W3203
Discrete Mathematics

Number Theory

Spring 2015
Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203
Outline

- Communication, encryption
- Number system
- Divisibility
- Prime numbers
- Greatest Common Divisor (GCD)
- Euclidean Algorithm
- Modular Arithmetic
- Euler’s totient function
- RSA cryptosystem
- Text: Rosen 4
- Text: Lehman 8
Private Communication in Public

- The Problem:
 - Alice (A) wants to tell Bob (B) a military secret. But the enemy (E) is listening to their conversation
 - Can they communicate with each other without revealing the secret to the enemy?

- General approach:
 - Communicate in secret code
 - A & B agree on a procedure to encrypt messages
 - The receiver (B) has a procedure to decrypt the message
 - The enemy (E) should not be able to deduce the decryption procedure
Encryption

- Goal: create a secret code (cipher)
 - 1. **Monographic substitution**: permute alphabet, replace each letter by substitute
 - 2. **Shift cipher**: represent letters as numbers, shift all letters by some integer, replace with new numbers

- **Shift cipher**:
 - \{A, B, C, ... , Y, Z\} → \{0, 1, 2, ... , 24, 25\}
 - \{0, 1, 2, ... , 24, 25\} → \{3, 4, 5, ... , 1, 2\}
 - \{3, 4, 5, ... , 1, 2\} → \{D, E, F, ... , B, C\}
 - To decrypt (recover the original), shift back by the same #
Shift Cipher (example)

- **Shift cipher:**
 - Numbers: \{A, B, C, ..., Y, Z\} → \{0, 1, 2, ..., 24, 25\}
 - Shift: \{0, 1, 2, ..., 24, 25\} → \{3, 4, 5, ..., 1, 2\}
 - Letters: \{3, 4, 5, ..., 1, 2\} → \{D, E, F, ..., B, C\}

- **Example: encrypt the message**
 1. “MEET YOU IN THE PARK”
 2. “12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10”
 3. “15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13”
 4. “PHHW BRX LQ WKH SDUN”
Can we discover the message without knowing the encryption method and “key”?

- Complicated cipher? Difficult to use!
- Simple cipher? Can’t hide patterns!
- General knowledge can help: relative frequencies of letters
- Enemy may have access to multiple messages
- Decryption is computationally feasible
Number System

Def: The **natural numbers** are a mathematical system

\[
\{ \mathbb{N}, \; 0 \in \mathbb{N}, \; s : \mathbb{N} \to \mathbb{N} \}
\]

with a number **zero** 0 and a **successor** operation \(s : \mathbb{N} \to \mathbb{N} \) such that

1. \((\forall n) [0 \neq s(n)] \).
 Zero is not the successor of any number.

2. \((\forall m, n \in \mathbb{N}) [m \neq n \Rightarrow s(m) \neq s(n)] \).
 Different numbers cannot have the same successor.

3. Given a subset \(S \subseteq \mathbb{N} \) with \(0 \in S \)

 if \((\forall n \in S) [s(n) \in S] \) then \(S = \mathbb{N} \)
DEF: The *predecessor* of a natural number n is a number m such that $s(m) = n$.

NOTATION: $p(n)$.

DEF: *Addition* of natural numbers.

$$n + m = \begin{cases} n & \text{if } m = 0 \\ s(n) + p(m) & \text{otherwise} \end{cases}$$

DEF: *Ordering* of natural numbers.

$n \geq m$ means \(\begin{cases} m = 0 \text{ or } \\ p(n) \geq p(m) \end{cases} \)

DEF: *Multiplication* of natural numbers.

$$n \times m = \begin{cases} 0 & \text{if } m = 0 \\ n + n \times p(m) & \text{otherwise} \end{cases}$$
Definition: let \(n \) and \(d \) be integers with \(d \neq 0 \). If there exists an integer \(q \) such that \(n = dq \), then \(d \) divides \(n \):

- \(d \) is a factor or (proper) divisor of \(n \)
- \(n \) is a multiple of \(d \)
- Notation: \(d \mid n \quad d \nmid n \)
- Facts: \(n \mid 0 \quad n \mid n \quad 1 \mid n \)
Properties of Divisibility

- Properties:
 Let a, b, and c be integers with $a \neq 0$
 1. If $a | b$ and $a | c$ then $a | (b+c)$
 2. If $a | b$ and $b | c$ then $a | c$
 3. If $a | b$ and $a | c$ then $a | (sb + tc)$ for all integers s,t

- Proof of part (3):
 a. By definition, $\exists k_1, k_2 \in \mathbb{Z} : ak_1 = b$ and $ak_2 = c$
 b. It follows that, $sb + tc = s(ak_1) + t(ak_2) = a(sk_1 + tk_2)$
 c. $sk_1 + tk_2 \in \mathbb{Z} \rightarrow a | (sb + tc)$
Division Theorem

Let $n \in \mathbb{Z}$, $d \in \mathbb{Z}^+$, then there are unique nonnegative integers q and $r < d$, such that $n = dq + r$

- d is called the divisor
- n is called the dividend
- q is called the quotient
- r is called the remainder
- $r = n \mod d$
Modular Arithmetic

- Definition: let b and $n > 0$ be integers. Then $b \mod n$ is the residue (remainder) of dividing b by n.
- Definition: if a, b, and $n > 0$ be integers. Then a is congruent to b modulo n if n divides $a - b$
- Notation:
 - $a \equiv b \pmod{n}$
 - $a \equiv_{mod\ n} b$
 - $a \not\equiv b \pmod{n}$
- Congruence modulo n defines a partition of the integers into n sets so that congruent numbers are all in the same set
Shift Cipher (functions)

- **Shift cipher:** letters shifted by some integer \(k \)
 - Numbers: \{A, B, C, ... , Y, Z\} → \{0, 1, 2, ... , 24, 25\}
 - Shift: \{0, 1, 2, ... , 24, 25\} → \{3, 4, 5, ... , 1, 2\}
 - Letters: \{3, 4, 5, ... , 1, 2\} → \{D, E, F, ... , B, C\}

- **Encryption / Decryption functions** (\(k \) is the key):
 - \(f(p) = (p + k) \mod 26 \)
 - \(f^{-1}(p) = (p - k) \mod 26 \)
Linear Combination

- An integer \(n \) is a **linear combination** of numbers \(b_0, \ldots, b_k \) iff \(n = c_0 b_0 + c_1 b_1 + \ldots + c_k b_k \) for some integers \(\{c_0, \ldots, c_k\} \)
- Application: represent numbers using a linear combination to improve efficiency of algorithms
- Common representation: decimal, or *base* 10
- We can represent numbers using any base \(b \), where \(b \) is a positive integer greater than 1
- The bases \(b = 2 \) (binary), \(b = 8 \) (octal), and \(b = 16 \) (hexadecimal) are important for computing and communications
- Example: \(965 = 9 \cdot 10^2 + 6 \cdot 10^1 + 5 \cdot 10^0 \)
Base b Representations

- **Theorem**: let \(b \) be a positive integer greater than 1. Then if \(n \) is a positive integer, it can be expressed uniquely in the form:

\[
 n = a_k b^k + a_{k-1} b^{k-1} + \ldots + a_1 b + a_0
\]

where \(k \) is a nonnegative integer, \(a_0, a_1, \ldots, a_k \) are nonnegative integers less than \(b \), and \(a_k \neq 0 \).

The \(a_j, j = 0, \ldots, k \) are called the base-\(b \) digits of the representation.

- Example: \(965 = 9 \cdot 10^2 + 6 \cdot 10^1 + 5 \cdot 10^0 \)
Base \(b \) Expansions (examples)

- What is the decimal expansion given the binary expansion?
 \[
 (1\ 0101\ 1111)_2 = 1 \cdot 2^8 + 0 \cdot 2^7 + 1 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 351
 \]

- What is the “decimal given binary” expansion?
 \[
 (11011)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 27
 \]

- What is the “decimal given octal” expansion?
 \[
 (7016)_8 = 7 \cdot 8^3 + 0 \cdot 8^2 + 1 \cdot 8^1 + 6 \cdot 8^0 = 3598
 \]

- What is the “octal given decimal” expansion?
 \[
 (12345)_{10} = (30071)_8
 \]
Turing’s Code (not really)

- **Approach:**
 - Convert message from letters to positive integers (e.g. standard ASCII code)
 - Combine separate numbers into one large integer M
 - Pad the result (M) with more digits to make a prime number (p)
 - Multiply p by a large prime number k (a secret key agreed to beforehand but unknown to the enemy)
 - Send message $M^* = p \times k$
 - Receiver decrypts message by computing $p = M^*/k$, and deducing the words from the sequence of letters (M)
Turing’s Code (example)

- **Example:**
 1. *Translate:* \{A, B, C, ..., Y, Z\} → \{01, 02, 03, ..., 25, 26\}
 2. *Message:* “victory” → \{22 09 03 20 15 18 25\}
 3. *Pad to prime:*
 4. \{22 09 03 20 15 18 25\} → 2209032015182513
 5. *Secret key:* \(k = 22801763489\)
 6. \(M^* = p \times k\)

 \[
 = 2209032015182513 \times 22801763489 \\
 = 50369825549820718594667857
 \]
Prime Numbers

- **Definition:** A positive integer $p > 1$ is called **prime** if the only positive factors of p are 1 and p. A positive integer > 1 which is not prime is called **composite**.

- **Prime questions:**
 - How many primes are there?
 - Can we efficiently determine whether a number is prime?
 - What is the distribution of prime numbers?
 - How can we generate large primes?
 - Can we efficiently factor composite numbers into their prime factorizations?
How Many Primes?

- Theorem: there are infinitely many primes.
- Proof:
 - Suppose there are finitely many primes: \{p_1, ..., p_k\}
 - Let \(q = p_1p_2\cdots p_k + 1 \)
 - Either \(q \) is prime or it is composite (product of primes)
 - By assumption it is composite
 - But none of the primes \(p_j \) divides \(q \) since if \(p_j | q \), then \(p_j \) divides \(q - p_1p_2\cdots p_k = 1 \)
 - Hence, there is a prime not on the list \{p_1, ..., p_k\} which is a prime factor of \(q \)
 - Contradiction!
Prime Factorization

- **Fundamental Theorem of Arithmetic**: every positive integer is a product of a unique weakly decreasing sequence of primes (*prime factorization*).

- **Proof idea**:
 - Assume the factorization is not unique
 - Define two sequences (for both, the product equals n)
 - Compare the largest prime factor in each sequence
 - w.l.o.g, you can divide n by the larger of these (call it ‘f’)
 - Derive contradiction with the fact that ‘f’ is the largest prime factor
Primality Testing

- Given an integer \(n \), is it prime?
- Naive Algorithm: for each \(d \in [2, n-1] \), if \(d \mid n \), then stop and return “FALSE”
- Less Naive Algorithm: for each \(d \in [2, \sqrt{n}] \), if \(d \mid n \), then stop and return “FALSE”
- **Probabilistic test**: gives the right answer when applied to any prime number, but has some (very tiny) probability of giving a wrong answer on a nonprime number
Primes show up erratically, but we can give an asymptotic estimate for the number of primes not exceeding some integer \(n \):

Prime Number Theorem: the ratio of the number of primes \(\pi(n) \) not exceeding \(n \) and \(n/\ln n \) approaches 1 as \(n \) grows without bound.

\[
\lim_{n \to \infty} \frac{\pi(n)}{n/\ln n} = 1.
\]

As a rule of thumb, about 1 integer out of every \(\ln n \) in the vicinity of \(n \) is a prime (odds of random selection).
Can we discover the message without knowing the “key”?

- Recovering the original message requires factoring a very large number into its prime factors.
- Conjecture: there is no computationally efficient procedure for prime factorization.
- But enemy may have access to multiple messages!
- Message 1: $M_1^* = p_1 \times k$
 Message 2: $M_2^* = p_2 \times k$
- The key (k) divides both M_1^*, M_2^*
- Compute the greatest common divisor of M_1^*, M_2^*
Greatest Common Divisor

- Definition: let \(a \) and \(b \) be integers, not both zero. The largest integer \(d \) such that \(d \mid a \) and also \(d \mid b \) is called the *greatest common divisor* of \(a \) and \(b \), denoted by \(\gcd(a,b) \)

- Examples:
 - \(\gcd(24,36) = 12 \)
 - \(\gcd(17,22) = 1 \)
 - \(\gcd(n, 0) = n \)

- Definition: the integers \(a \) and \(b \) are *relatively prime* if their gcd is 1, \(a \perp b \)
Algo 4.3.4: Primepower GCD Algorithm

Input: integers $m \leq n$ not both zero
Output: $\gcd(m,n)$

1. Factor $m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ into prime powers.
2. Factor $n = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$ into prime powers.
3. $g := p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_r^{\min(a_r,b_r)}$

Return (g)
Least Common Multiple

- Definition: let a and b be positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b, denoted by $\text{lcm}(a,b)$

\[
\text{lcm}(a, b) = \frac{\text{max}(a_1, b_1)}{p_1} \frac{\text{max}(a_2, b_2)}{p_2} \cdots \frac{\text{max}(a_n, b_n)}{p_n}
\]

- Example: $\text{lcm}(2^3 3^5 7^2, 2^4 3^3) = 2^{\text{max}(3,4)} 3^{\text{max}(5,3)} 7^{\text{max}(2,0)}$

\[
= 2^4 3^5 7^2
\]

- Fact: $ab = \text{gcd}(a,b) \cdot \text{lcm}(a,b)$
Euclid’s Observation

- **Observation:** let $a = bq + r$, where $a, b \neq 0$, q, and r are integers. Then, $\gcd(a, b) = \gcd(b, r)$

- **Proof:**

 a. By definition, a is a linear combination of b and r. Likewise, r is a linear combination combination, $a - qb$, of a and b.

 b. It follows that any divisor of b and r is a divisor of a. Any divisor of a and b is a divisor of r.

 c. It follows that a and b have the same common divisors as b and r.

 d. Hence they have the same greatest common divisor $\gcd(a, b) = \gcd(b, r) = \gcd(b, a \mod b)$
Euclidean Algorithm

Algo 4.3.5: Euclidean Algorithm

Input: positive integers $m \geq 0, n > 0$

Output: $\gcd(n, m)$

If $m = 0$ then return n

else return $\gcd(m, n \mod m)$

\[\begin{align*}
gcd(210, 111) &= gcd(111, 210 \mod 111) = \\
gcd(111, 99) &= gcd(99, 111 \mod 99) = \\
gcd(99, 12) &= gcd(12, 99 \mod 12) = \\
gcd(12, 3) &= gcd(3, 12 \mod 3) = \\
gcd(3, 0) &= 3
\end{align*}\]
Euclidean Algorithm (example)

Example 4.3.6: Euclidean Algorithm

\[
\begin{align*}
gcd (42, 26) &= gcd (26, 42 \mod 26) = \\
gcd (26, 16) &= gcd (16, 26 \mod 16) = \\
gcd (16, 10) &= gcd (10, 16 \mod 10) = \\
gcd (10, 6) &= gcd (6, 10 \mod 6) = \\
gcd (6, 4) &= gcd (4, 6 \mod 4) = \\
gcd (4, 2) &= gcd (2, 4 \mod 2) = \\
gcd (2, 0) &= 2
\end{align*}
\]
Extended Euclidean Algorithm

- The greatest common divisor of \(a\) and \(b\) is a linear combination of \(a\) and \(b\). That is, for some integers \(s\) and \(t\) (Bézout coefficients): \(\text{gcd}(a,b) = sa + tb\)

- How do you determine \(s\) and \(t\)?

\[
\begin{align*}
a &= r_0 & b &= r_1 \\
r_0 &= r_1q_1 + r_2 & 0 \leq r_2 < r_1, \\
r_1 &= r_2q_2 + r_3 & 0 \leq r_3 < r_2, \\
\quad &\vdots & \quad & \vdots \\
r_{n-2} &= r_{n-1}q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\
r_{n-1} &= r_nq_n.
\end{align*}
\]

\[
\begin{align*}
\text{gcd}(a,b) &= r_n \\
r_n &= r_{n-2} - r_{n-1}q_{n-1} \\
r_{n-1} &= r_{n-3} - r_{n-2}q_{n-2} \\
\quad &\vdots \\
r_3 &= r_1 - r_2q_2 = b - (a - bq_1)q_2 \\
r_2 &= r_0 - r_1q_1 = a - bq_1
\end{align*}
\]
Extended Euclidean Algorithm (example)

- \(\text{gcd}(a,b) = sa + tb \)
- Example: \(\text{gcd}(259, 70) \)

 \[
 259 = 70 \times 3 + 49 \quad \quad 49 = 259 - 70 \times 3 \\
 70 = 49 \times 1 + 21 \quad \quad 21 = 70 - 49 \times 1 \\
 \]

 \[
 70 = (259 - 70 \times 3) \times 1 \\
 = -(259 \times 1) + (70 \times 4) \\
 \]

 \[
 49 = 21 \times 2 + 7 \quad \quad 7 = 49 - 21 \times 2 \\
 \]

 \[
 49 = (259 - 70 \times 3) - [-(259 \times 1) + (70 \times 4)] \times 2 \\
 = [3 \times 259] - [11 \times 70] \\
 \]

 \[
 21 = 7 \times 3 \\
 \]
Turing’s Code (better idea)

- **Approach:**
 - Convert message to into one large integer M and pad to make a prime number p
 - Choose a large prime number $n > p$ (n can be made public)
 - Multiply p by a large prime number $k < n$ (k is a secret key)
 - Send message $M^* = (p \times k) \mod n$
 - Receiver decrypts message by computing $p = M^*/k$
 - Decryption is a problem! Must compute “inverse mod n”
Turing’s Code (example)

- Example 1:
 1. Message: $p = 5$
 2. Large prime: $n = 17$
 Secret key: $k = 13$
 3. $M^* = (p \times k) \mod n$
 $= 65 \mod 17$
 $= 14$

- Example 2:
 1. Message: $p = 7$
 2. Large prime: $n = 17$
 Secret key: $k = 13$
 3. $M^* = (p \times k) \mod n$
 $= 91 \mod 17$
 $= 6$
Multiplicative Inverse

- Definition: the *multiplicative inverse* of a number x is another number x^{-1} such that: $x^{-1} x = 1$
 - Except 0, every rational number n / m has an inverse, namely, m/n.
 - Over the integers, only 1 and -1 have inverses

- What about modular arithmetic ("ring \mathbb{Z}_n")?
 - $(2 \cdot 8) \mod 15 = 2 \cdot_n 8 = 1$
 - $(? \cdot 3) \mod 15 = ? \cdot_n 3 = 1$
 - Some numbers have inverses modulo 15 and others don’t
Modular Arithmetic Rules

1. \(a \equiv \text{rem}(a, n) \pmod{n} \) \quad a \equiv_{\text{mod}n} \text{rem}(a, n)

2. If \(a \equiv_{\text{mod}n} b \) and \(c \equiv_{\text{mod}n} d \), then

 I. \(a + c \equiv_{\text{mod}n} b + d \)

 II. \(ac \equiv_{\text{mod}n} bd \)
Modular Arithmetic Rules (2)

1. \(a \equiv \text{rem}(a, n) \pmod{n} \quad a \equiv_{\mod{n}} \text{rem}(a, n) \)

2. If \(a \equiv_{\mod{n}} b \) and \(c \equiv_{\mod{n}} d \), then
 I. \(a + c \equiv_{\mod{n}} b + d \)
 II. \(ac \equiv_{\mod{n}} bd \)

3. Define operations in \(\mathbb{Z}_n \):
 \(\cdot_n \quad +_n \)
 - \(a +_n b ::= \text{rem}(a + b, n) \quad a \cdot_n b ::= \text{rem}(a \cdot b, n) \)

1. \((a + b) \mod{n} = [(a \mod{n}) + (b \mod{n})] \mod{n} \)
 \(\text{rem}(a + b, n) = \text{rem}(a, n) +_n \text{rem}(b, n) \)
2. \((ab) \mod{n} = [(a \mod{n}) \cdot (b \mod{n})] \mod{n} \)
 \(\text{rem}(ab, n) = \text{rem}(a, n) \cdot_n \text{rem}(b, n) \)
Modular Arithmetic (example)

- **Find:** \[\text{rem}\left((44427^{3456789} + 15555858^{5555})^{403^{6666666}}, 36\right). \]
- **Use rules:**
 1. \(\text{rem}(a + b, n) = \text{rem}(a, n) + \text{rem}(b, n) \)
 2. \(\text{rem}(ab, n) = \text{rem}(a, n) \cdot \text{rem}(b, n) \)
- **Simplify:**
 - \(\text{rem}(44427, 36) = 3, \text{rem}(15555858, 36) = 6, \text{rem}(403, 36) = 7 \)
 - \((3^{3456789} + 6^{5555})^{7666666} \)
 - \((3^3 + 6^2 \cdot 6^{5553})(7^6)^{11111111} \)
 - \((3^3 + 0 \cdot 6^{5553})^{11111111} \)
 - \(= 27. \)
Definition: the *multiplicative inverse* of a number x is another number x^{-1} such that: $x^{-1}x = 1$

What about modular arithmetic ("ring \mathbb{Z}_n")?

- $x \cdot a \equiv 1 \mod n$
 - $\rightarrow xa - qn = 1$
 - $\rightarrow \gcd(a, n) = 1$

Conclusion: for a number (‘a’) to have an inverse in \mathbb{Z}_n, ‘a’ must be relatively prime to n
Turing’s Code (Decryption)

Approach:

- Convert message to into one large integer M and pad to make a prime number p
- Choose a large prime number $n > p$ (n can be made public)
- Multiply p by a large prime number $k < n$ (k is a secret key)
- Send message $M^* = (pk) \mod n$
- Receiver decrypts message by computing the \mathbb{Z}_n-inverse j of the key k using the extended Euclidean algorithm:

 $$M^* \cdot_n j = (p \cdot_n k) \cdot_n j = p \cdot_n (k \cdot_n j) = p \cdot_n 1 = p$$
Can we discover the message without knowing the key?

- Enemy may have access to multiple messages. No problem, we are working in \mathbb{Z}_n.
- Suppose the enemy knows both the message (plaintext), M, and its encrypted form, M^*.
- Enemy carries out a *known-plaintext attack!*

\[M^* = p \cdot_n k \quad n > p \quad n > k \]

- Using the extended Euclidean algorithm, enemy computes the \mathbb{Z}_n-inverse j of p and obtain the secret key:
 \[j \cdot_n M^* = j \cdot_n (p \cdot_n k) = (j \cdot_n p) \cdot_n k = 1 \cdot_n k = k \]
Public Key Cryptography

- Approach:
 - Convert message into one large integer M
 - The receiver privately creates a pair of functions: E to encrypt the message, and D to decrypt the message, such that $D[E(M)] = M$
 - Receiver publicly reveals the function E
 - Message is sent: $M^* = E(M)$
 - Enemy can see M^* and knows E but can’t determine D
RSA (idea)

- A public key cryptosystem was introduced in 1976 by three researchers at MIT: Rivest, Shamir, Adelman

- Idea:
 - Convert message into one large integer \(M \)
 - Receiver finds two large primes \(p, q \) (using probabilistic primality tests) and calculates their product \(n = pq \quad (n > M) \)
 - Receiver finds two integers \(e, d \) and creates a pair of functions:
 \[
 \begin{align*}
 E(M) &= M^e \mod n \\
 D(M^*) &= (M^*)^d \mod n
 \end{align*}
 \]
 - Receiver publicly reveals \(E(n & e) \)
 - Message is sent: \(M^* = E(M) \)
 - Enemy can see \(M^* \) and knows \(E \) but can’t determine \(d \)
RSA (setup)

- **Idea:**
 - Convert message into one large integer M
 - Receiver finds two large primes p, q, their product, $n = pq$
 - Receiver finds two integers e, d and creates a pair of functions:

 $E(M) = M^e \mod n$ to encrypt the message

 $D(M^*) = (M^*)^d \mod n$ to decrypt the message

 - Receiver publicly reveals $E(n \& e)$
 - Message is sent: $M^* = E(M)$
 - Enemy can see M^* and knows E but can’t determine d
 - System only works if: $D(M^*) = D[E(M)] = M$

 $D[E(M)] = D(M^e) = (M^e)^d = M^{ed} = M$ working in in Z_n
Euler’s Totient Function

- Definition: let $\varphi(n)$ be defined as the number of integers in $[0,n)$ that are relatively prime to $n > 0$.

- Examples:
 - $\varphi(12) = 4 \quad \{1, 5, 7, 11\}$
 - $\varphi(7) = 6 \quad \{1, 2, 3, 4, 5, 6\}$
 - $\varphi(11) = 10$

- Rules:
 1. If p is prime, $\varphi(p) = p - 1$
 2. If $p \neq q$ are both primes, $\varphi(pq) = (p - 1)(q - 1)$
 3. If a and b are relatively prime, $\varphi(ab) = \varphi(a)\varphi(b)$
Euler’s Theorem

- Definition: let \(\varphi(n) \) be defined as the number of integers in \([0,n)\) that are relatively prime to \(n > 0 \).

- **Euler’s Theorem**: if \(n \) and \(k \) are relatively prime, then:
 \[
 k^{\varphi(n)} \equiv 1 \pmod{n}
 \]

- Recall: if \(p \) is prime, \(\varphi(p) = p - 1 \)

- **Fermat’s Little Theorem**: if \(p \) is prime, and \(k \) is not a multiple of \(p \), then:
 \[
 k^{p-1} \equiv 1 \pmod{p}
 \]
RSA (derivation)

Recall:
- \(n = pq \)
- System only works if: \(D(M^*) = D[E(M)] = M \)
- \(D[E(M)] = D(M^e) = (M^e)^d = M^{ed} = M \) working in in \(\mathbb{Z}_n \)

Derivation:
1. \(n \perp M, \ M^{\varphi(n)} \equiv 1 \ (mod \ n) \) Euler’s Theorem, gcd(M, n) = 1
2. \(M^{c\varphi(n)} \equiv 1 \ (mod \ n) \) Modular Arithmetic
3. \(M^{c\varphi(n)+1} \equiv M \ (mod \ n) \) Modular Arithmetic
4. \(\varphi(n) = \varphi(pq) = (p - 1) (q - 1) \) Rule
5. \(e \cdot d = c \cdot \varphi(n)+1 \rightarrow ed \equiv 1 [mod \ \varphi(n)] \)
6. \(\gcd(e, \varphi(n)) = 1 \rightarrow \gcd(e, (p - 1) (q - 1)) = 1 \)
7. \(d \) is the \(\mathbb{Z}_{\varphi(n)} \) inverse of \(e \)
RSA Cryptosystem

1. The Receiver prepares the system as follows:
 a. Generates two large distinct primes \(p, q \), keeps them private
 b. Calculates the product, \(n = pq \), makes it public
 c. Selects and integer \(e \in [0,n) \), such that \(\gcd(e, (p - 1) (q - 1)) = 1 \), makes it public
 d. Calculates an integer \(d \in [0,n) \) which is the \(Z_{(p-1)(q-1)} \)-inverse of \(e \), using the extended Euclidean algorithm, keeps \(d \) private

2. Sender prepares and publicly transmits message:
 a. Converts message into one large integer \(M \in [0,n) \) such that \(\gcd(M, n) = 1 \)
 b. Encrypts message using public key, \(M^* = E(M) = M^e \mod n \)

3. Receiver privately decrypts message:
 a. Decrypts message using private key, \(M = D(M^*) = (M^*)^d \mod n \)
RSA Cryptosystem (example)

1. The Receiver prepares the system as follows:
 a. Generate: \(p = 1231, \ q = 337 \)
 b. Calculate: \(n = pq = 414847, \ (p\!-\!1)(q\!-\!1) = 413280 \)
 c. Select integer \(e \in [0,n): \ e = 211243 \)
 d. Calculate integer \(d \in [0,n): \ d = e^{-1} = 166147 \)

2. Sender prepares and publicly transmits message:
 a. Converts message: \(M = 224455 \)
 b. Encrypts message: \(M^* = E(M) = M^e \mod n = 376682 \)

3. Receiver privately decrypts message:
 a. Decrypts message: \(M = D(M^*) = (M^*)^d \mod n = 224455 \)