Outline

- Induction Principle
- Strong Induction
- Recursive definitions
- Structural Induction
- Simple algorithms
- Big-O notation, complexity
- Recursive algorithms
- Text: Rosen 3, 5.1 – 5.4,
- Text: Lehman 5.1-5.3, 6.1-6.3
"P(r)oof" by Picture

T_n blue dots and T_n red dots for a grand total of $2T_n$ dots

$2T_n = \text{Total Dots} = n(n+1)$
Sum of Odd Integers

Theorem

\[1 + 3 + 5 + \cdots + (2k - 1) = k^2\]

Proof.

[Diagram of colored circles arranged in a square pattern to visually represent the sum.]
Sum of Squares

\[T_n = n(n+1) \]

\[T_{2n} = 3T_n + T_{n+1} \]

\[1 + 3 + 5 + 7 + \cdots + (2k+1) = k^2 \]

Elegant Proof.

\[n(n+1)/2 \]

\[2S_n \text{ Black Dots} + S_n \text{ Color Dots} = 3S_n \text{ Total Dots} = \frac{n(n+1)(2n+1)}{2} \]
Guidelines

In general, a picture is a proof only if:

1. The picture represents an abstract idea

\[
(1 + 2 + \cdots + n) + (n + (n - 1) + \cdots + 1) = (n + 1) + (n + 1) + \cdots (n + 1) = n(n + 1)
\]

2. The specific drawing of the picture isn’t actually important

3. The picture can be “scaled up” to as big an \(n \) as necessary

Remember: it’s not the picture that’s the proof—it’s the idea that the picture is representing that really counts
Mathematical Induction (idea)

- Suppose we have an infinite ladder:
 1. We can reach the first rung of the ladder
 2. If we can reach a particular rung of the ladder, then we can reach the next rung
Ordinary Induction (principle)

- **Goal:** prove that $P(n)$ -- predicate on nonnegative integers -- is true for all n
 1. **Basis step:** show that $P(0)$ is true
 2. **Inductive hypothesis:** assume that $P(k)$ holds for an arbitrary (integer) k
 3. **Inductive step:** show that $P(k) \rightarrow P(k + 1)$ holds for all k
Induction (rule)

- Rule of inference:
 1. Premise 1: $P(0)$
 2. Premise 2: $\forall k [P(k) \rightarrow P(k + 1)]$
 3. Conclusion: $\forall n P(n)$

- Note: in a proof by mathematical induction, we don’t assume that $P(k)$ is true for all positive integers!
Sum of Integers (proof)

Ind. Step. \[\sum_{j=1}^{n+1} j = \sum_{j=1}^{n} j + (n+1) \]

Ind Hyp. \[\sum_{j=1}^{k} j = \frac{k(k+1)}{2} \text{ when } k = n. \]

\[\begin{align*}
\sum_{j=1}^{n+1} j &= \frac{n(n+1)}{2} + (n+1) \quad \text{by ind hyp} \\
&= \frac{n(n+1)}{2} + \frac{2(n+1)}{2} \quad \text{by arithmetic} \\
&= \frac{n(n+1) + 2(n+1)}{2} \quad \text{by arithmetic} \\
&= \frac{(n+2)(n+1)}{2} \quad \text{distrib in numerator} \\
&= \frac{(n+1)(n+2)}{2} \quad \text{commutativity} \quad \diamond
\end{align*} \]
Sum of Odd Integers (proof)

Basis Step. \[\sum_{j=1}^{k} (2j - 1) = k^2 \] when \(k = 0 \)

Ind Hyp. \[\sum_{j=1}^{k} (2j - 1) = k^2 \] when \(k = n \)

Ind Step. Consider the case \(k = n + 1 \).

\[
\sum_{j=1}^{n+1} (2j - 1) = \sum_{j=1}^{n} (2j - 1) + [2(n + 1) - 1]
\]

\[
= \sum_{j=1}^{n} (2j - 1) + 2n + 1
\]

\[
= n^2 + 2n + 1 \text{ by ind. hyp.}
\]

\[
= (n + 1)^2 \text{ by factoring \diamond}
\]
Problem: can we tile a 2^k– by – 2^k board with one covered square with L-shaped tiles?
Different Base Case

Example 5.2.2: $2^n > n^2$ for all $n \geq 5$.

Basis Step. $2^5 > 5^2$

Ind Hyp. Assume $2^k > k^2$ for $k \geq 5$

Ind. Step.

$$2^{k+1} = 2 \cdot 2^k \quad \text{arithmetic}$$
$$= 2^k + 2^k \quad \text{arithmetic}$$
$$> k^2 + k^2 \quad \text{ind. hyp.}$$
$$> k^2 + (2k + 1) \quad \text{by Example 5.2.1}$$
$$= (k + 1)^2 \quad \text{arithmetic}$$

\(\diamond\)
Postage Example

Example 5.2.3: Prove that any postage of 8¢ or more can be created from nothing but 3¢ and 5¢ stamps.

Basis Step. 8 = 1 \cdot 3¢ + 1 \cdot 5¢

Ind Hyp. Assume n¢ possible from 3’s and 5’s.

Ind. Step. Try to make (n + 1)¢ postage.

Suppose that n = r \cdot 3¢ + s \cdot 5¢

Case 1: s \geq 1. Then n + 1 = \ldots

Case 2: s = 0. Then n + 1 = \ldots
Strong Induction (rule)

- **Goal:** prove that $P(n)$ -- predicate on nonnegative integers -- is true for all n
 1. **Base case:** show that $P(0)$ is true
 2. **Inductive hypothesis:** assume that $P(k)$ holds for all integers less than an arbitrary (integer) k
 3. **Inductive step:** show that $[P(0), P(1), \ldots, P(k)] \rightarrow P(k + 1)$ holds for all k

- **Rule of inference:**
 1. Premise 1: $P(0)$
 2. Premise 2: $\forall k \ [[\forall j \leq k, P(j)] \rightarrow P(k + 1)]$
 3. Conclusion: $\forall n P(n)$
Theorem: every integer > 1 is a product of prime numbers

1. **Define predicate:** \(P(n) ::= \text{“n is a product of primes”} \)
2. **Base case:** \(P(2) \) is true since 2 is prime (product of length 1)
3. **Inductive hypothesis:** assume that for all integers less than an arbitrary (integer) \(k \geq 2 \), \(k \) is a product of primes
4. **Inductive step:** show that \(k + 1 \) must be a product of primes

Proof idea:

1. If \(k+1 \) is itself prime, then it is a product of length 1 by definition
2. If \(k+1 \) is not prime, then by definition \(k+1 = a \cdot b \). By Ind. Hyp. \(\{a,b\} \) are products of primes
Recursion
Recursively Defined Functions

- Problem: given a sequence \((a_0, a_1, ..., a_k)\) construct a consistent rule to determine any \((n)th\) term:
 - By recursion
 - Closed form (can be difficult!)
 - A function \(f(n)\) is the same as a sequence where \(f(i) = a_i\)
- Recursive definition:
 1. *Basis step*: specify the value of the function at zero
 2. *Recursive step*: give a rule for finding its value at an integer from its values at smaller integers.
Recursively Defined Functions (examples)

Example 2.4.5: 1, 3, 5, 7, 9, 11, ...

recursion: \(a_0 = 1; \quad a_n = a_{n-1} + 2 \text{ for } n \geq 1 \)

closed form: \(a_n = 2n + 1 \)

Example 2.4.6: 1, 3, 7, 13, 21, 31, 43, ...

recursion: \(b_0 = 1; \quad b_n = b_{n-1} + 2n \text{ for } n \geq 1 \)

closed form: \(b_n = n^2 + n + 1 \)

Example 2.4.7: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

recursion: \(c_0 = 1, c_1 = 1; \)

\[c_n = c_{n-1} + c_{n-2} \text{ for } n \geq 1 \]

closed form: \(c_n = \frac{1}{\sqrt{5}} \left[G^{n+1} - g^{n+1} \right] \) where \(G = \frac{1 + \sqrt{5}}{2} \) and \(g = \frac{1 - \sqrt{5}}{2} \)
More Functions (examples)

Example 5.3.1: n-factorial $n!$

$(B) \quad 0! = 1$

$(R) \quad (n + 1)! = (n + 1) \cdot n!$

Example 5.3.5: partial sums of sequences

$$\sum_{j=0}^{n} a_j = \begin{cases} a_0 & \text{if } n = 0 \\ \sum_{j=0}^{n-1} a_j + a_n & \text{otherwise} \end{cases}$$

Example 5.3.3: Hanoi sequence $0, 1, 3, 7, 15, \ldots$

$$h_0 = 0$$

$$h_n = 2h_{n-1} + 1 \quad \text{for } n \geq 1$$
Recursively Defined Sets

- To define a set recursively:
 1. *Basis step*: specify initial collection of elements
 2. *Recursive (constructor) step*: give a rule for forming new elements from old ones

- Example: the natural numbers \mathbb{N}
 - *(B)* *Basis step*: $0 \in \mathbb{N}$
 - *(R)* *Recursive step*: If n is in \mathbb{N}, then $n + 1$ is in \mathbb{N}
Strings (definition)

- Definition: a set of characters/letters/symbols is called an \textit{alphabet}
- Definition: a sequence in an alphabet is a \textit{string}

Example 2.4.3: Some common alphabets:

- \{0, 1\} the binary alphabet
- \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} the decimal digits
- \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\} the hexadecimal digits
- \{A, B, C, D, \ldots, X, Y, Z\} English uppercase
- ASCII
Strings (recursive definition)

- Given alphabet A, define recursive data type A^* of strings over A:
 - (B): $\lambda \in A^*$ (λ is the empty string)
 - (R): If $a \in A$ and $s \in A^*$, then $sa \in A^*$

- Example:
 - $A = \{0, 1\}$
 - A^*: all bit strings, $\lambda, 0, 1, 00, 01, 10, 11$ etc.

- Example:
 - $A = \{a, b\}$ show that $aab \in A^*$
 1) $\lambda \in A^*$ and $a \in A$ \rightarrow $a \in A^*$
 2) $a \in A^*$ and $a \in A$ \rightarrow $aa \in A^*$
 3) $aa \in A^*$ and $b \in A$ \rightarrow $aab \in A^*$
Strings (examples)

Example 5.3.12: binary strings of even length
(B) $\lambda \in S$
(R) If $b \in S$, then $b00, b01, b10, b11 \in S$.

Example 5.3.13: binary strings of even length that start with 1
(B) 10, 11 $\in S$
(R) If $b \in S$, then $b00, b01, b10, b11 \in S$.

Example 5.3.16: set of binary palindromes
(B) $\lambda, 0, 1 \in S$
(R) If $x \in S$ then $0x0, 1x1 \in S$.
String Concatenation

- Given alphabet A, and a set of strings A^*, define the *concatenation* of two strings, denoted by \cdot, recursively
 - (B): If $w \in A^*$ then $w \cdot \lambda = w$
 - (R): If $w_1 \in A^*$, $w_2 \in A^*$, and $x \in A$, then $w_1 \cdot (w_2 \cdot x) = (w_1 \cdot w_2) x$
String Length

- Given alphabet A, and a set of strings A^*, recursively define the length of string w denoted by $|w|$:
 - (B): $|\lambda| = 0$
 - (R): $|wx| = |w| + 1$, where $w \in A^*$, $x \in A$
Structural Induction

- Goal: prove that \(P(r) \) -- predicate on recursively defined set \(R \) -- is true for all elements of the set \(r \in R \)

1. **Base case**: show that \(P(b) \) is true for base case elements \(b \in R \)
2. **Inductive hypothesis**: assume that \(P(k) \) holds for all elements used to construct new elements in the recursive step
3. **Inductive step**: show that the result holds for the newly constructed elements
Algorithm (definition)

- Definition: an *algorithm* is a finite set of precise instructions for performing computation or solving a problem

- General considerations:
 - Running time, resources
 - Average/worst/best case scenarios
 - When do we terminate the algorithm?
 - How do we compare algorithms?
Pseudocode (definition)

- Pseudocode: representation of an algorithm in prose + code. Preparation step before implementation

Algo 3.1.1: Find Maximum

Input: unsorted array of integers a_1, a_2, \ldots, a_n

Output: largest integer in array

\{Initialize\} $\text{max} := a_1$

For $i := 2$ **to** n

- **If** $\text{max} < a_i$ **then** $\text{max} := a_i$
 - **Continue** with next iteration of for-loop.

Return (max)
Binary Search (idea)

- Problem definition:
 - Given sorted list (vector) of numbers V, and a number X. Find the index k such that $V(k) = X$. Return $k = -1$ if X is not in V.

- Solution approach:
 - Scan through the list and compare X to each element
 - Linear running time, does not take advantage of the list being sorted

- Better approach:
 - *Divide and conquer* algorithms
 - Break problem into subproblems of the same type
 - Constant time to cut problem size by a fraction (usually $\frac{1}{2}$)
Binary Search (algorithm)

- **Pseudocode:**
 - **Input:** sorted (ascending order) vector V with N elements, element X
 - **Goal:** find index k where V(k) = X or return -1
 - **Assumption:** > < operators exist
 - **Algorithm:**
 1. low_k = 1, high_k = N
 2. while low_k <= high_k % we still have indices to check
 \[m = \frac{(low_k + high_k)}{2} \] % middle element
 compare X to V(m)
 If X == V(m) ➔ stop, return k = m
 If X > V(m) ➔ search right half: low_k = m + 1;
 if X < V(m) ➔ search left half: high_k = m – 1;
 3. Return k = -1 % we failed to find X in V
Sorting (selection sort algorithm)

- **Pseudocode:**
 - **Input:** vector V with N elements
 - **Goal:** sort vector in ascending order
 - **Assumption:** comparison based sorting (> < operators exist)
 - **Algorithm:**
 1. Set $k = 1$
 2. Locate minimum element in (sub)vector $V(k..N)$
 3. Switch (swap) that element with element at index k
 4. Increment k ($k = k+1$) and go to step 2, stop when $k = N-1$
Selection Sort (analysis)

- **Estimate efficiency of sorting algorithm:**
 - Number of element comparisons
 - Number of element exchanges

- **Selection sort:**
 - First iteration of the loop: N-1 comparisons, 1 exchange
 - Some iteration: N-k comparisons, 1 exchange
 - Last iteration: 1 comparison, 1 exchange
 - Total comparisons: \((N-1) + (N-2) + \ldots + 2 + 1 = N \times (N-1) / 2\)
 - Total exchanges: N-1 (at most)
Big-O Notation (idea)

- Estimate efficiency of algorithm, relative to other algorithms for identical task
 - Difficult to get precise measure
 - Approximate effect on change of number of items (N) processed
 - Compare growth rates
 - Order of magnitude (O)
Big-O Notation

- Comparing growth rates:

 DEF: Let f and g be functions $\mathbb{R} \rightarrow \mathbb{R}$. Then f is **asymptotically dominated** by g if

 $$(\exists K \in \mathbb{R}) \ (\forall x > K) \ [f(x) \leq g(x)]$$

 NOTATION: $f \leq g$.

- Function classes:

 DEF: Let f and g be functions $\mathbb{R} \rightarrow \mathbb{R}$. Then f is in the **class $\mathcal{O}(g)$ ("big-oh of $g"\) if

 $$(\exists C \in \mathbb{R}) \ [f \leq Cg]$$

 NOTATION: $f \in \mathcal{O}(g)$.
Witnesses

DEF: Let f and g be functions $\mathbb{R} \rightarrow \mathbb{R}$. Then f is in the **class** $\mathcal{O}(g)$ ("big-oh of g") if

$$
(\exists C \in \mathbb{R}) (\exists K \in \mathbb{R}) (\forall x > K) [f(x) \leq C g(x)]
$$

DEF: In the definition above, the multiplier C and the location K on the x-axis after which $C g(x)$ dominates $f(x)$ are called the **witnesses** to the relationship $f \in \mathcal{O}(g)$.
Big-O Notation (example)

Example 3.2.1: \(4n^2 + 21n + 100 \in \mathcal{O}(n^2)\)

Pf: First suppose that \(n \geq 0\). Then

\[
4n^2 + 21n + 100 \leq 4n^2 + 24n + 100 \\
\leq 4(n^2 + 6n + 25) \\
\leq 8n^2 \text{ which holds whenever}
\]

\(n^2 \geq 6n + 25\), which holds whenever

\(n^2 - 6n + 9 \geq 34\), which holds whenever

\(n - 3 \geq \sqrt{34}\), which holds whenever \(n \geq 9\).

Thus,

\[(\forall n \geq 9)[4n^2 + 21n + 100 \leq 8n^2] \]
Witnesses (example 1)

\[(\forall n \geq 9)[4n^2 + 21n + 100 \leq 8n^2]\]

\[C = 8 \quad \text{and} \quad K = 9\]

are witnesses to the relationship

\[4n^2 + 21n + 100 \in \mathcal{O}(n^2)\]

Larger values of \(C\) and \(K\) could also serve as witnesses. However, a value of \(C\) less than or equal to 4 could not be a witness.
Witnesses (example 2)

Example 3.2.4: \(2^n \in O(n!) \).

Pf:

\[
\underbrace{2 \cdot 2 \cdots 2}_{n \text{ times}} \times \underbrace{2 \cdot 2 \cdots 2}_{n-1 \text{ times}} \leq 2 \cdot 1 \cdot 2 \cdot 3 \cdots n = 2n!
\]

We have used the witnesses \(C = 2 \) and \(K = 0 \). \(\diamond \)
Algorithmic Complexity

- Complexity is a measure of resource (time/space) consumption
- Time complexity: number of computational steps required to execute an algorithm as a function of input size
- Estimate running time of algorithm:
 - Worst case scenario: bound
 - Average case scenario: hard to compute
 - Analysis pinpoints bottlenecks
 - No particular units of time
 - Analyze inside out
P vs NP

- “P”: class of problems which can be solved with polynomial time algorithms
- “NP”: (nondeterministic polynomial time, exponential) class of problems whose solution can be verified in polynomial time

Implications of P = NP:
- Complete chaos
- Can solve problems as quickly as we can verify the solution
- Cryptography breaks
- Mathematicians replaced by machines
Factorial

Algo 5.4.5: factorial

recursive function: factorial\((n)\)

Input: integer \(n \geq 0\)

Output: \(n!\)

If \(n = 0\) then return \((1)\)
else return \((\text{prod}(n, \text{factorial}(n - 1)))\)
Fibonacci Numbers

- $F_0 = 1, F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, \ldots$, $F_i = F_{i-1} + F_{i-2}$
- Clever use of recursion?

```plaintext
function F = fib(N)
    if N <= 1
        F = 1;
    else
        F = fib(N-1) + fib(N-2);
    end
```

43
Fibonacci Function (call tree)
Binary Search (analysis)

- Binary search is a recursive algorithm, we can define and solve a \textit{recurrence relation}:
 - Base case: $T(0) = \text{constant}$
 - Recursive case: $T(N) = T(\text{subproblems}) + T(\text{combine solutions})$

- Running time depends on:
 - Number of subproblems
 - Size of subproblems
 - Cost of combining solutions
Mergesort (idea)

- Classic divide and conquer strategy:
 - Divide list into 2 halves (each half = subproblem)
 - Apply algorithm recursively to sort each half
 - Merge the two sorted lists

- Merging two sorted lists:
 - One pass through the input (N elements)
 - Linear running time, at most N-1 comparisons
 - Requires a temporary array (additional resource)
Mergesort (algorithm)

- **Pseudocode:**
 - **Input:** vector V with N elements
 - **Goal:** sort vector in ascending order
 - **Assumption:** comparison based sorting (\(>\) < operators exist)
 - **Algorithm:**
 1. left = 1, right = N
 2. if left < right % we still need to sort

 m = (left + right) / 2 % middle element
 mergeSort(V, left, m, T) \(\Rightarrow\) sort left half
 mergeSort(V, m+1, right, T) \(\Rightarrow\) sort right half
 merge(V, left, m+1, right, T) \(\Rightarrow\) merge sorted halves
 3. Return V % finished