The Call Processing Language: User Control of Internet Telephony Services

Jonathan Lennox
lennox@cs.columbia.edu

February 28, 2000
Motivation

- Internet telephony increasingly replacing circuit-switched network
- Need advanced telephony services for Internet telephony
 - Services comparable to traditional networks
 * Call forwarding, call blocking, time-of-day routing, ...
 - New or enhanced services
 * Interfaces with other parts of Internet
 * Elaborate, custom services
- Need new ways of creating such services
Call Processing Language: Characteristics

- Creatable and editable both by simple graphical tools and by humans
- Independent of underlying signalling protocol
- Safe to run in servers
 - Automatically verifiable when uploaded to server
 - Resource usage (memory, processing time) inherently limited
 - Not Turing-complete: no loops, variables, recursion
 - Can’t interact with inappropriate parts of the server
 - Predictable behavior
- Separate scripts for inbound, outbound, policy
Sample CPL: Graphical Representation

- Acyclic graph: start at root, progress downward
- Follow one output of each node, based on outcome
Representation: XML

- Why XML?
 - Easy to parse
 - Easy to edit
 - Naturally encodes tree structure
 * add simple links for acyclic graph

- Representation specifics
 - Top level tag is call
 - Nodes and outputs are both tags
 - Node parameters are tag attributes
 - link tag connects branches
Example CPL Script

```xml
<?xml version="1.0" ?>
<!DOCTYPE call SYSTEM "cpl.dtd">

call>
  address-switch field="origin" subfield="host">
    address subaddress-of="example.com">
      location url="sip:jones@example.com">
        proxy>
          busy> <link ref="voicemail" /> </busy>
          noanswer> <link ref="voicemail" /> </noanswer>
          failure> <link ref="voicemail" /> </failure>
        </proxy>
      </location>
    </address>
  otherwise>
    location url="sip:jones@voicemail.example.com"
      id="voicemail">
      redirect />
    </location>
  </otherwise>
</address-switch>
</call>
```
CPL Nodes

Switches
- Address Switch
- String Switch
- Priority Switch
- Time Switch

Signalling Actions
- Proxy
- Redirect
- Response

Locations
- Basic Location
- Location Lookup
- Location Filter

Other Actions
- Mail
- Log

Links
Location Model

- Scripts have an implicit global variable: the location set
- Location nodes add to, replace, or filter location set
- The behavior of **Proxy** and **Redirect** actions is based on the current set of locations
- Allows flexible location handling
(Possible) Downsides to XML

- Location scheme is implicit, not explicit
 - Not possible to have other variables
 - But is this bad or good?

- Some syntax has to be done two-level, moderately ugly
 - e.g. time-switches:
    ```xml
    <time
timeofday="1310-1425,1440-1555,1610-1725"
day="2,4">
    ```

-Verbose
Status

- **Standardization**
 - Work item of IETF IPTel working group, for Proposed Standard
 - Some interest from ITU for H.323 bindings

- **Implementation**
 - Implemented in Lucent “GosSIP” Server
 (but status of this is uncertain)
 - Interest from other Lucent groups
 - In progress for Columbia SIP server
 - Interest from other organizations
Example Scripts
Example: Call Redirect Unconditional

```xml
<?xml version="1.0" ?>
<!DOCTYPE call SYSTEM "cpl.dtd">
<call>
  <location url="sip:smith@phone.example.com">
    <redirect />
  </location>
</call>
```
Example: Call Forward Busy/No Answer

```xml
<?xml version="1.0" ?>
<!DOCTYPE call SYSTEM "cpl.dtd">
<call>
  <location url="sip:jones@jonespc.example.com">
    <proxy timeout="8s">
      <busy>
        <location url="sip:jones@voicemail.example.com" merge="clear" id="voicemail" />
      </busy>
    </proxy>
  </location>
</call>
```
Example: Call Screening

```xml
<?xml version="1.0" ?>
<!DOCTYPE call SYSTEM "cpl.dtd">
<call>
  <address-switch field="origin" subfield="user">
    <address is="anonymous">
      <response status="reject">
        reason="I don’t accept anonymous calls" />
      </response>
    </address>
  </address-switch>
</call>
```
Example: Time-of-day Routing

```xml
<?xml version="1.0" ?>
<!DOCTYPE call SYSTEM "cpl.dtd">
<call>
  <time-switch>
    <time day="1-5" timeofday="0900-1700">
      <lookup source="registration">
        <success>
          <proxy />
        </success>
      </lookup>
    </time>
    <otherwise>
      <location url="sip:jones@voicemail.example.com">
        <proxy />
      </location>
    </otherwise>
  </time-switch>
</call>
```
Example: Non-call Actions

```xml
<?xml version="1.0" ?>
<!DOCTYPE call SYSTEM "cpl.dtd">

<call>
  <lookup url="http://www.example.com/cgi-bin/locate.cgi?user=jones"
          timeout="8s">
    <success>
      <proxy />
    </success>
    <failure>
      <mail url="mailto:jones@example.com;subject=lookup%20failed" />
    </failure>
  </lookup>
</call>
```
Example: A Complex Example

<call>
 <location url="sip:jones@phone.example.com">
 <proxy timeout="8s">
 <busy>
 <location url="sip:jones@voicemail.example.com" id="voicemail">
 <redirect />
 </location>
 </busy>
 <noanswer>
 <address-switch field="origin">
 <address contains="boss@example.com">
 <location url="tel:+19175551212">
 <proxy />
 </location>
 </address>
 </address-switch>
 </noanswer>
 </proxy>
 </location>
</call>