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Abstract. Recent works have shown promise in detecting malware pro-
grams based on their dynamic microarchitectural execution patterns.
Compared to higher-level features like OS and application observables,
these microarchitectural features are efficient to audit and harder for
adversaries to control directly in evasion attacks. These data can be
collected at low overheads using widely available hardware performance
counters (HPC) in modern processors. In this work, we advance the use of
hardware supported lower-level features to detecting malware exploita-
tion in an anomaly-based detector. This allows us to detect a wider range
of malware, even zero days. As we show empirically, the microarchitec-
tural characteristics of benign programs are noisy, and the deviations
exhibited by malware exploits are minute. We demonstrate that with
careful selection and extraction of the features combined with unsuper-
vised machine learning, we can build baseline models of benign program
execution and use these profiles to detect deviations that occur as a
result of malware exploitation. We show that detection of real-world ex-
ploitation of popular programs such as IE and Adobe PDF Reader on a
Windows/x86 platform works well in practice. We also examine the limits
and challenges in implementing this approach in face of a sophisticated
adversary attempting to evade anomaly-based detection. The proposed
detector is complementary to previously proposed signature-based de-
tectors and can be used together to improve security.
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1 Introduction

Malware infections have plagued organizations and users for years, and are grow-
ing stealthier and increasing in number by the day. In response to this trend,
defenders have created commercial antivirus (AV) protections, and are actively
researching better ways to detect malware. An emerging and promising approach
to detect malware is to build detectors in hardware [3]. The idea is to use infor-
mation easily available in hardware (typically via HPC) to detect malware. It has
been argued that hardware malware schemes are desirable for two reasons: first,
unlike software malware solutions that aim to protect vulnerable software with
equally vulnerable software1, hardware systems protect vulnerable software with

1 Software AV systems roughly have the same bug defect density as regular software.
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Fig. 1. Taxonomy of malware detection approaches and some example works.

robust hardware implementations that have lower bug defect density because of
their simplicity. Second, while a motivated adversary can evade either defense,
evasion is harder in a system that utilizes hardware features. The intuition is
that the attacker does not have the same degree of control over lower-level hard-
ware features as she has with software ones. For instance, it is easier to change
system calls or file names than induce cache misses or branch misprediction in
a precise way across a range of time scales while exploiting the system.

In this paper we introduce techniques to advance the use of lower-level mi-
croarchitectural features in the anomaly-based detection of malware exploits. Ex-
isting malware detection techniques can be classified along two dimensions: detec-
tion approach and the malware features they target, as presented in Figure 1. De-
tection approaches are traditionally categorized into misuse-based and anomaly-
based detection. Misuse-based detection flags malware using pre-identified attack
signatures or heuristics. It can be highly accurate against known attacks but can
be easily evaded with slight modifications that deviate from the signatures. On
the other hand, anomaly-based detection characterizes baseline models of nor-
malcy state and identifies attacks based on deviations from these models. Besides
known attacks, it can potentially identify novel ones. There are a range of fea-
tures that can be used for detection: until 2013, they were OS and application-
level observables such as system calls and network traffic. Since then, lower-level
features closer to hardware such as microarchitectural events have been used for
malware detection. Shown in Figure 1, we examine for the first time, the feasi-
bility and limits of anomaly-based malware detection using both architectural
and low-level microarchitectural features available from HPCs.

Prior misuse-based research that uses microarchitectural features such as
[3] focuses on flagging Android malicious apps by detecting payloads. A key
distinction between our work and prior work is when the malware is detected.
Malware infection typically comprises two stages, exploitation and take-over. In
the exploitation stage, an adversary exercises a bug in the victim program to
hijack control of the program execution. Exploitation is then followed by more
elaborate take-over procedures to run a malicious payload such as a keylogger.



Our work focuses on detecting malware during exploitation, as it not only gives
more lead time for mitigations but can also act as an early-threat detector to
improve the accuracy of subsequent signature-based detection of payloads.

The key intuition for the anomaly-based detection of malware exploits stems
from the observation that the malware, during exploitation, alters the original
program flow to execute peculiar non-native code in the context of the victim pro-
gram. Such unusual code execution tend to cause perturbations to the dynamic
execution characteristics of the program. If these perturbations are observable,
they can form the basis of detecting malware exploits.

In this work, we model the baseline characteristics of common vulnerable
programs – Internet Explorer 8 and Adobe PDF Reader 9 (two of the most
attacked programs) and examine if such perturbations do exist. Intuitively one
might expect the deviations caused by exploits to be fairly small and unreli-
able, especially in vulnerable programs with extremely varied use such as in the
ones we study. This intuition is validated in our measurements. On a Windows
system using Intel x86 chips, our experiments indicate that distributions of mea-
surements from the hardware performance counters are positively skewed, with
many values being clustered near zero. This implies minute deviations caused by
the exploit code cannot be effectively discerned directly. However, we show that
this problem of identifying deviations from the heavily skewed distributions can
be alleviated. We show that by using power transform to amplify small differ-
ences, together with temporal aggregation of multiple samples, we can identify
the execution of the exploit within the context of the larger program execution.
Further, in a series of experiments, we systematically evaluate the detection
efficacy of the models over a range of operational factors, events selected for
modeling and sampling granularity. For IE exploits, we can identify 100% of the
exploitation epochs with 1.1% false positives. Since exploitation typically occurs
across nearly 20 epochs, even with a slightly lower true positive rate, we can
detect exploits with high probability. These are achieved at a sampling overhead
of 1.5% slowdown using sampling rate of 512K instructions epochs.

Further we examine the resilience of our detection technique to evasion strate-
gies of a more sophisticated adversary. We model mimicry attacks that craft
malware to exhibit event characteristics that resemble normal code execution
to evade our anomaly detection models. With generously optimistic assump-
tions about attacker and system capabilities, we demonstrate that the models
are susceptible to the mimicry attack. In a worst case scenario, the detection
performance deteriorates by up to 6.5%. Due to this limitation we observe that
anomaly detectors cannot be the only defensive solution but can be valuable as
part of an ensemble of detectors that can include signature-based ones.

The rest of the paper is organized as follows. We provide a background on
modern malware exploits in Section 2. We detail our experimental setup in Sec-
tion 3. We present our approach in building models for the study in Section 4,
and describe the experimental results in Section 5. Section 6 examines evasion
strategies of an adaptive adversary and their impact on detection performance.
Section 7 discusses related work, and we conclude in Section 8.
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2 Background

Figure 2 shows a typical multi-stage malware infection process that results in a
system compromise. The necessity for its multi-stage nature will become clear
as we explain the exploit process in this section.

Triggering the vulnerability First the adversary crafts and delivers the
exploit to the victim to target a specific vulnerability known to the adversary
(Step 1©). The vulnerability is in general a memory corruption bug; the exploit
is typically sent to a victim from a webpage or a document attachment from
an email. When the victim accesses the exploit, two exploit sub-programs, com-
monly known as the ROP and Stage1 “shellcodes”, load into the memory of the
vulnerable program (Step 2©). The exploit then uses the vulnerability to transfer
control to the ROP shellcode (Step 3©).

Code Reuse Shellcode (ROP) To prevent untrusted data being executed
as code, modern processors provide Data Execution Prevention (DEP) to restrict
code from being run from data pages. To support JIT compilation however,
DEP can be toggled by the program itself. So the ROP -stage shellcode typically
circumvents DEP by reusing instructions in the original program binary – hence
the name Code Reuse Shellcode – to craft a call to the function that disables
DEP for the data page containing the next Stage1 shellcode. The ROP shellCode
then redirects execution to the next stage. (Step 4©) [16].

Stage1 Shellcode This shellcode is typically a relatively small – from a few
bytes to about 300 bytes2 – code stub with exactly one purpose: to download
a larger (evil) payload which can be run more freely. To maintain stealth, it
downloads the payload in memory (Step 5©).

Stage2 Payload The payload is the final piece of code that the adversary
wants to execute on the target to perform a specific malicious task. The range of
functionality of this payload, commonly a backdoor, keylogger, or reconnaissance
program, is unlimited. After the payload is downloaded, the Stage1 shellcode
runs this payload as an executable using reflective DLL injection (Step 6©), a
stealthy library injection technique that does not require any physical files [5].
By this time, the victim system is fully compromised (Step 7©).

2 As observed at http://exploit-db.com

http://exploit-db.com


The Stage1 shellcode and Stage2 payload are different in size, design and
function, primarily due to the operational constraints on the Stage1 shellcode.
When delivering the initial shellcode in the exploit, exploit writers typically try
to use as little memory as possible to ensure that the program does not unin-
tentionally overwrite their exploit code in memory. To have a good probability
for success, this code needs to be small, fast and portable, and thus is written in
assembly language and uses very restrictive position-independent memory ad-
dressing style. These constraints limit the adversary’s ability to write very large
shellcodes. In contrast, the Stage2 payload does not have all these constraints
and can be developed like any regular program. This is similar to how OSes use
small assembly routines to bootstrap and then switch to compiled code.

The strategy and structure described above is representative of a large num-
ber of malware especially those created with recent web exploit kits [25]. These
malware exploits execute completely from memory and in the process context
of the host victim program. Further, they maintain disk and process stealth by
ensuring no files are written to disk and no new processes are created, and thus
easily evade most file based malware detection techniques.

3 Experimental Setup

Do the execution of different shellcode stages exhibit observable deviations from
the baseline performance characteristics of the user programs? Can we use these
deviations, if any, to detect a malware exploit as early as possible in the infection
process? To address these questions, we conduct several feasibility experiments,
by building baseline per-program models using machine learning classifiers and
examining their detection efficacy over a range of operational factors. Here, we
describe our experimental setup and detail how we collect and label the mea-
surements attributed to different malware exploit stages.

3.1 Exploits

Unlike SPEC, there are no standard exploit benchmarks. We rely on a widely-
used penetration testing tool Metasploit (from www.metasploit.com) to gener-
ate exploits for common vulnerable programs from publicly available informa-
tion. We use exploits that target the security vulnerabilities CVE-2012-4792,
CVE-2012-1535 and CVE-2010-2883 on IE 8 and the web plug-ins, i.e., Adobe
Flash 11.3.300.257 and Adobe Reader 9.3.4 respectively. We choose to utilize
Metasploit because the exploitation techniques it employs in the exploits are
representative of multi-stage nature of real-world exploits.

Besides targeting different vulnerabilities using different ROP shellcode from
relevant library files (msvcrt.dll, icucnv36.dll, flash32.ocx), we also vary
both the Stage1 (reverse tcp, reverse http, bind tcp) shellcode and the Stage2
final payload (meterpreter, vncinject, command shell) used in the exploits.

Additionally, we instrument the start and end of the respective malware
stages with debug trap int3 instructions (0xCC) of one byte long, to label the
exploit measurements with the respective stages solely for evaluation purposes.

www.metasploit.com


3.2 Measurement Infrastructure

Since most real-world exploits run on Windows and PDF readers, and none of
the architectural simulators can run programs of this scale, we use measurements
from production machines. We develop a Windows driver to configure the per-
formance monitoring unit on Intel i7 2.7GHz IvyBridge Processor to interrupt
once every N instructions and collect the event counts from the HPCs. We also
record the Process ID (PID) of the currently executing program so that we can
filter the measurements based on processes.

We collect the measurements from a VMware Virtual Machine (VM) envi-
ronment, installed with Windows XP SP3 and running a single-core with 512MB
of memory. With the virtualized HPCs in the VM, this processor enables the
counting of two fixed events (clock cycles, instruction retired) and up to a limit
of four events simultaneously. We configure the HPCs to update the event counts
only in the user mode. To ensure experiment fidelity for the initial study, mea-
surements from the memory buffer are read and transferred via TCP network
sockets to a recording program deployed in another VM. This recording program
saves the stream of measurements in a local file that is used for our analysis.

We experiment with various sampling interval of N instructions. We choose
to begin the investigation with a sampling rate of every 512,000 instructions
since it provides a reasonable amount of measurements without incurring too
much overhead (See Section 5.4 for an evaluation of the sampling overhead).
Each sample consists of the event counts from one sampling time epoch, the
identifying PID and the exploit stage label.

3.3 Collection of Clean and Infected Measurements

To obtain clean exploit-free measurements for IE 8, we randomly browse websites
that use different popular web plugins available on IE viz., Flash, Java, PDF,
Silverlight, and Windows Media Player extensions. We visit the top 20 websites
from Alexa and include several other websites to widen the coverage of the use of
the various plug-ins. Within the browser, we introduce variability by randomizing
the order in which the websites are loaded across runs and by navigating the
websites by clicking links randomly and manually on the webpages. The dynamic
content on the websites also perturbs the browser caches. We use a maximum of
two concurrent tabs. In addition, we simulate plug-in download and installation
functions.

For Adobe PDF measurements, we download 800 random PDFs from the
web, reserving half of them randomly for training and the other half for testing.
To gather infected measurements, we browse pages with our PDF exploits with
the same IE browser that uses the PDF plug-in. We use Metasploit to generate
these PDF exploits and ensure that both the clean and unclean PDFs have the
same distribution of file types, for instance, same amount of Javascript.

We stop gathering infected measurements when we see creation of a new pro-
cess. Usually the target process becomes unstable due to the corrupted memory



state, and the malicious code typically “migrates” itself to another new or ex-
isting process to ensure persistence after the execution of the Stage2 payload.
This is an indication that the infection is complete.

While there are factors that may affect the results of our measurements, we
take additional care to mitigate the following possible biases in our data during
the measurement collection:

(1) Between-run contamination: After executing each exploit and col-
lecting the measurements, we restore the VM to the state before the exploit
is exercised. This ensures the measurements collected are independent across
training and testing sets, and across different clean and exploit runs.

(2) Exploitation bias: Loading the exploits in the program in only one
way may bias the sampled measurements. To reduce this bias, we collect the
measurements while loading the exploit in different ways: (a) We launch the
program and load the URL link of the generated exploit page. (b) With an
already running program instance, we load the exploit page. (c) We save the
exploit URL in a shortcut file and launch the link shortcut with the program.

(3) Network condition bias: The VM environment is connected to the
Internet. To ensure that the different network latencies do not confound the
measurements, we configure the VM environment to connect to an internally-
configured Squid (from www.squid-cache.org) proxy and throttle the network
bandwidth from 0.5 to 5Mbps using Squid delay pools. We vary the bandwidth
limits while collecting measurements for both the exploit code execution and
clean runs.

4 Building Models

To use HPC measurements for anomaly-based detection of malware exploits,
we need to build classification models to describe the baseline characteristics
for each program we protect. These program characteristics are relatively rich
in information and, given numerous programs, manually building the models is
nearly impossible. Instead we rely on unsupervised machine learning techniques
to dynamically learn possible hidden structure in these data. We then use this
hidden structure – aka model – to detect deviations during exploitation.

We rely on a class of unsupervised one-class machine learning techniques
for model building. The one-class approach is very useful because the classifier
can be trained solely with measurements taken from a clean environment. This
removes the need to gather measurements affected by exploit code, which is hard
to implement and gather in practice. Specifically, we model the characteristics
with the one-class Support Vector Machine (oc-SVM) classifier that uses the
non-linear Radial Basis Function (RBF) kernel. In this study, the collection
of the labeled measurements is purely for evaluating the effectiveness of the
models in distinguishing the measurements taken in the presence of malware
code execution.

www.squid-cache.org


Table 1. Shortlisted candidate events to be monitored.

Architectural Events

Name Event Description

Load Load instructions (ins.)

Store Store ins.

Arith Arithmetic ins.

Br Branch (br.) ins.

Call All near call ins.

Call D Direct near call ins.

Call ID Indirect near call ins.

Ret Near return ins.

a These derived events are not directly
measured, but computed with two
events measured by the HPCs. For
example, %Misp Br is computed as
Misp Br/Br.

Microarchitectural Events

Name Event Description

Llc Last level cache references

Mis Llc Last level cache misses

Misp Br Mispredicted br. ins.

Misp Ret Mispred. near return ins.

Misp Call Mispred. near call ins.

Misp Br C Mispred. conditional br.

Mis Icache iCache misses

Mis Itlb iTLB misses

Mis Dtlbl D-TLB load misses

Mis Dtlbs D-TLB store misses

Stlb Hit sTLB hits after iTLB misses

%Mis Llca % of last level cache misses

%Misp Bra % of mispred. br.

%Misp Reta % of mispred. near RET ins.

4.1 Feature Selection

While the Intel processor we use for our measurements permits hundreds of
events to be monitored using HPCs, not all of them are equally useful in charac-
terizing the execution of programs. We examine most events investigated in pre-
vious program characterization works [21,9], and various other events informed
by our understanding of malware behavior. Out of the hundreds of possible
events that can be monitored, we shortlist 19 events for this study in Table 1.
We further differentiate between the Architectural events that give an indication
of the execution mix of instructions in any running program, and the Microar-
chitectural ones that are dependent on the specific system hardware makeup.

Events with higher discriminative power The processor is limited
to monitoring up to 4 events at any given time. Even with the smaller list of
shortlisted events, we have to select only a subset of events, aka features, that
can most effectively differentiate clean execution from infected execution. With
the collected labeled measurements, we compute the Fisher Score (F-Score) to
provide a quantitative measure of how effective a feature can discriminate mea-
surements in clean executions from those in infected executions. The F-Score is
a widely-used feature selection metric that measures the discriminative power
of features [4]. A feature with better discriminative power would have a larger
separation between the means and standard deviations for samples from dif-
ferent classes. The F-Score measures this degree of separation. The larger the
F-Score, the more discriminative power the feature is likely to have. However, a
limitation to using the F-Score is that it does not account for mutual informa-
tion/dependence between features, but it can guide our selection of a subset of
“more useful” features. Since we are trying to differentiate samples with mali-
cious code execution from those without, we compute the corresponding F-Scores
for each event. We compute the F-Scores for the different stages of malware code



Table 2. Top 7 most discriminative events for different stages of exploit execution
(Each event set consists of 4 event names in Bold. E.g, monitoring event set A-0
consists of simultaneously monitoring Ret, Call D, Store and Arith event counts.)

Exploit Set Events ranked by F-scores
Stage Label 1 2 3 4 5 6 7

Architectural Events

ROP A-0 Ret Call D Store Arith Call Load Call Id

Stage1 A-1 Store Load Call ID Ret Call D Call Arith

Stage2 A-2 Store Call ID Ret Call D Call Arith Br

Microarchitectural Events

ROP M-0 Misp Br C %Misp Br Misp Br %Misp Ret Mis Itlb Mis Llc Mis Dtlbs

Stage1 M-1 Misp Ret Misp Br C %Misp Ret %Misp Br Mis Dtlbs Stlb Hit Misp Br

Stage2 M-2 Misp Ret Stlb Hit Mis Icache Mis Itlb %Misp Ret Misp Call Mis Llc

Both Architectural and Microarchitectural Events

ROP AM-0 Misp Br C %Misp Br Misp Br %Misp Ret Mis Itlb Ret Mis Llc

Stage1 AM-1 Store Load Misp Ret Call ID Ret Call D Call

Stage2 AM-2 Store Call ID Misp Ret Ret Call D Call Stlb Hit

execution for each event and reduce the shortlisted events to the 7 top-ranked
events for each of the two categories, as well as for the two categories combined,
as shown in Table 2. Each row consists of the top-ranked events for an event
category and the exploit stage.

We further select top 4 events from each row to form 9 candidate event sets
that we will use to build the baseline characteristic models of the IE browser.
Each model constructed with one set of events can then be evaluated for its
effectiveness in the detection of various stages of malware code execution. For
brevity, we assign a label (such as A-0 and AM-2 ) to each set of 4 events in Table
2 and refer to each model based on this set label. We note that the derived events
such as %Misp Br are listed in the table solely for comparison. Computing them
requires monitoring two events and reduces the number of features used in the
models. Via experimentation, we find that using them in the models does not
increase the efficacy of the models. Thus, we exclude them from the event sets.

Feature Extraction Each sample consists of simultaneous measurements
of all the four event counts in one time epoch. We convert the measurements in
each sample to the vector subspace, so that each classification vector is repre-
sented as a four-feature vector. Each vector, using this feature extraction method,
represents the measurements taken at the smallest time-slice for that sampling
granularity. These features will be used to build non-temporal models.

Since we observe that malware shellcode typically runs over several time
epochs, there may exist temporal relationships in the measurements that can
be exploited. To model any potential temporal information, we extend the di-
mensionality of each sample vector by grouping the N consecutive samples and
combining the measurements of each event to form a vector with 4N features. We
use N = 4 to create sample vectors consisting of 16 features each, so each sam-
ple vector effectively represents measurements across 4 time epochs. By grouping
samples across several time epochs, we use the synthesis of these event measure-
ments to build temporal models.



With the granularity at which we sample the measurements, the execution
of the ROP shellcode occurs within the span of just one sample. Since we are
creating vectors with a number of samples as a group, the ROP payload will
only contribute to one small portion of a vector sample. So we leave out the
ROP shellcode for testing using this form of feature extraction.

5 Results

5.1 Anomalies Not Directly Detectable

We first investigate if we can gain insights into the distribution of the event
counts for a clean environment and one attacked by an exploit. Without assum-
ing any prior knowledge of the distributions, we use box-and-whisker3 plots of
normalized measurements for different events. These plots offer a visual gauge
of the range and variance in the measurements and an initial indication on how
distinguishable the measurements taken with the execution of different malware
code stages are from the clean measurements from an exploit-free environment.

These distribution comparisons suggest that any event anomalies manifested
by malware code execution are not trivially detectable, due to two key obser-
vations. (1) Most of the measurement distributions are very positively skewed,
with many values clustered near zero. (2) Deviations, if any, from the baseline
event characteristics due to the exploit code are not easily discerned.

5.2 Power Transform

To address this challenge, we rely on rank-preserving power transform on the
measurements to positively scale the values. In the field of statistics, the power
transform is a common data analysis tool to transform non-normally distributed
data to one that can be approximated by a normal distribution. Used in our
context, it has the value of magnifying any slight deviations that the malware
code execution may have on the baseline characteristics.

For each event type, we find the appropriate power parameter λ such that
the normalized median is roughly 0.5. For each event i, we maintain and use its
associated parameter λi to scale all its corresponding measurements throughout
the experiment. Each normalized and scaled event measurement for event i,
normalizedi, is transformed from the raw value (rawi), minimum value (mini),
maximum value (maxi) as follows:

normalizedi = (
rawi − mini

maxi
)
λi

(1)

3 The box-and-whisker plot is constructed with the bottom and top of the box rep-
resenting the first and third quartiles respectively. The red line in the box is the
median. The whiskers extend to 1.5 times the length of the box. Any outliers be-
yond the whiskers are plotted as blue + ticks.



Fig. 3. Distribution of events (after power transform) with more discernible deviations.

Using this power transform, we plot the distributions of all the events, in Fig-
ure 3. Now we observe varying deviations from baseline characteristics due to
different stages of malware code execution for various event types. Some events
(such as Misp Ret and Store) show relatively larger deviations, especially for
the Stage1 exploit shellcode. These events likely possess greater discriminative
power in indicating the presence of malware code execution. Clearly, there are
also certain events that are visually correlated. The Ret and Call exhibit simi-
lar distributions. We can also observe strong correlation between those computed
events (such as %Misp Br) and their constituent events (such as Misp Br).

5.3 Evaluation Metrics for Models

To visualize the classification performance of the models, we construct the Re-
ceiver Operating Characteristic (ROC) curves which plot the percentage of truely
identified malicious samples (True positive rate) against the percentage of clean
samples falsely classified as malicious (False positive rate). Each sample in the
non-temporal model corresponds to the set of performance counter measure-
ments in one epoch; each temporal sample spans over 4 epochs. Furthermore, to
contrast the relative performance between the models in the detection of mali-
cious samples, the area under the ROC curve for each model can be computed
and compared. This area, commonly termed as the Area Under Curve (AUC)
score, provides a quantitative measure of how well a model can distinguish be-
tween the clean and malicious samples for varying thresholds. The higher the
AUC score, the better the detection performance of the model.

5.4 Detection Performance of Models

We first build the oc-SVM models with the training data, and evaluate them
with the testing data using the non-temporal and temporal modeling on the
nine event sets. To characterize and visualize the detection rates in terms of true
and false positives over varying thresholds, we present the ROC curves of both
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Fig. 4. Top: ROC plots for Non-Temporal 4-feature models for IE. Bottom: ROC
plots for Temporal 16-feature models for IE.

approaches in Figure 4. For brevity, we only present the ROC curves for models
that use both architectural and microarchitectural events. We also present the
overall detection results in terms of AUC scores in Figure 5 and highlight the
key observations that affect the detection accuracy of the models below.

Different Stages of Malware Exploits We observe that the models,
in general, perform best in the detection of the Stage1 shellcode. These results
suggest the Stage1 shellcode exhibits the largest deviations from the baseline
architectural and microarchitectural characteristics of benign code. We achieve
a best-case detection accuracy of 99.5% for Stage1 shellcode with AM-1 models.

On the other hand, the models show mediocre detection capabilities for the
ROP shellcode. The models does not perform well in the detection of the ROP
shellcode, likely because the sampling granularity at 512k instructions is too
coarse-grained to capture the deviations from the ROP shellcode in the base-
line models. While the Stage1 and Stage2 shellcode executes within several time
epochs, we measured that the ROP shellcode takes 2182 instructions on average
to complete execution. It ranges from as few as 134 instructions (for the Flash
ROP exploit) to 6016 instructions (for the PDF ROP exploit). Since we are
keeping the sampling granularity constant, the sample that contains measure-
ments during the ROP shellcode execution will largely consist of samples from
the normal code execution.

Non-Temporal vs Temporal Modeling We observe that the detection
accuracy of the models for all event sets improves with the use of temporal
information. By including more temporal information in each sample vector, we
reap the benefit of magnifying any deviations that are already observable in the
non-temporal approach. For event set M-2, this temporal approach of building
the models improves the AUC score from the non-temporal one by up to 58.8%.
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Fig. 5. Detection AUC scores for different event sets using non-temporal and temporal
models for IE.

Architectural vs Microarchitectural Events We quantify the detection
capabilities of our models by considering the architectural and microarchitec-
tural features separately and in combination. Models built using only architec-
tural events achieve AUC scores on average 4.1% better than those built solely
with microarchitectural events. Combining the use of microarchitectural events
with architectural ones improves the average AUC scores by 5.8% and 1.4% for
microarchitectural-only and architectural-only models respectively. It is more
advantageous to incorporate the use of both types of events in the detection
models. For instance, by selecting and modeling both the most discriminative
architectural and microarchitectural events together, we can achieve higher de-
tection rates of up to an AUC score of 99.5% for event set AM-1.

Different Sampling Granularities While we use the sampling rate of
512K instructions for the above experiments, we also examine the impact on de-
tection efficacy for various sampling granularities. Although the hardware-based
HPCs incur a near-zero overhead in the monitoring of the event counts, a pure
software-only implementation of the detector still requires running programs to
be interrupted periodically to sample the event counts. This inadvertently leads
to a slowdown of the overall running time of programs due to this sampling
overhead. To inform the deployment of a software-only implementation of such
a detection paradigm, we evaluate the sampling performance overhead for dif-
ferent sampling rates.

To measure this overhead, we vary the sampling granularity and measure
the slowdown in the programs from the SPEC 2006 benchmark suite. We also
repeat the experiments using the event set AM-1 to study the effect of sampling
granularity has on the detection accuracy of the model. We plot the execution
time slowdown over different sampling rates with the corresponding detection
AUC scores for various malware exploit stages in Figure 6.

We observe that the detection performance generally deteriorates with coarser-
grained sampling. This illustrates a key limitation of the imprecise sampling
technique used on Windows systems. For example, during the span of instruc-
tions retired in one sample, while we may label these measurements as belonging
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Fig. 6. Trade-off between sampling overhead for different sampling rates versus detec-
tion accuracy using set AM-1.

to a specific process PID, these measurements may also contain measurements
belonging to other processes context-switched in and out during the span of this
sample. The interleaved execution of different processes creates this “noise” ef-
fect that becomes more pronounced with a coarser-grained sampling rate and
deteriorates the detection performance. Nonetheless, we note that the reduction
in sampling overhead at coarser-grained rates far proportionately outstrips the
decrease in detection performance.

Constrained Environments To further investigate the impact of the
aforementioned “noise” effect, we also assess the impact on detection accuracy
in the scenario where we deploy both the online classification and the measure-
ment gathering in the same VM. As described in Section 3.2, we collect the
measurements in our study from one VM and transfer the measurements to the
recorder in another VM to be saved and processed. We term this cross-remote-
VM scenario where the sampling and the online classification are performed on
different VMs as R-1core.

For this experiment, we use the event model set AM-1 using two additional
local-VM scenarios utilizing both one and two cores separately. We term these
two scenarios as L-1core and L-2core respectively. We present the detection AUC
scores for the three different scenarios in Table 3 (Left).

We observe the detection performance suffers when the online classifier is
deployed locally together with the sampling driver. This may be due to possible
noise introduced to the event counts while the online detector is executing and
processing the stream of samples. This highlights a key limitation of the current
method of periodic collection of HPC measurements on Windows systems, where
we are unable to cleanly segregate the measurements on a per-process basis.

To alleviate this problem, we envision a software-only implementation on a
distributed or multi-core system in which the online detector is running sepa-
rately from the system or core being protected. Furthermore, since this detection



Table 3. AUC scores for: (Left) Constrained scenarios for IE using set AM-1 and
(Right) Stand-alone Adobe PDF Reader.

Scenario Non-Temporal Temporal
Label ROP Stage1 Stage2 Stage1 Stage2

L-1core 0.505 0.895 0.814 0.918 0.900

L-2core 0.496 0.890 0.807 0.907 0.813

R-1core 0.678 0.916 0.781 0.995 0.823

Set Non-Temporal Temporal
Label ROP Stage1 Stage2 Stage1 Stage2

AM-0 0.931 0.861 0.504 0.967 0.766

AM-1 0.857 0.932 0.786 0.999 0.863

AM-2 0.907 0.939 0.756 0.998 0.912

approach requires little more than a stream of HPC measurements, this makes it
suitable as an out-of-VM deployment in a Virtual Machine Introspection (VMI)-
based setting [30] for intrusion detection. This approach requires minimum guest
data structures, relieving the need to bridge the semantic gap, a common problem
faced by VMI works. Another potential avenue to alleviate the “noise” problem
is a pure hardware implementation using a separate and secure dedicated core
or co-processor for the execution of an online detector as proposed in [3].

5.5 Results for Adobe PDF Reader

Due to space constraints, we do not present the full results from our experiments
on the stand-alone Adobe PDF Reader. We present the AUC detection perfor-
mance of the models built with the event sets AM-0,1,2 in Table 3 (Right).
Compared to the models for IE, the detection of ROP and Stage1 shellcode
generally improves for the Adobe PDF Reader. We even achieve an AUC score
of 0.999 with the AM-1 temporal model. The improved performance of this de-
tection technique for the PDF Reader suggests that its baseline characteristics
are more stable given the less varied range of inputs it handles compared to IE.

6 Analysis of Evasion Strategies

In general, anomaly-based intrusion detection approaches, such as ours, are sus-
ceptible to mimicry attacks. To evade detection, a sophisticated adversary with
sufficient information about the anomaly detection models can modify her mal-
ware into an equivalent form that exhibits similar baseline architectural and
microarchitectural characteristics as the normal programs. In this section, we
examine the degree of freedom an adversary has in crafting a mimicry attack
and how it impacts the detection efficacy of our models.

Adversary Assumptions We assume the adversary (a) knows all about
the target program such as the version and OS to be run on, and (b) is able to
gather similar HPC measurements for the targeted program to approximate its
baseline characteristics. (c) She also knows the way the events are modeled, but
not the exact events used. We highlight three ways the adversary can change
her attack while retaining the original attack semantics.

Assumption (c) is realistic, given the hundreds of possible events that can
be monitored on a modern processor. While she may uncover the manner the
events are modeled, it is difficult to pinpoint the exact subset of four events used



given the numerous possible combinations of subsets. Furthermore, even if the
entire event list that can be monitored is available, there may still exist some
events (such as events monitored by the power management units) that are not
publicly available. Nonetheless, to describe attacks 1 and 2, we optimistically
assume the adversary has full knowledge of all the events that are used in the
models.

Attack 1: Padding The first approach is to pad the original shellcode
code sequences with ”no-op” (no effect) instructions with a sufficient number so
that the events manifested by the shellcode match that of the baseline execution
of the program. These no-op instructions should modify the measurements for
all the events monitored, in tandem, to a range acceptable to the models.

The adversary needs to know the events used by the model a priori, in order
to exert an influence over the relevant events. We first explore feasibility of such a
mimicry approach by analyzing the Stage1 shellcode under the detection model
of event set AM-1. After studying the true positive samples, we observe that
the event characteristics exhibited by the shellcode are due to the unusually low
counts of the four events modeled. As we re-craft the shellcode at the assembly
code level to achieve the mimicry effect, we note three difficulties.

(1) Multi-instruction no-ops: Some microarchitectural events require more
than one instruction to effect a change. For example, to raise the Misp Ret
counts, sequences of Ret code need to be crafted in a specific order. Insertion
of no-ops must be added in multi-instruction segments.

(2) Event co-dependence: To maintain the original shellcode semantics,
certain registers need to be saved and subsequently restored. These operations
constitute Store /Load µ-operations and can inadvertently affect both Store
and Load events. Thus we are rarely able to craft no-op code segments to modify
each event independently. For instance, among the events in AM-1, only the no-
op instruction segment for Store can be crafted to affect it independently.
Event co-dependence makes adversarial control of values of individual events
challenging.

(3) No-op insertion position: Insertion position of the no-op instruction
segments can be critical to achieve the desired mimicry effect. We notice the
use of several loops within the shellcode. If even one no-op segment is inserted
into the loops, that results in a huge artificial increase in certain event types,
consequently making that code execution look more malicious than usual.

Next, we examine the impact of such mimicry efforts on the detection perfor-
mance. We pad the Stage1 shellcode at random positions (avoiding the loops)
with increasing number of each crafted no-op instruction segment and repeated
the detection experiments. In Figure 7 (Left), we plot the box-and-whisker plots
of the anomaly scores observed from the samples with varying numbers of in-
jected no-op code. In general, the anomaly scores become less anomalous with
the padding, until after a tipping point where inserting too many no-ops reverses
mimicry effect. In the same vein, we observe in Figure 7 (Right) that the de-
tection AUC scores decrease as the samples appear more normal. For the worst
case, the detection performance suffers by up to 6.5% just by inserting only the
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Fig. 7. Impact of inserting no-op segments on: (Left) The anomaly scores of Stage1
shellcode and (Right) The detection efficacy of Stage1 shellcode.

Call Id no-ops. We do not study combining the no-ops for different events, but
we believe it should deteriorate the detection performance further.

Attack 2: Substitution Instead of padding no-ops into original attack
code sequences, the adversary can replace her code sequences with equivalent
variants using code obfuscation techniques, common in metamorphic malware
[1]. Like the former attack, this also requires that she knows the events used
by the models a priori. To conduct this attack, she must first craft or generate
equivalent code variants of code sequences in her exploits, and profile the event
characteristics of each variant. She can adopt a greedy strategy by iteratively
substituting parts of her attack code with the equivalent variants, measuring the
HPC events of the shellcode and ditching those variants that exhibit character-
istics not acceptable to the models. However, while this greedy approach will
terminate, it warrants further examination as to whether the resulting shellcode
modifications suffice to evade the models. We argue that this kind of shellcode
re-design is hard and will substantially raise the bar for exploit writers.

Attack 3: Grafting This attack requires either inserting benign code from
the target program directly into the exploit code, or co-scheduling the exploit
shellcode by calling benign functions (with no-op effects) within the exploit code.
This attack somewhat grafts its malicious code execution with the benign ones
within the target program, thus relieving the need for the knowledge of the events
that are modeled. If done correctly, it can exhibit very similar characteristics as
the benign code it grafts itself to. As such this represents the most powerful
attack against our detection approach.

While we acknowledge that we have not crafted this form of attack in our
study, we believe that it is extremely challenging to craft such a grafting attack
due to the operational constraints on the exploit and shellcode, described in
Section 2. (1) Inserting sufficient benign code into the shellcode may exceed the
vulnerability-specific size limits and cause the exploit to fail. (2) To use benign
functions for the grafting attacks, these functions have to be carefully identified
and inserted so that they execute sufficiently to mimic the normal program
behavior and yet not interfere with the execution of the original shellcode. (3)
The grafted code must not unduly increase the execution time of the entire
exploit.



6.1 Defenses

Unlike past anomaly-based detection systems that detect deviations based on the
syntactic/semantic structure and code behavior of the malware shellcode, our
approach focuses on the architectural and microarchitectural side-effects mani-
fested through the code execution of the malware shellcode. While the adversary
has complete freedom in crafting her attack instruction sequences to evade the
former systems, she cannot directly modify the events exhibited by her attack
code to evade our detection approach. To conduct a mimicry attack here, she has
to carefully “massage” her attack code to manifest a combination of event be-
haviors that are accepted as benign/normal under our models. This second-order
degree of control over the event characteristics of the shellcode adds difficulty
to the adversary’s evasion efforts. On top of this, we discuss further potential
defense strategies to mitigate the impact of the mimicry attacks.

Randomization Introducing secret randomizations into the models has
been used to strengthen robustness against mimicry attacks in anomaly-based
detection systems [26]. In our context, we can randomize the events used in
the models by training multiple models using different subsets of the short-
listed events. We can also randomize the choice of model to utilize over time.
Another degree of randomization is to change the number of consecutive time-
epoch samples to use for each sample for the temporal models. In this manner,
the adversary does not know which model is used during the execution of her
attack shellcode. For her exploit to be portable and functional on a wide range
of targets, she has to modify her shellcode using the no-op padding and instruc-
tion substitution mimicry attacks for a wider range of events (and not just the
current four events).

Multiplexing At the cost of higher sampling overhead, we can choose to
sample at a finer sampling granularity and measure more events (instead of the
current four) by multiplexing the monitoring – we can approximate the simul-
taneous monitoring of 8 events across two time epochs by monitoring 4 events
in one and another 4 in the other. This increases to the input dimensionality
used in the models, making it harder for the adversary to make all the increased
number of monitored event measurements appear non-anomalous.

Defense-in-depth Consider a defense-in-depth approach, where this mal-
ware anomaly detector using HPC manifestations is deployed with existing
anomaly-based detectors monitoring for other features of the malware, such as
its syntactic and semantic structure [26,12,13] and its execution behavior at
system-call level [22,6,15,20] and function level [17]. In such a setting, in order
for a successful attack, an adversary is then forced to shape her attack code
to conform to normalcy for each anomaly detection model. An open area of
research remains in quantifying this multiplicative level of security afforded by
the combined use of these HPC models with existing defenses, i.e. examining
the difficulty in shaping the malware shellcode to evade detectors using statis-
tical and behavioral software features, while simultaneously not exhibiting any
anomalous HPC event characteristics during execution.



7 Related Work

The use of low-level hardware features for malware detection (instead of soft-
ware ones) is a recent development. Demme et al. demonstrate the feasibility of
misuse-based detection of Android malware programs using microarchitectural
features [3]. While they model microarchitectural signatures of malware pro-
grams, we build baseline microarchitectural models of benign programs we are
protecting and detect deviations caused by a potentially wider range of malware
(even ones that are previously unobserved). Another key distinction is that we
are detecting malware shellcode execution of an exploit within the context of
the victim program during the act of exploitation; they target Android malware
as whole programs. After infiltrating the system via an exploit, the malware
can be made stealthier by installing into peripherals, or by infecting other be-
nign programs. Stewin et al. propose detecting the former by flagging additional
memory bus accesses made by the malware [23]. Malone et al. examine detecting
the latter form of malicious static and dynamic program modification by model-
ing the architectural characteristics of benign programs (and excluding the use
of microarchitectural events) using linear regression models [14]. Another line of
research shows that malware can be detected using side-channel power pertur-
bations they induce in medical embedded devices [2], software-defined radios [7]
and mobile phones [11]. However, Hoffman et al. show that the use of such power
consumption models can be very susceptible to noise, especially in a device with
such widely varied use as the modern smartphone [8].

Besides HPCs, several works have leveraged other hardware facilities on mod-
ern processors to monitor branch addresses efficiently to thwart classes of ex-
ploitation techniques. kBouncer uses the Last Branch Recording (LBR) facility
to monitor for runtime behavior of indirect branch instructions during the in-
vocation of Windows API for the prevention of ROP exploits [16]. To enforce
control flow integrity, CFIMon [28] and Eunomia [29] leverage the Branch Trace
Store (BTS) to obtain branch source and target addresses to check for unseen
pairs from a pre-identified database of legitimate branch pairs. Unlike our ap-
proach to detecting malware, these works are designed to prevent exploitation
in the first place, and are orthogonal to our anomaly detection approach.

8 Conclusions

This work introduces the novel use of hardware-supported lower-level microar-
chitectural features to the anomaly-based detection of malware exploits. This
represents the first work to examine the feasibility and limits of using unsu-
pervised learning on microarchitectural features from HPCs to detect malware.
We demonstrate that the dynamic execution of commonly attacked programs
can be efficiently characterized with minimal features – the stream of event
measurements easily accessible from the HPC, and used to detect lower-level
perturbations caused by malware exploits to the baseline characteristics of be-
nign programs. Unlike its misuse-based counterparts previously proposed, this



anomaly-based detection approach can detect a wider range of malware, even
novel ones. This work can thus be used in concert with its misuse-based coun-
terparts to better security. Further, in modeling a class of potential mimicry
attacks against our detector, we show that it can be challenging for an adver-
sary to precisely control these hardware features to conduct an evasion attack.
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