
Safe Kernel Extensions Without Run-Time Checking

George C. Necula Peter Lee

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213{3891

fnecula,petelg@cs.cmu.edu

Abstract

This paper describes a mechanism by which an oper-
ating system kernel can determine with certainty
that it is safe to execute a binary supplied by an
untrusted source. The kernel �rst de�nes a safety
policy and makes it public. Then, using this pol-
icy, an application can provide binaries in a spe-
cial form called proof-carrying code, or simply PCC.
Each PCC binary contains, in addition to the native
code, a formal proof that the code obeys the safety
policy. The kernel can easily validate the proof with-
out using cryptography and without consulting any
external trusted entities. If the validation succeeds,
the code is guaranteed to respect the safety policy
without relying on run-time checks.

The main practical di�culty of PCC is in gener-
ating the safety proofs. In order to gain some prelim-
inary experience with this, we have written several
network packet �lters in hand-tuned DEC Alpha as-
sembly language, and then generated PCC binaries
for them using a special prototype assembler. The
PCC binaries can be executed with no run-time over-
head, beyond a one-time cost of 1 to 3 milliseconds
for validating the enclosed proofs. The net result is
that our packet �lters are formally guaranteed to be
safe and are faster than packet �lters created using
Berkeley Packet Filters, Software Fault Isolation, or
safe languages such as Modula-3.

This research was sponsored in part by the Advanced

Research Projects Agency CSTO under the title \The Fox

Project: Advanced Languages for Systems Software," ARPA Or-

der No. C533, issued by ESC/ENS under Contract No. F19628-

95-C-0050. The views and conclusions contained in this document

are those of the authors and should not be interpreted as repre-

senting the o�cial policies, either expressed or implied, of the

Advanced Research Projects Agency or the U.S. Government.

To appear at the Second Symposiumon Operating Sys-

tems Design and Implementation (OSDI '96), Seattle,

Washington, October 28{31, 1996.

1 Introduction

In this paper we address the problem of how an op-
erating-system kernel or a server can determine with
absolute certainty that it is safe to execute code sup-
plied by an application or other untrusted source.
We propose a mechanism that allows a kernel or
server|from now on referred to as the code con-
sumer|to de�ne a safety policy and then verify that
the policy is respected by native-code binaries sup-
plied to it by an untrusted code producer.

In contrast to some previous approaches, we do
not rely on the usual authentication or code-editing
mechanisms. Instead, we require that the code pro-
ducer creates its binaries in a special form, which
we call proof-carrying code, or simply PCC. A PCC
binary contains an encoding of a formal proof that
the enclosed native code respects the safety policy.
The proof is structured in such a way that makes
it easy and foolproof for any agent (and in particu-
lar, the code consumer) to verify its validity without
using cryptographic techniques or consulting with
external trusted entities; there is also no need for
any program analysis, code editing, compilation, or
interpretation. Besides being safe, PCC binaries are
also extremely fast because the safety check needs to
be conducted only once, after which the consumer
knows it can safely execute the binary without any
further run-time checking.

In a PCC binary, the proof is linked with the na-
tive code so that its validity guarantees the code's
safety. Furthermore, proof-carrying code is tamper-
proof; the consumer can easily detect most attempts
by any malicious agent to forge a proof or modify
the code. Tampering can go undetected only if the
adulterated code is still guaranteed to respect the
consumer-de�ned safety policy. Another feature of
the PCC method is that the proof checking algo-
rithm is very simple, allowing fast and easy-to-trust
implementations.

The safety policy is de�ned and published by

the code consumer and comprises a set of proof-
formation rules, along with a set of preconditions.
Safety policies can be de�ned to stipulate standard
requirements such as memory safety, as well as more
abstract and �ne-grained guarantees about the in-
tegrity of data-abstraction boundaries. To take a
simple example, consider the abstract type of �le
descriptors. In this case, a client is said to preserve
the abstraction boundaries if it does not exploit the
fact that �le descriptors are represented as integers
(by incrementing a �le descriptor, for example).

Although we have worked out many of the theo-
retical underpinnings for PCC (and indeed, most of
the theory is based on old and well-known principles
from logic, type theory [4, 11], and formal veri�ca-
tion [5, 6, 8]), there are many di�cult problems that
remain to be solved. In particular we do not know
at this point the most practical way to generate the
proofs. We have thus set out to gain some prelim-
inary experience, both to measure the bene�ts and
to identify the practical problems.

In the experiments reported in this paper, we
have in fact achieved fully automatic proof genera-
tion. In general, however, this problem is similar to
program veri�cation and is not completely automat-
able. Actually, the problem is somewhat easier than
veri�cation because we have the option of inserting
extra run-time checks (as is done in Software Fault
Isolation), which would have the e�ect of simplifying
the proving process at the cost of reducing perfor-
mance. By \extra", we mean run-time checks that
are not intrinsically a part of the algorithm of the
extension code. (For example, SFI will actually edit
the code and insert \extra" checks; PCC does not
normally do this.) Fortunately, we have not yet had
any need or desire to insert extra run-time checks
in any of our PCC examples. Still, automation of
proof generation remains as one of the most seri-
ous obstacles to widespread practical application of
PCC.

In our main experiment, we implemented several
network packet �lters [12, 15] in DEC Alpha assem-
bly language [19] and then used a special prototype
assembler to create PCC binaries for them. We were
motivated to use an unsafe assembly language in or-
der to place equal emphasis on both performance
and safety, as well as to demonstrate the generality
of the PCC approach. In addition to the assem-
bler, we implemented a proof validator that accepts
a PCC binary, checks its safety proof, and if it is
found to be valid, loads the enclosed native code
and sets it up for execution.

The results of this and other experiments are en-
couraging. For our collection of packet �lters, we

are able to automate completely the generation of
the PCC binaries. The one-time cost of loading and
checking the validity of the safety proofs is between
1 and 3 milliseconds. Because a safety proof guar-
antees safety, our hand-tuned packet �lters can be
executed safely in the kernel address space without
adding any run-time checks. Predictably, they are
much faster than safe packet �lters produced by any
other means with which we are familiar.

We believe that our early results show that proof-
carrying code is a new point in the design space that
is worthy of further attention and study. This pa-
per presents an overview of the approach. We begin
with a brief overview of the process of generating
and validating the safety proofs. Then, we make
this more concrete by showing how a safety policy
can be de�ned and proofs created for a generic as-
sembly language. This is followed by a description of
our main experiment involving safe network packet
�lters. The benchmark results provide some prelim-
inary indication that the PCC methodology has the
potential to surpass traditional approaches from a
safety point of view while maintaining or improv-
ing performance. In particular, we show that PCC
leads to faster and safer packet �lters than previous
approaches to code safety in systems software, in-
cluding Berkeley Packet Filters [12], Software Fault
Isolation [23], and programming in the safe subset
of Modula-3 [1, 9, 17]. Finally, we conclude with a
discussion of the remaining di�culties and speculate
on what might be necessary to make the approach
work on a practical scale.

2 Proof-Carrying Code

Figure 1 depicts the process of generating and using
a PCC binary. The process begins with the code con-
sumer de�ning and publicizing a safety policy. This
policy de�nes formally what is meant by \safety"
and also speci�es the interface between the consumer
and any binary provided by the producer. Taking
the policy into account, the code producer compiles
(or assembles) and proves the safety of a source pro-
gram, through a process which we call certi�cation.
This results in a PCC binary that can be delivered to
the code consumer. Upon receipt, the consumer val-
idates the safety proof enclosed in the PCC binary.
Finally, if the proof is found to be valid, the code
consumer can safely execute the native-code part of
the PCC binary.

The following subsections describe each of these
phases in more detail. The whole process is based on
concepts from logic, semantics, and type theory, and

2

op ::= n j ri i 2 0 : : :10
al ::= ADDQ j SUBQ j AND j OR j SLL j SRL
br ::= BEQ j BNE j BGE j BLT
instr ::= LDQ rd; n(rs) j STQ rs; n(rd) j al rs; op; rd j br rs; n j RET

Figure 2: The subset of DEC Alpha assembly language.

CPU

CODE PRODUCER
USER PROCESS
UNTRUSTED CLIENT

CODE CONSUMER
OS KERNEL
NETWORK SERVER

SAFETY

POLICY

PROOF

ENABLE VALIDATION

SOURCE PROGRAM

COMPILATION
&

CODE

SAFETY
BINARY

SCC

NATIVE

CERTIFICATION

PROOF

Figure 1: Overview of Proof-Carrying Code.

so the rest of this section is necessarily somewhat
technical, with most details beyond the scope of this
paper. We will thus attempt to explain only the
basic technicalities and key intuitions here. Those
readers who would like more details on the under-
lying theory can �nd them in a separate technical
report [16]. The impatient reader may want to skip
ahead to Section 3 where we show, for the case of
network packet �lters, that proof-carrying code sur-
passes previous approaches in both safety and per-
formance.

2.1 De�ning a Safety Policy

The �rst order of business is to de�ne precisely what
constitutes safe code behavior. We do this by spec-
ifying a safety policy in three parts:

1. A Floyd-style veri�cation-condition generator
(also referred to as the VC generator) [6], which
is a procedure that computes a predicate in
�rst-order logic based on the code to be cer-
ti�ed. We will refer to this predicate as the
safety predicate.

2. A set of axioms that can be used to validate
the safety predicate.

3. The precondition, which is essentially a \call-
ing convention" that de�nes how the code con-
sumer will invoke the PCC binaries.

It is the job of the designer of the code consumer
(e.g., the operating system designer) to de�ne the
safety policy. In practice, several di�erent safety
policies might be used, each one tailored to the needs
of speci�c tasks or services.

We obtain the VC generator by �rst specifying an
abstract machine (also called the operational seman-
tics), that simulates the execution of safe programs.
The abstract machine is not strictly required but it
simpli�es the design of the safety policy and pro-
vides a basis for proving the soundness of the whole
approach.

In order to make all of this more concrete, we
will now present an example of an abstract machine
that speci�es a general form of memory safety for
the DEC Alpha processor, and then show how the
safety policy of a simple resource access service can
be de�ned by a precondition. The VC generator and
axioms will then be given in the next subsection.

An abstract machine for memory-safe

DEC Alpha machine code

Because the experiments in this paper use the DEC
Alpha assembly language, our abstract machine is
essentially a high-level formal description of the Al-
pha architecture [19]. To see how this is done, con-
sider the subset of the Alpha instruction set shown
in Figure 2. (Actually, we use a larger subset of the
DEC Alpha assembly language in our experiments,
but this smaller subset will su�ce for presentation
purposes.) In this table, n denotes an integer con-
stant and ri refers to machine register i. All in-
structions operate on 64-bit values. For simplicity
we allow the use of only 11 temporary and caller-
save machine registers (which, for the purpose of this
presentation, we rename r0 through r10). The con-
sequence of this is that programs cannot write into
reserved and callee-save registers (according to the
standard C calling convention for the DEC Alpha ar-

3

chitecture), and are thus trivially safe with respect
to these registers.

To de�ne how programs are executed, we de�ne
an abstract machine as a state-transition function,
the essential core of which is shown in Figure 3. In
this speci�cation, the DEC Alpha program is a vec-
tor of instructions, �, and the current instruction is
�pc, where pc is the program counter. The variable �
denotes the state of the machine registers and mem-
ory. The state-transition function maps a machine
state (�; pc) into a new state (�0; pc0) by executing
the current instruction �pc.

The notation �[ri] (often abbreviated as ri) refers
to the value of register ri in state �.1 The expres-
sion �[rd rd � 1] denotes the new state obtained
from state � by incrementing the value of register
rd. So, for example, the Alpha \ADDQ rs; op; rd"
instruction is de�ned by Figure 3 to have the follow-
ing semantics:

(�[rd rs � op]; pc + 1)

where � is the current register and memory state.
This speci�cation states that the ADDQ instruction
updates register rd with the sum of rs and op, and
also increments the program counter. We use the
\circled" operation � to denote two's-complement
addition on 64 bits. This operation is de�ned in
terms of the usual integer arithmetic operations as

e1 � e2 = (e1 + e2) mod 264

To model the state of memory, we use a pseudo
register, called rm, that gives the content of each
memory location. We write sel(rm; a) for the con-
tents of memory address a, and upd(rm; a; rs) for
the new memory state resulted from writing register
rs to address a. Memory operations work on 64-bits
and the addresses involved must be aligned on an
8-byte boundary.

In the de�nition of the load and store instruc-
tions, there is a crucial di�erence between the DEC
Alpha processor and our abstract machine. The
di�erence is that our abstract machine performs
the safety checks that are shown in boxes in Fig-
ure 3. For example, consider the de�nition of the
\LDQ rd; n(rs)" instruction:

(�[rd sel(rm; rs � n)]; pc + 1); if rd(rs � n)

1Valid register values are positive integers in the range 0 to

264 � 1. This constraint is expressed formally by the equa-

tion \ri mod 264 = ri", which is applied to all register val-

ues. Negative values are represented using two's-complement

representation.

The predicate rd(a) is true when it is safe to read
the word at memory address a, which for the DEC
Alpha implies that a is aligned on an 8-byte bound-
ary. Similarly, the predicate wr(a) is true when the
address a denotes an aligned location that can be
safely read or written. In essence, these checks de-
�ne what is meant by safety, and more speci�cally
for this example, memory safety. For the purpose of
this paper, the predicates rd(a) and wr(a) are de-
�ned by the safety policy through the precondition,
as shown in the next subsection.

Mathematically, the abstract machine does not
return errors when a rd(a) or wr(a) check fails.
Instead, the execution blocks because there are no
transition rules covering the error cases. In this set-
ting, a program is safe if and only if it runs without
blocking on the abstract machine. Of course, the
presence of these safety checks means that the ab-
stract machine is not a faithful abstraction of the
DEC Alpha processor. However, the purpose of cer-
ti�cation is to prove that all safety checks always
succeed. If we have a valid safety proof for a pro-
gram, we know that we can safely execute it on a
real DEC Alpha and get the same behavior as on
our abstract machine, even though the Alpha does
not implement the safety checks.

There are other notable di�erences between our
abstract machine and a real DEC Alpha. For ex-
ample, to simplify the presentation in this paper,
we have restricted all branches to be only forward.
Allowing backward branches and loops introduces a
number of complications, but is handled in a con-
ceptually straightforward manner through the addi-
tion of explicit loop invariants. As it turns out, the
packet �lter examples we use in our experiments do
not have any loops, and so it is not inconvenient to
eliminate them here. In a later section we will briey
describe our experiments with looping programs, in-
cluding a safe IP-header checksum routine.

Another interesting aspect of the abstract ma-
chine is the level of abstraction of our speci�cation.
We might try to be ambitious and make a complete
speci�cation of the DEC Alpha processor. How-
ever, this would be extremely complex and proba-
bly di�cult to trust. And, as a practical matter,
for speci�c tasks such as the ones we are consid-
ering, many details and features of the Alpha are
irrelevant. This justi�es working at a higher level of
abstraction above the details of the pipeline, cache,
timing, and interrupt behavior.

We can also consider encoding other kinds of
safety checks into our abstract machine. For the
sake of simplicity, we have speci�ed only a notion of
�ne-grained memory safety. With some ingenuity,

4

(�; pc)!

8>>>>>>>><
>>>>>>>>:

(�[rd rs � op]; pc + 1); if �pc = ADDQ rs; op; rd

(�[rd sel(rm; rs � n)]; pc + 1); if �pc = LDQ rd; n(rs) and rd(rs � n)

(�[rm upd(rm; rd � n; rs)]; pc + 1); if �pc = STQ rs; n(rd) and wr(rd � n)

(�; pc + n + 1); if �pc = BEQ rs; n and rs = 0

(�; pc + 1); if �pc = BEQ rs; n and rs 6= 0

Figure 3: The Abstract Machine.

VCpc =

8>>>>>>><
>>>>>>>:

VCpc+1[rd rs � op]; if �pc = ADDQ rs; op; rd

rd(rs � n) ^ VCpc+1[rd sel(rm; rs � n)]; if �pc = LDQ rd; n(rs)

wr(rd � n) ^ VCpc+1[rm upd(rm; rd � n; rs)]; if �pc = STQ rs; n(rd)

(rs = 0) VCpc+n+1) ^ (rs 6= 0) VCpc+1); if �pc = BEQ rs; n

Post ; if �pc = RET

Figure 4: The Veri�cation-Condition Generator.

an abstract machine designer can de�ne safety poli-
cies involving other kinds of safety, like control over
resource usage or preservation of data-abstraction
boundaries. Once a safety policy is de�ned, applica-
tion writers are free to use it to create PCC binaries
that guarantee safety.

A sample application and its precondition

The abstract machine as given above describes safety
in terms of the abstract notions of readable and
writable memory locations. For this to be useful, the
code consumer must specify an interface to PCC bi-
naries that identi�es the readable and writable mem-
ory locations. We do this by specifying a precondi-

tion, which is a predicate in �rst-order logic that the
code consumer guarantees to be valid when the PCC
binary is invoked.

Consider the following simple example. Suppose
an operating-system kernel maintains an internal ta-
ble with data pertaining to various user processes.
Each table entry consists of two consecutive mem-
ory words|a tag and a data word. The tag describes
whether the data word is user writable or not. The
kernel also provides a resource access service through
which user processes are given permission to access
their table entry by installing native code in the ker-
nel. To make this possible the kernel invokes the
user-installed code with the address of the table en-
try corresponding to the parent process in machine
register r0. This address is guaranteed by the kernel
to be valid and aligned on an 8-byte boundary.

Although this example is somewhat contrived, we
can imagine that entries in the table represent capa-
bilities (perhaps �le descriptors), and so we would
like to provide user-installed code with full access to
the correct table entries, while maintaining the in-
tegrity of the rest of the table and other parts of the
kernel state.

Informally, the safety policy for the resource ac-
cess service requires that: (1) the user code cannot
access other table entries besides the one pointed to
by r0, (2) the tag is read only, (3) the data word is
also read only unless the tag value is non zero, and,
(4) the code does not modify reserved and callee-
saves registers. The last condition ensures that the
kernel can safely invoke the user code using a normal
C function call.

More formally, the kernel speci�es a precondition
Prer , which states that it is safe to read the tag
pointed to by r0, and that it is also safe to write the
data at o�set 8 from r0 if the contents of the tag is
not 0. In formal notation, this is written as follows:

Prer = r0 mod 264 = r0 ^ rd(r0) ^ rd(r0 � 8)
^ sel(rm; r0) 6= 0) wr(r0 � 8)

What remains now is to prove for a particular
client of the resource access service that all rd(a)
andwr(a) checks will always succeed, given this pre-
condition and abstract machine. In general, we can
also specify a postcondition as part of the safety pol-
icy, which would require particular invariants to be
valid when the user code terminates. Conceptually,
in our example the postcondition is the predicate

5

true, meaning that no additional conditions are im-
posed on the �nal machine state.

Before moving on to a discussion of the proof
generation process, we note that the safety policy
we have described here can be thought of as enforc-
ing �ne-grained memory protection. In general, one
could imagine having much more involved safety re-
quirements. For example, we could change the tag
word in the table entry to be a semaphore that the
user code must acquire (e.g., atomically test-and-set
to zero) before trying to write the data word; fur-
thermore, we could also require (via a simple post-
condition) that the code releases the semaphore be-
fore returning. Again, for purposes of the current
presentation, we stick to the simpler memory-safety
requirements.

2.2 Certifying the Safety of Programs

To create safety proofs for a program, we must prove
that executing it does not violate any of the safety
checks (and the postcondition, if one is given, is
also satis�ed). Standard techniques exist for build-
ing such proofs. Our technique is based on Floyd's
veri�cation conditions [6], because they are powerful
enough to deal with unstructured assembly-language
programs and a broad range of safety invariants.
Similar techniques have been used before to verify
assembly-language programs [2, 3].

Certi�cation of programs involves two steps:

1. Compute the safety predicate for the program.
This essentially encodes the semantic meaning
of the program in logical form and constitutes
a formal statement that the program, when ex-
ecuted, will not violate any safety checks.

2. Generate a proof of the safety predicate, writ-
ten out in a checkable form.

Both these steps are described in the following sub-
sections.

Computing the safety predicate

To compute the safety predicate, we �rst generate
a vector VC of predicates, one for each instruction
as speci�ed by the rules in Figure 4. The nota-
tion VCpc denotes the predicate for the current in-
struction. Since the rules specify VCpc in terms of
VCpc+1, the veri�cation-condition VC0 for the be-
ginning of the program can be computed by starting

at the end of the program and working back towards
the beginning.2

The rules in Figure 4 are derived in a straight-
forward manner from the abstract machine speci�-
cation of Figure 3; in fact, we imagine that experi-
enced kernel and safety policy designers would skip
the abstract machine speci�cation and give only the
VC generator rules. The notation P [rd rs � op]
stands for the predicate obtained from P by substi-
tuting rs � op for rd.

After computing the vector VC, the safety pred-
icate is computed simply by plugging the program
�, precondition Pre, and postcondition Post into
the following formula:

SP (�;Pre;Post) = 8r0 : : :8r108rm:Pre) VC0

The intuition behind a valid safety predicate is that
for any initial state that satis�es the precondition
Pre, the code � starting at the �rst instruction ex-
ecutes without failure and, if it terminates, the �nal
state satis�es the postcondition Post .

%Address of tag in r0
1 ADDQ r0, 8, r1 %Address of data in r1
2 LDQ r0, 8(r0) %Data in r0
3 LDQ r2, -8(r1) %Tag in r2
4 ADDQ r0, 1, r0 %Increment Data in r0
5 BEQ r2, L1 %Skip if tag == 0
6 STQ r0, 0(r1) %Write back data
L1 RET %Done

Figure 5: DEC Alpha assembly code for resource
access. Initially register r0 holds the address of the
tag. The data is at the o�set 8 from r0.

For a concrete example of client code for the re-
source access service, consider the small program
in Figure 5. The overall e�ect of this program is
to increment the data word if it is writable. We
�rst compute VC0 for this program using the rules
in Figure 4; then we compute the safety predicate
SPr using the above formula with the precondition
Prer and the postcondition true. After a few trivial
simpli�cations, the resulting safety predicate is the
following:

SPr = 8r0:8rm:Prer) rd(r0 � 8) ^ rd(r0 � 8	 8)
^ sel(rm; r0 � 8	 8) = 0) true

^ sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8)

Informally, the SP r predicate says that for all
values of register r0 and states of memory rm sat-
isfying the precondition Prer , the memory locations

2This simple approach works because all branches are re-

stricted to be forward-only. We discuss later what happens in

the presence of loops.

6

r0�8 and r0�8	8 must be readable and if the tag
(at address r0 � 8	 8) is non zero, the data (at ad-
dress r0 � 8) must be writable. All these conditions
must be true for the code to be safe with respect to
the resource access safety policy.

Proving the safety predicate

We have intentionally written the program in Fig-
ure 5 in a slightly complicated way, to show that low-
level optimizations do not pose signi�cant problems
in generating and validating safety proofs. Three
of the interesting properties of this program are (1)
the instructions are somewhat scheduled, including
speculative execution of the load in line 2 and of the
addition in line 4, to accommodate the DEC Alpha
pipeline latency3, (2) register r0 is reused in line 2 to
hold the data word instead of the tag address, and
(3) even though the precondition is expressed as a
function of the value in register r0, some of the ac-
tual memory accesses are done through register r1.
In general, we expect scheduling and register alloca-
tion to have no e�ect on the safety predicate and its
proof.

It is a simple exercise for the reader familiar with
assembly-language programming to verify that this
code is indeed correct with respect to the safety pol-
icy. The problem, of course, is how to convince even
the most suspicious kernel that this code is abso-
lutely safe. To do this, we must prove the safety
predicate according to the rules of �rst-order predi-
cate calculus extended with two's-complement inte-
ger arithmetic. We refer to this set of proof rules
as � and we write �̀ SP when the safety predicate
SP can be proved according to the rules in the set
�. Most of the rules in � are simple. Below we
show two of the rules we use, the �rst being a clas-
sical implication-elimination rule from the predicate
calculus, and the second a rule about arithmetic:

�̀ Q; if �̀ P) Q and �̀ P

�̀ e1 � e2 	 e2 = e1; if �̀ e1 mod 264 = e1

The second rule is perhaps a bit surprising be-
cause e1 + e2 � e2 = e1 is unconditionally true in
integer arithmetic. However, for the machine imple-
mentation of arithmetic, this statement is true only
if the original value of e1 is a valid register value.

A large fragment of the proof of the safety pred-
icate for our example program is shown in a proof-
tree form in Figure 6. This proof was generated

3These operations are speculative because they are not re-

quired if the branch in line 5 is taken.

automatically by our PCC system, which incorpo-
rates a simple theorem prover. We use vertical dots
to stand for extractions of a conjunct from the pre-
condition. You can read the proof tree from top to
bottom, interpreting every node as a valid inference
of the predicate below the line using the assumptions
above the line. For example, in the upper-right cor-
ner of the �gure the predicate r0 = r0 � 8 	 8 is
proved using the arithmetic rule we discussed with
the assumption r0 mod 264 = r0 extracted from the
precondition. Then wr(r0 � 8) is proved using the
implication-elimination rule and the hypothesis u of
the predicate sel(rm; r0� 8	 8) 6= 0. This hypoth-
esis is introduced at a lower level in the proof tree,
at the node labeled u, for the purpose of proving the
predicate sel(rm; r0 � 8	 8) 6= 0) wr(r0 � 8).

The guarantee of safety

We use the proof of the safety predicate, written out
in an appropriate language (to be described in the
next section), as the proof that the code obeys the
safety policy. This is justi�ed formally by the safety
theorem, stated below:

Theorem 2.1 (Safety) For any program �, pre-
condition Pre and postcondition Post, if

�̀ SP (�; P re; Post) then for any initial state �0 that
satis�es the precondition and for any abstract ma-
chine state (�; pc) originating from the initial state
(�0; 0), one of the following is true:

1. The state (�; pc) is a �nal state (i.e. �pc =
RET) satisfying the postcondition Post, or

2. The execution is not stuck, i.e., there exists a
new state (�0; pc0) such that (�; pc)! (�0; pc0).

Since the abstract machine gets stuck when there
is any violation of an rd(a) or wr(a) safety check,
this theorem provides an absolute guarantee that a
certi�ed program will not have such violations, as
long as its execution is started in a state that satis�es
the precondition.

The proof of the Safety Theorem is beyond the
scope of this paper, but can be found in a separate
technical report [16].

2.3 Validating the Safety Proofs

A PCC binary consists of the assembled native code
together with an encoding of the proof of its safety
predicate. To validate the binary, the code consumer
�rst extracts the native code and then computes its
safety predicate using the VC rules. Then, it checks

7

Prer
.
.
.

Prer Prer u r0 mod 264 = r0

Prer
.
.
.

.

.

.
sel(rm;r0 � 8	 8) 6= 0 r0 = r0 � 8	 8

.

.

.
r0 mod 264 = r0 sel(rm;r0) 6= 0)wr(r0 � 8) sel(rm;r0) 6= 0

rd(r0) r0 = r0 � 8	 8 wr(r0 � 8)
u

rd(r0 � 8	 8) sel(rm;r0 � 8	 8) 6= 0)wr(r0 � 8) : : :

rd(r0 � 8	 8) ^ (sel(rm;r0 � 8	 8) 6= 0)wr(r0 � 8)) ^ : : :
Prer

Prer) rd(r0 � 8	 8) ^ (sel(rm;r0 � 8	 8) 6= 0) wr(r0 � 8)) ^ : : :

8r0:8rm:Prer) rd(r0 � 8	 8) ^ (sel(rm;r0 � 8	 8) 6= 0)wr(r0 � 8)) ^ : : :

Figure 6: A Fragment of the formal safety proof of SPr .

that the safety proof is a valid proof of the safety
predicate.

This method ensures safety even if the native
code or the proof in the PCC binary is tampered
with. If the code is modi�ed, then in all likelihood
its safety predicate changes, so the given proof will
not correspond to it. If the proof is modi�ed, then
either it will be invalid, or else not correspond to
the safety predicate. If the code is modi�ed in such
a way that the safety predicate is unchanged (for
example, instruction scheduling and register alloca-
tion might do this in typical circumstances), or if
both the code and the proof are modi�ed so that we
still have a valid proof of the new safety predicate,
the validation succeeds and we continue to retain a
guarantee of safety.

To automate the validation process, we must
�rst choose a concrete representation language for
predicates and their proofs. From the many avail-
able choices, we have selected the Edinburgh Logical
Framework [7] (also called LF) as the representation
framework for predicates and proofs. LF is an ex-
tension of the simply typed lambda calculus and was
designed as a meta language for high-level speci�ca-
tion of languages in logic and computer science. The
most attractive property of LF is that it has a pow-
erful yet simple typechecking algorithm, which we
use to check the validity of proofs.

We represent the predicates and the proofs in LF
in such a way that the validity of a proof is im-
plied by the well typedness of the proof representa-
tion. Thus, proof validation amounts to typecheck-
ing. Also, LF allows us to represent in an elegant
way a few key issues in logical proof correctness,
such as the manipulation of logical parameters and
assumptions. It is well beyond the scope of this pa-
per to discuss in detail LF and the typechecking al-

gorithm, however it is worth mentioning that type-
checking is decidable and is described by a few sim-
ple rules. Indeed, typechecking is so simple that any
programmers who do not trust the publicly available
implementation can implement it easily themselves.
Our implementation has about �ve pages of C code,
even though it incorporates a few optimizations to
the basic algorithm. With this implementation, it
takes 1.4 milliseconds to validate the proof of the
SPr predicate.

For exibility and to allow easy exchange of
proofs between system components, we have de-
signed a binary encoding of LF representations.
Thus, a typical PCC binary contains a section with
the native code ready to be mapped into memory
and executed, followed by a symbol table used to
reconstruct the LF representation at the code con-
sumer site, and the binary encoding of the LF repre-
sentation of the safety proof. The latter component
is the safety proof. Figure 7 shows the sizes of these
sections for the PCC binary corresponding to the
resource access example.

Currently, PCC binaries for standard packet �l-
ters, including the native code, safety proof, and re-
location section, are about 400 to 1200 bytes in size,
with the proof about 3 times larger than the code.
The size of the relocation section increases linearly
with the number of distinct proof rules used in the
proof. In the case of packet �lter safety proofs, the
relocation section is a third of the binary but we
expect this ratio be much smaller for larger proofs.
There is a considerable amount of design latitude
in the encodings of the proofs, and we have barely
scratched the surface on what can be done to reduce
the size of the binaries as well as the time required
for validation. But already, with relatively little ef-
fort, we have achieved acceptably small binaries and

8

SECTION

NATIVE CODE

SECTION

220

RELOCATION

PROOF

45

0

340

SECTION

Figure 7: The layout of the PCC binary for the re-
source access example. The o�sets are in bytes.

low validation times.

3 Application: Network Packet Filters

In order to gain more experience with PCC and to
compare it with other approaches to code safety, we
have performed a series of experiments with safe net-
work packet �lters. We describe in this section the
particulars of the PCC approach to network packet
�lters. Then in Section 3.1, we compare it with other
approaches including interpreted packet �lters (as
exempli�ed by the BSD Packet Filter), code editing
(through Software Fault Isolation), and using a safe
programming language (the approach taken in the
SPIN kernel).

A packet �lter is an application-provided subrou-
tine that scans each incoming network packet and
decides whether the user application is interested
in receiving it or not. Packet �lters are supported
by most of today's workstation operating systems.
Since their �rst introduction in [15], packet �lters
have been used successfully in network monitoring
and diagnosis.

In the PCC approach the packet �lter is a PCC
binary whose native code component is invoked by
the kernel on each incoming network packet. Kernel
safety is ensured by validating the safety proof.

Following the procedure described in Section 2
we �rst establish a safety policy. To allow for a fair
comparison we follow the BSD Packet Filter model
of safety. The packet �lter code can examine the
packet at will and can also write to a statically allo-
cated scratch memory. Informally, the safety policy
requires that: (1) memory reads are restricted to the
packet and the scratch memory; (2) memory writes
are limited to the scratch memory; (3) all branches
are forward; and (4) reserved and callee-saves reg-
isters are not modi�ed. These rules establish mem-

ory safety and termination assuming that the kernel
calls the packet �lter with valid packet and scratch
memory addresses.

We write the packet �lter code assuming that the
return value must be in r0, the aligned address and
the length of the packet �lter are given in r1 and
r2 respectively, and the address of a 16-byte aligned
scratch memory is given in r3. Moreover the packet's
length is positive and at least 64-bytes (the mini-
mum length of an Ethernet packet). Formally this
is expressed as the precondition:

Pre = r1 mod 264 = r1 ^

r2 mod 264 = r2 ^ r2 < 232 ^ r2 � 64 ^
r3 mod 264 = r3 ^

8i:(i � 0 ^ i < r2 ^ (i & 7) = 0)
) rd(r1 � i) ^

8j:(j � 0 ^ j < 16 ^ (j & 7) = 0)
) wr(r3 � j) ^

8i:8j:(i � 0 ^ i < r2 ^ j � 0 ^ j < 16)
) (r1 � i 6= r3 � j)

The �rst few conjuncts of the precondition restrict
the values of input registers to valid machine word
values. The last term of the precondition rules out
the possibility of memory aliasing between packets
and the scratch memory. This is useful when reason-
ing about �lters that write to the scratch memory.

The postcondition in our packet �lter experiment
is the predicate true, meaning that no additional
conditions are placed on the �nal state.

We have implemented four typical packet �lters
in assembly language and certi�ed their safety with
respect to the packet �lter safety policy. Filter 1
accepts all IP packets. This is done by comparing
a 16-bit word in the packet to a given value. Fil-
ter 2 accepts IP packets originating from a given
network. This involves checking a 24-bit value in
addition to the work done by Filter 1. Filter 3 ac-
cepts IP or ARP packets exchanged between two
given networks. This includes all the work done by
Filter 2 with the addition of checking the destina-
tion network address. Extra complexity is required
because of di�erent header layout of IP and ARP
packets. Filter 4 accepts all TCP packets with a
given destination port. This �lter has to check that
the Ethernet packet is an IP packet, then that it is
a TCP packet, and lastly that the destination port
matches a given value. The o�set of the TCP desti-
nation port is computed based on a byte in the IP
header (the length of the IP header).

The e�ort involved in hand-coding packet �lters
in assembly language is repaid in increased perfor-
mance, because packet �lters are usually small and

9

very frequently executed. Hand-coding provides the
opportunity to perform optimizations that are dif-
�cult to obtain from an optimizing compiler. The
important point is that these optimizations are not
an impediment to generation and validation of safety
proofs. Here are a few optimizations that we incor-
porated in our packet �lters:

� The number of memory operations is mini-
mized by using the DEC Alpha 64-bit load fol-
lowed by byte extraction.

� The TCP port number can be found at packet
o�set ([14]8 & 15) � 4+ 16, where [14]8 denotes
the byte at o�set 14. If loading 64 bits at a
time on a little-endian machine, the formula
becomes ((([8]64 � 48) & 255) & 15) � 4 + 16.
With further simpli�cation we reduce this to
(([8]64 � 46) & 60) + 16, which is exactly how
we coded Filter 4.

After we write a packet �lter, our prototype
assembler produces its safety predicate using the
veri�cation-conditionmethod presented in Section 2.
The safety predicate is then proved using a theorem
prover. We currently use our own theorem prover,
which is admittedly a toy. When it gets stuck, it
requires intervention from the programmer, mainly
to learn new axioms about arithmetic (for example,
to know that r1 > 0) r1 � 0). The process is
easy, and because user-provided axioms are remem-
bered for future sessions, by now our system works
automatically for most practical packet �lters. With
state-of-the-art theorem proving technology we ex-
pect to be able to prove completely automatically
most arithmetic facts involved in certifying packet
�lters.

With our primitive theorem-prover we can gen-
erate safety proofs for packet �lters in about 5 to
10 seconds, in the cases when no user-intervention is
required.

3.1 Performance Comparisons

All performance measurements were done on a DEC
Alpha 3000/600 with a 175-MHz processor, a 2-
MByte secondary cache and 64-MByte main mem-
ory, running OSF/1. All measurements were per-
formed o�-line using a 200,000-packet trace from a
busy Ethernet network at Carnegie Mellon Univer-
sity.

We measured the average per-packet run time
of the four PCC packet �lters and of function-
ally equivalent �lters implemented using alterna-
tive approaches: the BSD Packet Filter architec-
ture, Software Fault Isolation and programming in

2.0

1.5

PCC

1.0

0.5

Filter 1 Filter 2 Filter 3 Filter 4

us

0.78

1.92

0.11 0.08

1.46

0.18 0.15

0.24
0.17

0.23
0.17

1.71

0.20
0.25

0.31 0.33

BPF

SFI

M3-VIEW

Figure 8: Comparison of average per-packet run
time.

the safe subset of Modula-3. In our experiments
with Modula-3 packet �lters we use the VIEW ex-
tension [9] for pointer-safe casting. The result of
the measurements are shown in Figure 8. From a
per-packet latency point of view, the PCC packet
�lters outperform �lters developed using any other
considered approach. However, the PCC method
has a startup cost signi�cantly larger than the other
approaches. This cost is the proof validation time,
which is presented in Table 1 together with the PCC
binary size for all four �lters and maximum heap
space used for validation. The maximum depth of
the stack during validation was under 4 Kbytes.

Packet Filter 1 2 3 4
Instructions 8 15 47 28
Binary Size (bytes) 385 516 1024 814
Validation Time (�s) 780 1070 2350 1710

Cost Space (KB) 5.5 8.7 24.6 15.1

Table 1: Proof size and validation cost for PCC
packet �lters.

Despite the relatively high validation cost, the
run-time bene�ts of PCC packet �lters are large
enough to amortize the startup cost after process-
ing a reasonable number of packets. Figure 9 shows
the overall running time, including startup cost, as a
function of the number of packets processed, for Fil-
ter 4. In this particular case, the cost of proof valida-
tion is amortized after 1200 packets when compared
to the BPF version of the �lter, after 10500 packets
when compared to the Modula-3 version and after
28,000 packets when compared to the SFI packet �l-
ter. Note that at the time we collected the packet
trace used for the experiments we counted about

10

1000 Ethernet packets per second on the average.

0

5

10

15

20

0 5 10 15 20 25 30 35 40 45 50

m
s

thousands of packets

BPF
M3-VIEW

SFI
PCC

Figure 9: Startup cost amortization for Filter 4.

We proceed now to describe in more detail each
considered approach focusing on how it relates to
PCC from the safety point of view, and how we set
up the performance measurements.

The standard way to ensure safe execution of
packet �lters is to interpret the �lter and perform
extensive run-time checks. This approach is best ex-
empli�ed by the BSD Packet Filter architecture [13],
commonly referred to as BPF. In the BPF approach
the �lter is encoded in a restricted accumulator-
based language. According to the BPF semantics,
a �lter that attempts to read outside the packet or
the scratch memory, or to write outside the scratch
memory, is terminated and the packet rejected.

The BPF interpreter makes a simple static check
of the packet �lter code to verify that all instruc-
tion codes are valid and all branches are forward
and within code limits. We measured this one-time
overhead to be a few microseconds, which is negligi-
ble. BPF packet �lters, however, are about 10 times
slower than our PCC �lters. In the PCC approach
all checks are moved to the validation stage, allowing
for much faster execution.

In order to collect data for the BPF packet �lters,
we extracted the BPF interpreter as implemented by
the OSF/1 kernel and compiled it as a user library.

It is possible, of course, to eliminate the need for
interpretation. For example, we could replace the
packet-�lter interpreter with a compiler. This ap-
proach is taken by several researchers [10, 24]. The
problem here is the startup cost and complexity of
compilation, especially if serious optimizations are
performed.

Another approach to safe code execution is Soft-
ware Fault Isolation (SFI) [23]. SFI is an inexpensive

method for parsing binaries and inserting run-time
checks on memory operations. There are many a-
vors of SFI depending on the desired level of memory
safety. If the entire code runs in a single protection
domain whose size is a power of 2, and if only mem-
ory writes are checked, then the run-time cost of
SFI is relatively small. If, on the other hand, the
untrusted code interacts frequently with the code
consumer or other untrusted components residing in
di�erent protection domains and the read operations
must be checked also, the overhead of the run-time
checks can amount to 20% [23]. A more serious dis-
advantage of SFI is that it can only ensure memory
safety. We believe that this level of safety is not
enough in general, and that it is important to be
able to check abstraction boundaries and represen-
tation invariants, as shown by the resource access
example in Section 2.

In order to accommodate SFI for packet �lters,
we allowed some concessions to the packet �lter se-
mantics. For example, we assumed that the kernel
allocates the packets on a 2048-byte boundary. Fur-
thermore, we assume that the �lter can safely access
the entire segment of 2048 bytes, independently of
the packet size. Note that the BPF packet �lter se-
mantics, which we followed for all other experiments,
speci�es that a �lter should be terminated if it tries
to access beyond the packet boundary. This means
that some working packet �lters in the BPF seman-
tics will not behave as expected in the SFI semantics
for packet �lters, and vice-versa.

One commonway of performing SFI is at the code
producer site, usually as part of the code-generation
phase in a compiler. In this case, the code consumer
performs a load-time checking that SFI was done
correctly. The load-time SFI validator is reportedly
simple if it must deal only with binaries for which
run-time checks have been inserted on every poten-
tially dangerous memory operation [23]. On the
other hand, in the case where the validator must
accept binaries for which the number of run-time
checks has been optimized through program analy-
sis, the validator itself has to redo the analysis that
led to the optimization. This means a more com-
plex and slower validation, and in fact such an SFI
validator does not presently exist.

We inserted run-time checks for the memory op-
erations in the assembly language packet �lters im-
plemented for the PCC experiment. This process
can be done by a simple and easy-to-trust imple-
mentation of SFI. In our experiments, PCC packet
�lters run about 25% faster than SFI �lters.

As part of our SFI experiment, we produced
safety proofs attesting that the resulting SFI packet

11

�lter binaries are safe with respect to the packet �l-
ter safety policy. We achieve the same e�ect as an
SFI load-time validator but using the universal type-
checking algorithm and a few application-dependent
proof rules. The precondition for this experiment
says that it is safe to read from any aligned ad-
dress that is in the same 2048-byte segment with
the packet start address. Proof sizes and validation
times are very similar to those for plain PCC pack-
ets.

Another approach to safe code is to use a type-
safe programming language. This approach is taken
by the SPIN extensible operating system [1], and
the language used is Modula-3 [17] extended with
pointer-safe casting (VIEW). SPIN allows applica-
tions to install extensions in the kernel but only
if they are written in the safe subset of Modula-
3. The extensions are compiled by a trusted com-
piler and the resulting executable code is then be-
lieved to be safe (at least according to the Modula-3
model of safety). Note that such extensions written
in Modula-3 are intrinsically safe, as anyone who be-
lieves in the safety of Modula-3 can check their com-
pliance with Modula-3 syntactic and typing rules.

We believe that encoding kernel extensions as
PCC binaries instead of Modula-3 source code can
provide important bene�ts. One such bene�t is the
increased exibility for extension writers because
any native code extension can be accepted, inde-
pendent of the original source language or even the
compiler used, as long as a valid safety proof accom-
panies it. Another potential bene�t is overcoming
the limitations of the Modula-3 safety model: the
PCC safety proof should be able to express proper-
ties such as disciplined use of locks or array bounds
compliance with no need for run-time checks.

We wrote the four packet �lters in the safe sub-
set of Modula-3 and compiled them with the ver-
sion 3.5 of the DEC SRC compiler extended with
the VIEW operation [24]. VIEW is used to safely
cast the packet �lter to an array of aligned 64-bit
words allowing fewer memory operation for access-
ing packet �elds. In contrast, in plain Modula-3 the
packet �elds must be loaded a byte at a time, and
a safety bounds check is performed for each such
operation. The compiler tries to eliminate some of
these checks statically but it is not very successful
for packet �lters. The main reason is that a criti-
cal piece of information, the fact that packets are at
least 64 bytes long, cannot be communicated to the
compiler through the Modula-3 type system.

We measured a 20% improvement in the Modula-
3 packet �lter performance when using VIEW. Sim-
ilar performance improvements over the DEC SRC

Modula-3 compiler have been reported [18] for the
more recent Vortex compiler. However, since we
have not conducted any experiments with the Vor-
tex compiler on our packet �lters, it is not clear what
kind of improvements we would realize in practice.

In an alternate implementation of untrusted code
certi�cation using Modula-3, the source code is com-
piled by a trusted and secure compiler that signs the
executable for future use. Validation then means
cryptographic signature checking and like in the
PCC approach there is no run-time cost associated
with it. We do not have a complete implementa-
tion of such a cryptographic validation, so we do not
know exactly how large is the startup cost for the
digital signature approach. It is likely however that
a good implementation of digital signatures would
achieve faster validation and signi�cantly faster gen-
eration of certi�cates. The essential drawback of
cryptographic techniques over PCC is that valida-
tion establishes only a trusted origin of the code and
not its absolute safety relative to the safety policy.
In particular, a digital signature can be ascribed to
an unsafe program just as easily as to a safe one.
Also, the cost of managing and transmitting encryp-
tion keys is not incurred by PCC.

We should mention here one more approach to
safe code execution, although we do not have an
actual quantitative comparison. The Java Virtual
Machine [21] is a proposed solution to safe interac-
tion of distributed, untrusted agents. Mobile code
is encoded in the Java Virtual Machine Language
(also referred to as Java Bytecode), which is basi-
cally a safe low-level imperative language. Safety is
achieved through a combination of static typecheck-
ing and run-time checking.

However, the Java Bytecode safety model is rel-
atively limited as a result of limitations of the type
system. For example the Java Bytecode type infor-
mation encoded in the instruction codes can only
express a few basic abstract types (e.g., integers,
objects) and has no provisions for expressing safety
policies like the one for the resource access exam-
ple in Section 2. Also, invariants involving array
bounds compliance cannot be expressed in the Java
Bytecode type system and must be checked at run
time.

Although Java Bytecode is a low-level language,
it still requires substantial processing before it can
be executed on a general-purpose processor. In con-
trast, PCC segregates the safety proof from the pro-
gram code, allowing for the code portion to be en-
coded in a variety of languages, including native
code, without any safety loss.

12

4 Practical Problems and Future Work

In order to create a safety proof, the code producer
must prove a predicate in �rst-order logic. In gen-
eral, this problem is undecidable. However, as we
mentioned in Section 1, the code producer can re-
sort to \extra" run-time checks inserted in strategic
locations, which have the tendency to simplify the
certi�cation.

Fortunately, in the packet-�lter experiments, the
certi�cation process is nearly automatic, and we
have not been forced to insert any extra run-time
checks into the code. In fact, we �nd that safety
predicates for packet �lters are fairly easy handled
by existing theorem-proving technology.

One of the simpli�cations in the packet �lters is
to restrict programs so that they do not contain
loops. Although the general framework presented
in this paper is easily extended to accommodate
loops [5], this introduces a number of complications.
One experiment we conducted involves an IP-header
checksum routine, which is hand-coded in 39 DEC
Alpha instructions. The core loop contains 8 instruc-
tions, and is optimized by computing the 16-bit IP
checksum using 64-bit additions followed by a fold-
ing operation. The resulting PCC binary for this
routine is, as expected, quite fast, beating the stan-
dard C version in the OSF/1 kernel by a factor of
two. The PCC binary itself is 1610 bytes in size and
proof validation takes 3.6 milliseconds.

This experiment brought to light several com-
plications. For example, the standard approach of
verifying loops using Floyd-style veri�cation condi-
tions involves introducing loop invariants explicitly,
which is a challenge for any theorem-proving tech-
nology and ofter requires user intervention. In fact,
for general assembly-language programs this repre-
sents the most important problem to be solved, as
it is the main obstacle in automating the genera-
tion of proofs. Since this is beyond the capabilities
of our system, we are forced to write the invariants
out by hand. This also means that the native code
must be accompanied by a loop invariant for every
loop. Thus, the PCC binary contains a mapping be-
tween each loop and its invariant. Our convention is
to have the PCC binary contain a table that maps
each backward-branch target to a loop invariant.

Besides the problem of how to generate the
proofs, there is also the matter of their size. In prin-
ciple, the proofs can be exponentially large (in the
size of the program). This has not been a prob-
lem for any of the examples we have tried thus far,
however. The blowup would tend to occur in pro-
grams that contain long sequences of conditionals,

with no intervening loops. Perhaps we have not yet
seen the problem in a serious way because such pro-
grams tend to be hard for humans to understand,
and we are writing the programs by hand. But as
a general matter, the size of the PCC binaries is
an issue that must be addressed carefully. We have
implemented several optimizations in the represen-
tation of the proofs, and much more is possible here.
But ultimately, we need more practical experience to
know if this is a serious obstacle for PCC in practice.

For programs with loops, the loop invariants
break a program with cycles into a set of acyclic
code fragments. We treat each code fragment as a
separate program, using the invariants as precon-
ditions for each. This has the bene�cial e�ect of
partitioning the safety predicate and its proof into
smaller pieces, and overall tends to reduce the size
of the proof dramatically. For this reason, even for
sections of programs that do not contain loops, it
may be bene�cial to introduce invariants, as a way
of controlling the growth of the PCC binaries.

In addition to developing better certi�cation
technology, we see several other interesting direc-
tions for further research. One possibility that we
intend to explore is the application of PCC to more
dynamic properties, such as resource-usage guaran-
tees. One example would be to certify that spe-
ci�c synchronization locks are always released prior
to some action. The framework we have presented
in this paper is already expressive enough to de�ne
such safety policies, and so what remains now is to
try some experiments.

Another possibility is to allow the consumer and
producer to \negotiate" a safety policy at run time.
This would work by allowing the producer to send
an encoding of a proposed safety policy (including
the VC-generation rules, proof rules, and precon-
ditions) to the consumer. If the consumer deter-
mines that the proposed policy implies some basic
notion of safety, then it can allow the producer to
produce PCC binaries using the new policy. This
might be useful in distributed systems, in which one
agent wants to de�ne a language and then transmit
to other agents code written in that language.

Finally, we believe there would be advantages
to starting with a safe programming language and
then implementing a certifying compiler that pro-
duces PCC binaries as target programs. For the
safety properties that are implied by the source lan-
guage, construction of the proofs is, in principle, a
matter of having the compiler prove the correctness
of the translation to target code. We have already
experimented with a toy compiler of this sort for a
small type-safe programming language, and hope to

13

expand on this in the near future.

5 Conclusions

We have described proof-carrying code, a mechanism
that allows a kernel or server to interact safely with
binaries supplied by an untrusted source. PCC does
not incur any run-time overhead for the kernel. In-
stead, the code producer is required to generate a
formal proof that the code obeys the safety policy.
The kernel can easily check the proofs for validity,
after which it is absolutely certain that the code re-
spects the safety policy. Furthermore, PCC binaries
are completely tamper-proof; any attempt to alter
either the native code or safety proof in a PCC bi-
nary is either detected or harmless. Our experiments
with network packet �lters show that PCC can lead
to signi�cant performance advantages over existing
approaches to safe code, including code-editing tech-
niques such as Software Fault Isolation.

Proof-carrying code has the potential to free the
system designer from relying on run-time checking
as the sole means of ensuring safety. Traditionally,
system designers have always viewed safety simply
in terms of memory protection, achieved through the
use of rather expensive run-time mechanisms such as
hardware-enforced memory protection and extensive
run-time checking of data. By being limited to mem-
ory protection and run-time checking, the designer
must impose substantial restrictions on the structure
and implementation of the entire system, for exam-
ple by requiring the use of a restricted application-
kernel interaction model (such as a �xed system call
or application-program interface.)

Proof-carrying code, on the other hand, allows
the safety policy to be de�ned by the kernel designer
and then certi�ed by each application. Not only does
this provide greater exibility for designers of both
the system and applications, but also allows safety
policies to be used that are more abstract and �ne-
grained than memory protection. We believe that
this has the potential to lead to great improvements
in the robustness and end-to-end performance of sys-
tems.

6 Final Thoughts

The inspiration for proof-carrying code comes from
the realm of static type systems, especially as em-
bodied by the language Standard ML (SML). In
the formal de�nition of SML [14], a formal theorem
guarantees the safety of any type-correct SML pro-
gram, for a rigorously de�ned notion of safety. There

are, of course, many other type-safe programming
languages, for example Modula-3 [17] and Java [20],
but the use of mathematical formalism sets SML
apart from the these languages, and as a practical
matter this rigor provides the basic conceptual and
technical foundations that we need to create check-
able proofs.

With type-safe languages like SML in mind, we
can get an intuitive idea about how proof-carrying
code works. Consider a compiler for SML. Agent A
writes an SML program and compiles it to a native-
code target program. If we then throw away the
source program, how can we later convince an agent
B that the target program is safe? (We are assum-
ing that agent B does not trust agent A.) One way
to do this is to have the compiler prove that the tar-
get code correctly corresponds to the source code.4

Now, as it turns out, in the type theory of SML, not
only can such a proof be written out formally, but in
fact it can be written in a typed language with the
property that any well-typed proof is guaranteed to
be valid.

Proof-carrying code is thus an application of
ideas from programming-language theory, in this
case used for de�ning notions of safety that are use-
ful for operating systems, and exible enough to ac-
commodate both high-level and low-level languages.
With the growth of interest in highly distributed
computing, web computing, and extensible kernels,
it seems clear to us that ideas from programming
languages are destined to become increasingly criti-
cal for robust and good-performing systems.

7 Acknowledgements

We thank Robert Harper, Brian Noble, Daniel Jack-
son, Edo Biagioni, Greg Morrisett, Scott Draves,
Chris Colby, Martin Abadi and Dave Detlefs for
reading previous versions of this paper and for sug-
gesting many improvements. We also thank Charles
Garrett, Brian Bershad, Wilson Hsieh for suggest-
ing many improvements to the methodology for the
Modula-3 performance measurements. Finally, we
thank the anonymous reviewers for their many sug-
gestions for improving this paper. In particular we
thank our shepherd, Jay Lepreau, who also sug-
gested the PCC name.

4This is essentially the same as having a compiler translate the

types as well as the code, so that the target program will have

types that can be checked. In fact, this approach to compiling is

taken by the SML/TIL compiler [22].

14

References

[1] Bershad, B., Savage, S., Pardyak, P.,

Sirer, E. G., Becker, D., Fiuczynski, M.,

Chambers, C., and Eggers, S. Extensibil-
ity, safety and performance in the SPIN operat-
ing system. In Symposium on Operating System
Principles (Dec. 1995), pp. 267{284.

[2] Boyer, R. S., and Yu, Y. Automated proofs
of object code for a widely used microprocessor.
J. ACM 43, 1 (Jan. 1996), 166{192.

[3] Clutterbuck, D., and Carr�e, B. The ver-
i�cation of low-level code. IEEE Software En-
gineering Journal 3, 3 (May 1988), 97{111.

[4] Constable, R. L., Allen, S. F., Bromley,
H. M., Cleaveland, W. R., Cremer, J. F.,

Harper, R. W., Howe, D. J., Knoblock,

T. B., Mendler, N. P., Panangaden, P.,

Sasaki, J. T., and Smith, S. F. Implement-
ing Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, 1986.

[5] Dijkstra, E. W. Guarded commands, nonde-
terminancy and formal derivation of programs.
Communications of the ACM 18 (1975), 453{
457.

[6] Floyd, R. W. Assigning meanings to pro-
grams. In Mathematical Aspects of Computer
Science, J. T. Schwartz, Ed. American Mathe-
matical Society, 1967, pp. 19{32.

[7] Harper, R., Honsell, F., and Plotkin,

G. A framework for de�ning logics. Journal of
the Association for Computing Machinery 40, 1
(Jan. 1993), 143{184.

[8] Hoare, C. A. R. An axiomatic basis for com-
puter programming. Communications of the
ACM 12 (1969), 567{580.

[9] Hsieh, W. C., Fiuczynski, M. E., Gar-

rett, C., Savage, S., Becker, D., and

Bershad, B. N. Language support for extensi-
ble operating systems. In The Inaugural Work-
shop on Compiler Support for Systems Software
(Feb. 1996), pp. 127{133.

[10] Lee, P., and Leone, M. Optimizing ML with
run-time code generation. In PLDI'96 Confer-
ence on Programming Language Design and Im-
plementation (May 1996), pp. 137{148.

[11] Martin-L�of, P. A theory of types. Techni-
cal Report 71{3, Department of Mathematics,
University of Stockholm, 1971.

[12] McCanne, S. The Berkeley Packet Fil-
ter man page. BPF distribution available at
ftp://ftp.ee.lbl.gov, May 1991.

[13] McCanne, S., and Jacobson, V. The BSD
packet �lter: A new architecture for user-level
packet capture. In The Winter 1993 USENIX
Conference (Jan. 1993), USENIX Association,
pp. 259{269.

[14] Milner, R., Tofte, M., and Harper, R.

The De�nition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1990.

[15] Mogul, J. C., Rashid, R. F., and Accetta,

M. J. The packet �lter: An e�cient mechanism
for user-level network code. In ACM Symposium
on Operating Systems Principles (Nov. 1987),
ACM Press, pp. 39{51. An updated version is
available as DEC WRL Research Report 87/2.

[16] Necula, G. C., and Lee, P. Proof-carrying
code. Technical Report CMU-CS-96-165, Com-
puter Science Department, Carnegie Mellon
University, Sept. 1996. Also appeared as FOX
memorandum CMU-CS-FOX-96-03.

[17] Nelson, G. Systems Programming with
MODULA-3. Prentice-Hall, 1991.

[18] Sirer, E. G., Savage, S., Pardyak, P., De-
Fouw, G. P., and Bershad, B. N. Writing
an operating system with Modula-3. In The
Inaugural Workshop on Compiler Support for
Systems Software (Feb. 1996), pp. 134{140.

[19] Sites, R. L. Alpha Architecture Reference
Manual. Digital Press, 1992.

[20] Sun Microsystems. The Java language spec-
i�cation. Available as
ftp://ftp.javasoft.com/docs/javaspec.ps.zip,
1995.

[21] Sun Microsystems. The Java Virtual Ma-
chine speci�cation. Available as
ftp://ftp.javasoft.com/docs/vmspec.ps.zip,
1995.

[22] Tarditi, D., Morrisett, J. G., Cheng, P.,

Stone, C., Harper, R., and Lee, P. TIL:
A type-directed optimizing compiler for ML.
In PLDI'96 Conference on Programming Lan-
guage Design and Implementation (May 1996),
pp. 181{192.

[23] Wahbe, R., Lucco, S., Anderson, T. E.,

and Graham, S. L. E�cient software-based

15

fault isolation. In 14th ACM Symposium on Op-
erating Systems Principles (Dec. 1993), ACM,
pp. 203{216.

[24] Wallach, D. A., Engler, D., and

Kaashoek, M. F. ASHs : Application-
speci�c handlers for high-performance messag-
ing. In ACM SIGCOMM'96 (Oct. 1996),
vol. 26, ACM.

16

