W3203
Discrete Mathematics

Logic and Proofs

Spring 2015
Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203
Outline

- Propositional Logic
- Operators
- Truth Tables
- Logical Equivalences
- Laws of Logic
- Rules of Inference
- Quantifiers
- Proof Patterns
- Text: Rosen 1
- Text: Lehman 1-3
Logic Puzzle

- Three kinds of people live on an island:
 - *Knights (K)*: always tell the truth
 - *Knaves (V)*: always lie
 - *Spies (S)*: either lie or tell the truth

- You meet 3 people, A, B, and C
 - You know one is K, one is V, and one is S
 - Each of them knows all of their types
 - They make three statements about each other
 - Can you determine who is the knight/knave/spy?
Logic Puzzle

- Statements:
 - A: “I am the knight”
 - B: “A is not the knave”
 - C: “B is not the knave”

- Can you determine who is the knight/knave/spy?
Logic Puzzle (solution)

- Statements:
 - A: “I am the knight”
 - B: “A is not the knave”
 - C: “B is not the knave”

- Can you determine who is the knight/knave/spy?
 - Suppose A is the Knight (K). Then B tells truth, B must be a spy (S). But C tells truth, can’t be a knave (V).
 - Suppose B is K. Then B tells truth, A must be S. Hence C is V, but he tells truth. Hence we have a contradiction.
 - C must be K. Then C tells truth, B must be S. A is the V.
Propositions

- Definition: A *proposition* is a declarative sentence (statement) that is either true (T) or false (F), but not both
 - Fact-based declaration
 - $1 + 1 = 2$
 - “A is not the knave”
 - “If A is a knight, then B is not a knight”
 - Excludes commands, questions and opinions
 - “What time is it?”
 - “Be quiet!”
 - What about statements with (non-constant) variables?
 - $x + 2 = 5$
 - “n is an even number”
Predicates

Definition: A *predicate* is a proposition whose truth depends on one or more variables

- Variables can have various domains:
 - nonnegative integers
 - \(x > 1\)
 - people: “all people on the island are knights, knaves or spies”

- Notation: \(P(x)\)
 - Not an ordinary function!
 - \(P(x)\) is either True or False
Puzzle (propositions)

- Statements:
 - A: “I am the knight”
 - B: “A is not the knave”
 - C: “B is not the knave”

- Let's introduce propositional (boolean) variables:
 - $V_A := “A is the knave”, V_B := “B is the knave”
 - V_A or $V_B := “A is the knave or B is the knave”
 - If V_A then not $V_B := “If A is the knave then B is not the knave”
 - $K(p) := “person p is a knight”$
Constructing Propositions

- English: modify, combine, and relate statements with “not”, “and”, “or”, “implies”, “if-then”

- Atomic propositions: boolean constant (T,F) or variable (e.g. p, q, r, V_A, V_B)

- Compound propositions: apply operators to atomic forms in order of precedence.
 - Construct from logical connectives and other propositions.

- Precise mathematical meaning of operators can be specified by truth tables
Common Operators

- **Negation**: “not” ¬
- **Conjunction**: “and” ∧
- **Disjunction**: “or” ∨
- **Implication/Conditional**: “if-then” →

- **Monadic** operator: one argument
 - Examples: identity, negation, constant ... (4 operators)

- **Dyadic** operator: two arguments
 - Examples: conjunction, disjunction ... (16 operators)
Truth Tables (idea)

- Boolean values & domain: \{T,F\}
- \textit{n-tuple}: \((x_1, x_2, \ldots, x_n)\)
- Operator on n-tuples: \(g(x_1 = v_1, x_2 = v_2, \ldots, x_n = v_n)\)
- Definition: A \textit{truth table} defines an operator ‘\(g\)’ on n-tuples by specifying a boolean value for each tuple
- Number of rows in a truth table?
 - \(R = 2^n\)
- Number of operators with \(n\) arguments?
 - \(2^R\)
Truth Table (negation)

- The *negation* of a proposition \(p \) is denoted by \(\neg p \) and has this truth table:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- **Example:** If \(p \) denotes “The earth is round.”, then \(\neg p \) denotes “It is not the case that the earth is round,” or more simply “The earth is not round.”
Truth Table (conjunction)

- The *conjunction* of propositions p and q is denoted by $p \land q$ and has this truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **Example**: If p denotes “I am at home.” and q denotes “It is raining.” then $p \land q$ denotes “I am at home and it is raining.”
Truth Table (disjunction)

- The *disjunction* of propositions p and q is denoted by $p \lor q$ and has this truth table:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **Example:** If p denotes “I am at home.” and q denotes “It is raining.” then $p \lor q$ denotes “I am at home or it is raining.”
Truth Table (exclusive or)

- If only one of the propositions p and q is true but NOT both, we use “Xor” symbol

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- **Example**: When reading the sentence “Soup or salad comes with this entrée,” we do not expect to be able to get both soup and salad
Truth Table (implication)

- If p and q are propositions, then $p \rightarrow q$ is a conditional statement or implication: “if p, then q”

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- **Example**: If p denotes “I am at home.” and q denotes “It is raining.” then $p \rightarrow q$ denotes “If I am at home then it is raining.”

- In $p \rightarrow q$, p is the antecedent and q is the consequent
Understanding Implication

- There does not need to be any connection between the antecedent or the consequent.
 - The “meaning” of $p \rightarrow q$ depends only on the truth values of p and q.
 - “If pigs fly then you are rich.”

- Think of an obligation or a contract
 - “If I am elected, then I will lower taxes.”
Puzzle (compound propositions)

- **Statements:**
 - A: “I am the knight”
 - B: “A is not the knave”
 - C: “B is not the knave”

- **Compound propositions:**
 - $\neg V_A ::= “A is not the knave”$
 - $K_A \lor K_B ::= “A is the knight or B is the knight”$
 - $V_A \rightarrow \neg V_B ::= “If A is the knave, then B is not the knave”$
 - $K_c \rightarrow \neg V_B ::= “If C is the knight, then C tells the truth”$
Truth Table (rules)

- Row for every combination of values for atomic propositions
- Column for truth value of each expression in the compound proposition
- Column (far right) for the truth value of the compound proposition
- Build step by step
 - $p \lor q \rightarrow \neg r$ means $(p \lor q) \rightarrow \neg r$
- Big problem with this approach!

<table>
<thead>
<tr>
<th>Operator</th>
<th>Precedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>\neg</td>
<td>1</td>
</tr>
<tr>
<td>$\land \lor$</td>
<td>2, 3</td>
</tr>
<tr>
<td>$\rightarrow \leftrightarrow$</td>
<td>4, 5</td>
</tr>
</tbody>
</table>
Truth Table (example)

Construct a truth table for $p \lor q \rightarrow \neg r$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>$\neg r$</th>
<th>$p \lor q$</th>
<th>$p \lor q \rightarrow \neg r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

20
Logical Equivalences

- Two compound propositions p and q are *logically equivalent* if and only if the columns in the truth table giving their truth values agree.
 - We write this as $p \iff q$ or as $p \equiv q$
 - Not an operator! (relation on propositions)

- This truth table shows $\neg p \lor q$ is equivalent to $p \rightarrow q$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg p \lor q$</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Converse, Contrapositive, & Inverse

- Given $p \rightarrow q$,
- The *converse* is: $q \rightarrow p$
- The *contrapositive* is: $\neg q \rightarrow \neg p$
- The *inverse* is: $\neg p \rightarrow \neg q$
- Example: “Raining is a sufficient condition for my not going to town.”
 - Converse: If I do not go to town, then it is raining.
 - Inverse: If it is not raining, then I will go to town.
 - Contrapositive: If I go to town, then it is not raining.
Truth Table (biconditional)

- If p and q are propositions, then $p \iff q$ is a biconditional (IFF) statement: “p if and only if q”

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

- **Example**: If p denotes “I am at home.” and q denotes “It is raining.” then $p \iff q$ denotes “I am at home if and only if it is raining.”
Terminology ($p \rightarrow q$)

- **Simple English:**
 - if p, then q \hspace{1cm} \text{p implies q}
 - if p, q \hspace{1cm} \text{p only if q}
 - q unless $\neg p$ \hspace{1cm} \text{q when p}
 - q if p
 - q whenever p \hspace{1cm} \text{p is sufficient for q}
 - q follows from p \hspace{1cm} \text{q is necessary for p}

- A **necessary** condition for p is q
- A **sufficient** condition for q is p

- **Biconditional:**
 - p is **necessary and sufficient** for q
 - $p \iff q$
Tautology & Contradiction

- **Tautology** is a proposition which is always true
 - Example: $p \lor \neg p$

- **Contradiction** is a proposition which is always false
 - Example: $p \land \neg p$

- **Contingency** is a proposition which is neither a tautology or a contradiction

<table>
<thead>
<tr>
<th>p</th>
<th>$\neg p$</th>
<th>$p \lor \neg p$</th>
<th>$p \land \neg p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>
Laws of Logic

- Trivial laws: identity, double negation
- Express \land and \lor in terms of each other via \neg
 \[
 \neg(p \land q) \equiv \neg p \lor \neg q
 \]
- Order & Parenthesis (3,4):
 \[
 \neg(p \lor q) \equiv \neg p \land \neg q
 \]
- Distribute operator (5):
 \[
 p \land q \equiv q \land p
 \]
 \[
 (p \land q) \land r \equiv p \land (q \land r)
 \]
 \[
 (p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)
 \]
- Laws involving (bi)conditional operators
The Axiomatic Method

- Begin with some assumptions (axioms)
 - Given as true or used to specify the system
- Provide an argument (proof)
 - Sequence (chain) of logical deductions and previous “results” (premises)
 - Ends with the proposition in question (conclusion)
- Important true propositions are called theorems
- Hierarchy of derived truths:
 - Proposition: minor result (theorem)
 - Lemma: preliminary proposition useful for proving later propositions
 - Corollary: a proposition that follows in just a few logical steps from a theorem
Logical Argument

- To provide a logical argument (*proof*):
 - Sequence of *logical deductions* (rules of inference) and previous compound propositions (*premises*)
 - Ends with the proposition in question (*conclusion*)

- A *valid* argument can never leads to incorrect (false) conclusion from correct statements (*premises*)

- *Fallacy*: from true statements to incorrect conclusion

- If some premises untrue: conclusion of valid argument might be false

- Conclusion of fallacy might be true

- If premises are correct & argument is valid, conclusion is correct
Rules of Inference (modus ponens)

- Example:
 - Let p be “It is snowing.”
 - Let q be “I will study discrete math.”
 - “If it is snowing, then I will study discrete math.”
 - “It is snowing.”
 - “Therefore, I will study discrete math.”

- Method of rule validation: record (in a truth table) where all premises are true. If the conclusion is also true in every case, then the rule is valid.
Rules of Inference (fallacy)

- Affirm the consequent, conclude the antecedent

Example:
- Let p be “It is snowing.”
- Let q be “I will study discrete math.”
- “If it is snowing, then I will study discrete math.”
- “I will study discrete math.”
- “Therefore, it is snowing.”
Rules of Inference (modus tollens)

Example:
- Let p be “It is snowing.”
- Let q be “I will study discrete math.”

- “If it is snowing, then I will study discrete math.”
- “I will not study discrete math.”
- “Therefore, it is not snowing.”

Fallacy: deny the antecedent (p), conclude the consequent (q) is false
Common Rules

- **Addition:**
 \[
 \frac{p}{p \lor q}
 \]
 \[
 \therefore p \lor q
 \]

- **Simplification:**
 \[
 \frac{p \land q}{p \land q}
 \]
 \[
 \therefore q
 \]
 \[
 p \lor q
 \]
 \[
 \frac{\neg p}{\neg p}
 \]
 \[
 \therefore q
 \]

- **Disjunctive-syllogism:**

- **Hypothetical-syllogism:**
 \[
 p \rightarrow q
 \]
 \[
 q \rightarrow r
 \]
 \[
 \therefore p \rightarrow r
 \]
Puzzle (logical argument)

- Statements:
 - A: “I am the knight” \(K_A\)
 - B: “A is not the knave” \(\neg V_A\)
 - C: “B is not the knave” \(\neg V_B\)

- Argument:
 - Suppose A is the Knight (K). Then B tells truth, B must be a spy (S). But C tells truth, can’t be a knave (V)

 - \(K_A \rightarrow \neg V_A \quad ::= \quad \text{“If A is the knight, then A is not the knave”}\)
 - \(\neg V_A \rightarrow (K_B \lor S_B) \quad ::= \quad \text{“If A is not knave, then B is knight or spy”}\)
 - \(\neg V_B \rightarrow (K_C \lor S_C) \quad ::= \quad \text{“If B is not knave, then C is knight or spy”}\)
 - \(S_B \rightarrow \neg (S_A \lor S_C) \quad ::= \quad \text{“If B is the spy then A and C are not spies”}\)
Quantifiers

- **Purpose:** express words such as “all”, “some”
- **Universal Quantifier:** “For all”, \(\forall \)
- **Existential Quantifier:** “There exists”, \(\exists \)
- **Definition:**
 - \(\forall x \ P(x) \) asserts \(P(x) \) is true for **every** \(x \) in the domain
 - \(\exists x \ P(x) \) asserts \(P(x) \) is true for **some** \(x \) in the domain
Quantifiers (examples)

- \(\forall x \, P(x) \): “For all \(x \), \(P(x) \)” or “For every \(x \), \(P(x) \)”
- \(\exists x \, P(x) \): “For some \(x \), \(P(x) \)” or “There is an \(x \) such that \(P(x) \)” or “For at least one \(x \), \(P(x) \)”

Example:
1) \(P(x) \) denotes “\(x > 0 \)”
2) \(Q(x) \) denotes “\(x \) is even”

- For positive integers domain, ‘\(\forall x \, P(x) \)’ is true ‘\(\exists x \, P(x) \)’ is true
- For integers domain, ‘\(\forall x \, P(x) \)’ is false but ‘\(\exists x \, P(x) \)’ is true
- For integers domain, ‘\(\forall x \, Q(x) \)’ is false but ‘\(\exists x \, P(x) \)’ is true
Quantifiers (scope)

- **Rules:**
 - The quantifiers \forall and \exists have higher precedence than all the logical operators.
 - Note location of parenthesis:
 - $\forall x \, P(x) \lor Q(x)$ means $(\forall x \, P(x)) \lor Q(x)$
 - $\forall x \, (P(x) \lor Q(x))$ means something different
 - Variable not within scope (clause to which it applies) of any quantifier: *unbound variable*
 - $x + 4 > 2$
 - $\forall y \, [2x + 3y = 7]$
Quantifiers (translation)

- Example:
 1) $P(x)$: “x has taken calculus.”
 2) Domain: students in class
 3) $\forall x
 P(x)$: “Every student in class has taken calculus.”

Translate: “It is not the case that every student in class has taken calculus.”

Answer:
 1) $\neg \forall x
 P(x)$ $\neg(\forall x)[P(x)]$
 2) “There is a student in class who has not taken calculus”
 $\exists x \neg P(x)$
Quantifiers (negation rules)

- Rules:

 \[\neg \forall x P(x) \equiv \exists x \neg P(x) \]

 \[\neg \exists x P(x) \equiv \forall x \neg P(x) \]
Quantifiers (translation)

- Example:
 1. “All lions are fierce.”
 2. “Some lions do not drink coffee.”
 3. “Some fierce creatures do not drink coffee.”

Translate to predicates:

a. P(x): “x is a lion”
b. Q(x): “x is fierce”
c. R(x): “x drinks coffee”

1. ∀x [P(x) → Q(x)]
2. ∃x [P(x) ∧ ¬R(x)]
3. ∃x [Q(x) ∧ ¬R(x)]
Quantifiers (mixing)

- Nested quantifiers:
 - “Every real number has an inverse”
 - $\forall x \exists y (x + y = 0)$
 - Specify domain when not evident: the domains of x and y are the real numbers
 \[(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})[x + y = 0]\]
- Does order matter?
 - Switching order is not safe when the quantifiers are different!
 - $\forall x \forall y P(x,y)$ and $\forall y \forall x P(x,y)$ have the same truth value
Nested Quantifiers (translation)

- Example 1: “Brothers are siblings.”
 - **Solution**: $\forall x \forall y [B(x,y) \rightarrow S(x,y)]$

- Example 2: “Everybody loves somebody.”
 - **Solution**: $\forall x \exists y L(x,y)$

- Example 3: “There is someone who is loved by everyone.”
 - **Solution**: $\exists y \forall x L(x,y)$
Nested Quantifiers (negation)

- Example 1: “There does not exist a woman who has taken a flight on every airline in the world.”

 ➢ **Solution:** \(\neg \exists w \forall a \exists f \left[P(w,f) \land Q(f,a) \right] \)

- Use negation rules to move \(\neg \) as far inwards as possible:
Example 1: “There does not exist a woman who has taken a flight on every airline in the world.”

\[\neg \exists w \forall a \exists f \ [P(w,f) \land Q(f,a)] \]

Use negation rules to move \(\neg \) as far inwards as possible:

\[\forall w \exists a \forall f \ [\neg P(w,f) \lor \neg Q(f,a)] \]
Proof Patterns

- **Proof approach:**
 - Direct / Indirect methods
 - Forward / Backward reasoning

- **Standard templates:**
 - Implication (If P then Q)
 - Contrapositive (if not Q then not P)
 - If and only if statement (P if and only if Q)
 - By cases
 - By contradiction
“Backward” Reasoning

- Claim: “arithmetic/geometric means inequality”
- Approach:
 1. Start from conclusion
 2. Show when conclusion is true
 3. Algebraic manipulation
 a. Simplify
 4. Derive simple equivalent premise which is clearly true

Let $a, b > 0$, $a \neq b$.

Then, $\frac{(a + b)}{2} > \sqrt{ab}$

$(a + b) > 2\sqrt{ab}$

$(a + b)^2 > 4ab$

$a^2 + 2ab + b^2 > 4ab$

$a^2 - 2ab + b^2 > 0$

$(a - b)^2 > 0$
Proving the Contrapositive

- **Claim:** “If r is an irrational number then \sqrt{r} is an irrational number”

- **Approach:**
 1. Assume \sqrt{r} is rational, show that r is rational.
 2. Use definition to express \sqrt{r} as a fraction
 3. Algebraic manipulation: square both sides
 4. Conclude claim

$$Q = \left\{ \frac{p}{q} : p, q \in \mathbb{Z}, q \neq 0 \right\}$$
Proving If and Only If

Claim: “The standard deviation (std) of a set of numbers is zero if and only if (iff) all the values are equal to the mean”

Approach:

1. Construct chain of iff statements
2. Use definition of std and mean
3. Algebraic manipulation
 a. Simplify: square both sides
4. Show that condition holds for each value iff condition holds for the set
Proof by Cases

- **Claim:** “Let \(x \) be any integer, then \(x^2 + x \) is even”

- **Approach:**
 1. Break into cases:
 a. Case 1: \(x \) is even
 b. Case 2: \(x \) is odd
 2. Use definition of even/odd integer to express \(x^2 + x \) as an even integer
 a. Case 1: \(x = 2n \)
 b. Case 2: \(x = 2n + 1 \)
Proof by Contradiction

Claim: “√2 is irrational”

Approach:
1. Assume √2 is rational
2. Use definition to express √2 as fraction in lowest terms
3. Algebraic manipulation
 a. Square both sides
 b. Apply rules of divisibility
4. Derive a negation of one of the premises (2), that is the contradiction.