
parsel
Final Project - Team 13

Jett Andersen (jca2136, Project Manager)
Andy Hadjigeorgiou (ahh2131, Tester)
Xingzhou He (xh2187, Language Guru)
Kunal Jasty (ksj2114, System Integrator)
Robert Ying (ry2242, System Architect)

Introduction - What is Parsel?

The language that generates your envelopes

Introduction - What is Parsel?

- More and more
people are making edm

- More and more
people are coding

Introduction - What is Parsel?

- So many people love both, but have no way
to combine their hobbies!

- Parsel is here to change that.

Parsel

Parsel

- Declarative, functional, and lazy

- Designed to mask the tedious challenges of
audio programming behind a clean and
efficient language

- v2 will integrate into any producer’s DAW

Evolution of Parsel

● Basic idea of Parsel preserved since the
proposal

● Changes mostly made to address needs /
difficulties during implementation

Evolution of Parsel (cont’d)

● Haskell for front-end
○ Alex (Lex) / Happy (Yacc)
○ Language design was changed to make it parsable

by yacc
■ “\” tag for inline functions
■ No partial function

Evolution of Parsel (cont’d)

● Compiling Parsel code
○ After making the grammar, code generation was

completed first
■ Accelerating backend progress
■ Make first integration tests

○ Then semantic analysis was developed
■ Check for errors
■ Make sure generated code compiles in g++

Evolution of Parsel (cont’d)

● Backend
○ C++ is used
○ Lots of C++14 features

■ Generic lambdas
● Makes dealing with generated types much easier =)

Evolution of Parsel (cont’d)

● Libraries used
○ To speed up development, we used general libraries

for audio processing
■ libsndfile (Reading / writing .wav file)
■ fft4g (Fast Fourier transform implementation)

Runtime/Software Development Environment
- Runs in Ubuntu 14.10 x64

- Build using Cabal, Haskell’s
Common Architecture for B uilding
Applications and L ibraries

- Supports g++ >= 4.9 . Tested on

g++ 5.1.1

- Git + Github for version control

Type Checking
- Compile-time type

checking for undefined
variables, type
mismatch errors etc

Data Types That Make Us Special

- signal
- Designed to be treated as a continuous signal
- Wraps sampling and buffers of typical audio

programming

- frequency-domain signal (fsignal)
- Allows for efficient filtering and other effects
- We use a highly optimized C++ Fourier transform

More Data Types

- It’s the little things that count
- sample

- multi-channel complex value
- time
- freq

Laziness

- Prevents the evaluation of unused data
- this works :D

- Allows us to work with infinite lists
- not quite working yet :(

Laziness

- An infinite list of intervals
- Allows the user to apply effects to audio over time
- Until the end of time!

- All this without having to write a single loop

Example Program

Generated Code

Project Management
- Agile development
- Weekly meetings to assign tasks + discuss

 Git Commits

Translator Architecture

Modules

waiting for next file change

change to code-gen = rebuild compiler

Testing
● Python program runs in shell,

watching for file-system changes

● Creates compiler, compiled c++,
binary file, and runs parsel program

● Used ‘diff’ to compare compiled c++
with sample c++

● Only updates relevant parts of project

● Improved development productivity

super cool demo

Conclusions

- laziness is hard
- both real life group laziness
- and lazy function evaluation

- type-safety is really nice, but difficult to get
working

- think more carefully about scope before
starting

