http://kevin-roark.github.io/arthur/samples/sample15trans/
http://kevin-roark.github.io/arthur/samples/sample15trans/
http://kevin-roark.github.io/arthur/samples/sample15trans/

Then what?
If you want to use arthur as a tool for editing pictures,
sounds, and videos
-> Just scoop up the media files from the
outputs folder
If you want to watch something crazy and cool
-> Open and deploy the target program, an
HTML5 Canvas application

Putting it all together
Arthur programs have three main parts:
1. Initialize media variables from file names and

literals and manipulate them as you please
2. Choreograph the presentation of media variables

within the canvas application
3. Set up event handlers for real-time user interaction

with the canvas application
2 and 3 are optional, of course

Program structure
void init() {...} //initialize and manipulate
media (backend - Java) & add it to the canvas

void loop() {...} //alter canvas in real-time
(backend - JavaScript)

void key() {...} //make canvas react to key events
void click() {...} //and mouse click events
void move() {...} //and mouse move events!

Language bits
add(media, frame optional, num optional)

//adds media object to arthur canvas

ms() // easy call to current time in ms, returns num

frame(x,y,w optional, h optional)

//add media to specific location on canvas, w/ specific size

cooler() // return a pretty random color

num * { block } // intuitive for-loop

The making of arthur
meet a lot

spriiiing breaaaaaaaaak

THE TEAM

Translator Architecture

Lexer

Parser

Javac

Whisperer

Middleman

Java
translator

JS
Translator

Buster
Folder!

Java runtime

JS translation

Browserify

Arthur source

JS library

Java
translation

Augmented JS
translation

interpreted,, compiled,,
and fun

add()

init()

loop()

Sample time

http://kevin-roark.
github.io/arthur/

http://kevin-roark.github.io/arthur/
http://kevin-roark.github.io/arthur/
http://kevin-roark.github.io/arthur/

What have we learned?
● Nothing
● Something

Just kidding!
● The state of media encoding is a mess
● There are lots of libraries out there -- don’t

reinvent the wheel, make it better!!!! (but
start with the right wheel)

● Demystification of a “compiler”
● Making stuff robust against failure is hard
● You can make whatever you want

Goodbye

Thanks for listening to us
talk about arthur. We are
proud of arthur and hope
you enjoyed its styles.

