Pipelinescript

data workflows made simple



. N
Target Domains PN
/N

e Natural language processing s u s wa
e Machine learning

Estimated number of clusters: 3

E} T T T T T

e Network analysis




The Problem data analysis can be complicated

Data Formats Programming Languages

<

) XML
& o




The Problem

Textfiles JSON files CSViles

URL 1

URL 2 :> scrape.py JSON to CSV tagger java CSV to Text

JSON files ﬂ ﬂ ﬂTextﬂles
N7 N7 N7

URL3 ———)

Textfile Performance (float) Performance (float)
JSON to Text svm.py so-cal.rb

Textfile

Hyperparameters
XML /JSON
Lexicon => XML /JSON to
Text




The Problem

Data analysis can be complicated by
different data formats and
different algorithm implementations



The Solution

A new layer of abstraction that allows
different data formats and

different algorithm implementations
to be used interchangeably



Key Ideas

e Function import from third-party algorithms
e Easy data file read/write

e Parallel processing



Syntax

e Function import

function £ = !”scrape.py”

e File read/write

“i1d,date, cost,quant” -> “data.csv”
table t = @”data.csv”

e Parallel processing

&get names (“text#.txt”) => “names#.txt”



Project Management

e \/ersion control

Git
e Code hosting & task management

G itH u b: THE NEXT GENERATION
e Document collaboration Google docs

Google Docs T 1L


https://github.com/danvegeto/pipelinescript

Development Process

1. Java-side functionality
Dan & Burak

2. Grammar and Translation
Pedro & Rachel

3. Testing system
David

10



Design Choices

Translator: Python

e Easy

e Compact

e Integrated
e Powerful

lex

yacc

11



Design Choices

Target Language: Java

e Fast
e Cross-Platform
e Manageable

12



Translator Design

Source code :D

Python Lex-Yacc

Tokenized code

Java Code

Helper Files

Java Code

>

Java Compiler

Bytecode

Qutput




Directory Structure

pipelinescript/
PipelineScript
plugins
data
tests
examples

doc

Java helper classes

third-party algorithms

data storage

test pipelines and testing system
example pipelines
documentation

Python translator

Shell script

14



Environment Setup

git clone

Install PLY (Python - lex - yacc) and Java

Run the self tests by tester.py in the /tests folder
Run your first pls program by ./pls.sh hello_world.pls
External plugins -> pipelinescript/plugins/

Data files (txt,csv) -> pipelinescript/data/

15


https://github.com/danvegeto/pipelinescript.git

Testing System

e |[nitial dynamic approach to study corner cases
e Easy updation (addition) of new tests

e Coverage extended to all features

16



tests/arith_add multi.pls
9
JITT1111110011717771111171117771111117171777111111111171 tests/Results.txt
tests/arith_div.pls

2
JITT1111110001717771111107177771111107771177111111711771
tests/text_concat.pls

foo bar

IITTTTTTTETIEL LTI 7711177777 7111717

actual output is ['9']

expected output is ['9']

actual output is ['2']

expected output is ['2']

actual output is ['foo bar']

expected output is ['foo bar']

tests/tester.py

17



DEMO



Example 1: File I/O

"this i1s some example text,

print @"text.txt"

and it is exemplary" -> "text.txt"

19



Example 2: Shell Commands

"1I\n2\n3\n4\n5\n6\n7\n8\n9%" -> "data.txt"
function head = !"head -n 3"
head ("data.txt") -> "head.txt"

print @"head.txt"

20



Example 3: Simple Scripts

function words = !"tokenize.py"

function counts = !"count.py"

"the boy and the girl played with the dog and the cat" -> "text.txt"

words ("text.txt") -> "words.txt"

counts ("words.txt") -> "counts.csv"

print @"counts.csv"

21



Example 4: Newspaper

function head =
function scrape =
function download =
function tokenize =

function count =

"http://www.nytimes.com" ->

scrape ("source.txt") ->
head ("urls.csv") =<
&download ("url#.txt") =>

print head ("text#.txt")

"head"
"newspaper/scrape.py"
"newspaper/download.py"
"tokenize.py"

"count.py"

"source.txt"
"urls.csv"
"url#.txt"
"text#.txt"

22



Example 5: Newspaper + NER

function scrape =
function head =
function download =
function get names =

function count =

"http://www.nytimes.com" ->

scrape ("source.txt") ->
head ("urls.csv") =<
&download ("url#.txt") =>
&get names ("text#.txt") =>
count ("names#.txt") ->

print head("counts.csv")

"newspaper/scrape.py"
"head"
"newspaper/download.py"
"stanford-ner/ner.py"

"count.py"

"source.txt"
"urls.csv"
"url#.txt"
"text#.txt"
"names#.txt"

"counts.csv"

23



Lessons Learned

Maintain constant communication
Plan ahead in detalil

Weekly group meeting are important
Focus on test driven approach
Always test basics and push the code

24



Further Development

e Improve error-checking

e Add support for additional data formats and
algorithm languages

e Add additional plugin algorithms

e Implement plugin manager

e Create online platform

25



THANK YOU



